论文中文题名: | 原花青素/聚丙烯酸钠复合阻化长焰煤自燃特性实验研究 |
姓名: | |
学号: | 19220214092 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-21 |
论文答辩日期: | 2022-06-01 |
论文外文题名: | Experimental Study on the Procyanidine/Sodium Polyacrylate Composite Inhibitor Inhibiting Long Flame Coal Spontaneous Combustion Characteristics |
论文中文关键词: | |
论文外文关键词: | Coal spontaneous combustion ; Procyanidine ; Composite Inhibitor ; Inhibitory effects ; Functional groups |
论文中文摘要: |
煤自燃灾害严重破坏资源与危害作业人员生命健康安全。其中,低变质煤极易自燃,我国低变质煤中长焰煤含量丰富,因此有必要对长焰煤自燃进行防治。阻化剂是抑制煤自燃灾害主要手段之一。本文首先通过优选原花青素作为抗氧化剂,采用程序升温实验得出原花青素的阻化效果及最优的质量比例;其次,为了弥补单一抗氧化剂的阻化效果和作用时间,通过与聚丙烯酸钠这一高吸水性树脂进行复配,得到物化协同效应的复合阻化剂,提升长焰煤自燃的阻化效果;进一步,采用程序升温实验和同步热分析实验,从宏观上得出不同复配比例的复合阻化剂阻化长焰煤自燃的特性及最优复配比例。最后,借助傅里叶原位红外光谱仪,分析原煤样和阻化煤样的主要官能团、官能团随温度的变化规律;采用扫描电镜分析原煤样、阻化煤样及复合阻化剂的表面形貌特征,从微观揭示复合阻化剂对长焰煤的作用。主要研究成果如下: (1) 选出原花青素抗氧化剂,通过程序升温实验得到原花青素的阻化效果,原花青素质量比例为6wt%时抑制长焰煤自燃的效用最优。 (2) 原花青素与聚丙烯酸钠进行复配得到物化协同的复合阻化剂,通过程序升温实验得到原花青素/聚丙烯酸钠复合阻化效果优于单一阻化剂。 (3) 选取原花青素/聚丙烯酸钠复配比例为1:1、1:2、1:3、1:4、1:5、1:6的复合阻化剂,采用程序升温实验初步得到原花青素/聚丙烯酸钠复配比例为1:4时,表现出较好的抑制效果:大幅度降低长焰煤氧化自燃过程中CO产生率及耗氧速率;40~130℃的阻化率接近88%,阻化率的提升作用显著;阻化煤样在缓慢氧化期30~60℃、加速氧化期60~150℃以及快速氧化期150~180℃的表观活化能增大幅度明显。 (4) 采用TG-DSC实验研究原煤样和阻化煤样在氧化升温过程中的热效应特征,得出实验煤样经历相同的五个阶段:失水失重、吸氧增重、热解、燃烧、燃尽。阻化煤相比于原煤的TG-DTG曲线向高温区移动,提高了原煤的特征温度,降低了原煤的质量损失率,DSC曲线峰值对应温度变大,最大释热功率变小。进一步得出原花青素/聚丙烯酸钠复配比例为1:4时,对抑制长焰煤自燃具有效果好且较为稳定的特点。 (5) 通过傅里叶原位红外光谱测试发现,常温下原煤和阻化煤的官能团种类相同而含量不同,原花青素/聚丙烯酸钠复配比例1:4阻化煤样的官能团及其占比排序为:芳香烃>含氧官能团>脂肪烃>羟基,而芳香烃中芳环占比最大,含氧官能团中醚键含量占比最大。由实验煤样在升温过程官能团的变化特征进一步分析得出复合阻化剂的阻化特性:原花青素提供氢,与甲基、亚甲基氧化形成的过氧化物结合为氢过氧化物,阻碍了碳氧中间体的产生,并与羟基结合,降低羟基活性,中断链式反应;氢过氧化物进一步分解成醇和水,原花青素侧链断裂产生羟基与醇反应成较稳定的醚键。聚丙烯酸钠为原花青素发挥效用起到保护作用,其隔氧、降温、吸水保水特性延缓煤体蓄热升温。 (6) 通过扫描电镜对比分析原煤样和阻化煤样的表面形态特征,发现原煤表面散落着大量煤屑,并存在相对密集的平行微裂纹,而阻化煤的孔隙相对较大或者出现空洞,这是由于原花青素含有大量氢键与煤表面活性官能团反应,对煤表面物理化学特性结构造成破坏。复合阻化剂表面覆盖许多微粒,并留存一些小气孔,随着温度升高,聚丙烯酸钠能将包裹的原花青素不断释放,从而较好地抑制煤自燃。 |
论文外文摘要: |
Coal spontaneous combustion disasters seriously damage resources and endanger the life, health and safety of workers. Among them, low-metamorphic coal is very easy to spontaneously ignite, and long-flame coal is rich in low-metamorphic coal in my country, so it is necessary to prevent and control the spontaneous combustion of long-flame coal. Inhibitor is one of the main means to restrain coal spontaneous combustion disaster. In this paper, the inhibitory effect and optimal mass ratio of proanthocyanidins were obtained through temperature-programmed experiments by selecting proanthocyanidins as antioxidants. The water-absorbent resin is compounded to obtain a compound inhibitor with a physicochemical synergistic effect, which improves the inhibitory effect of long-flame coal spontaneous combustion. Characteristics and optimal compounding ratio of inhibitor in inhibiting spontaneous combustion of long-flame coal. Finally, with the help of Fourier in situ infrared spectrometer, the main functional groups and functional groups of the raw coal samples and the inhibitory coal samples were analyzed with the change of temperature. Characteristics, revealing the effect of composite inhibitor on long-flame coal from the microscopic view. The main research results are as follows: (1) Proanthocyanidins were selected as antioxidants, and the inhibition effect of procyanidins was obtained through temperature-programmed experiments. When the mass ratio of procyanidins was 6wt%, the effect of inhibiting spontaneous combustion of long-flame coal was the best. (2) Proanthocyanidin and sodium polyacrylate are compounded to obtain a composite inhibitor with physicochemical synergy. Through temperature-programmed experiments, it is found that the composite inhibitor of procyanidin/sodium polyacrylate is better than a single inhibitor. (3) Select the compound inhibitor with the compound ratio of procyanidin/sodium polyacrylate as 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, and preliminarily obtain the procyanidin/sodium polyacrylate by temperature-programmed experiment. When the compounding ratio is 1:4, it shows a good inhibitory effect, the CO production rate and oxygen consumption rate during the oxidation and spontaneous combustion of long-flame coal are greatly reduced; the resistance rate of 40~130℃ is close to 88%, The improvement effect is significant; the apparent activation energy of the inhibited coal samples increases significantly in the slow oxidation period of 30~60℃, the accelerated oxidation period of 60~150℃ and the rapid oxidation period of 150~180℃. (4) TG-DSC experiment was used to study the thermal effect characteristics of raw coal samples and chemical-resistant coal samples in the process of oxidative heating. Compared with the raw coal, the TG-DTG curve of the chemical resistance coal moves to the high temperature area, which increases the characteristic temperature of the raw coal and reduces the mass loss rate of the raw coal. The peak temperature of the DSC curve increases, and the maximum heat release power decreases. It is further concluded that when the procyanidin/sodium polyacrylate compound ratio is 1:4, it has the characteristics of good effect and relatively stable in inhibiting the spontaneous combustion of long-flame coal. (5) Through Fourier transform in situ infrared spectroscopy test, it is found that the functional groups of the raw coal and the inhibitory coal at room temperature are the same but different in content. Aromatic hydrocarbons > oxygen-containing functional groups > aliphatic hydrocarbons > hydroxyl groups, and aromatic rings account for the largest proportion in aromatic hydrocarbons, and ether bonds in oxygen-containing functional groups account for the largest proportion. Further analysis of the change characteristics of the functional groups of the experimental coal samples during the heating process shows the inhibition characteristics of the composite inhibitor: proanthocyanidins provide hydrogen and combine with the peroxides formed by the oxidation of methyl and methylene to form hydroperoxides, hindering the The carbon-oxygen intermediate is generated, and combined with the hydroxyl group, reducing the activity of the hydroxyl group and interrupting the chain reaction; the hydroperoxide is further decomposed into alcohol and water, and the procyanidin side chain is broken to generate the hydroxyl group and the alcohol to react to form a relatively stable ether bond. Sodium polyacrylate plays a protective role for proanthocyanidins, and its characteristics of oxygen insulation, cooling, water absorption and water retention delay the thermal storage and heating of coal. (6) Through the comparative analysis of the surface morphological characteristics of the raw coal sample and the resistance coal sample by scanning electron microscope, it is found that a large number of coal chips are scattered on the surface of the raw coal, and there are relatively dense parallel micro-cracks, while the pores of the chemical resistance coal are relatively large or voids, which are Because proanthocyanidins contain a large number of hydrogen bonds and react with active functional groups on the surface of coal, it will cause damage to the physical and chemical structure of the coal surface. The surface of the composite inhibitor is covered with many particles and retains some small pores. As the temperature rises, the sodium polyacrylate can continuously release the encapsulated proanthocyanidins, thereby better inhibiting the spontaneous combustion of coal. |
参考文献: |
[1] 中经煤炭产业景气指数研究课题组, 岳福斌. 2021-2022年中国煤炭产业经济形势研究报告[J]. 中国煤炭, 2022, 48(02): 5-14. [4] 孙宝铁, 张菊, 高秀丽, 等. 低阶煤燃烧反应动力学参数实验研究[J]. 煤, 2017, 26(01): 6-13. [7] 庞国强. 矿井火灾防治[M]. 北京: 煤炭工业出版社, 2011. [8] 王继仁. 预防煤炭自燃阻化机理[M]. 北京: 煤炭工业出版社, 2011. [10] 郜孟南. 基于自由基消减的煤自燃阻化剂及其阻化特性[D]. 中国矿业大学, 2020. [11] 窦国兰. 预防煤自燃化学阻化剂研究[M]. 徐州: 中国矿业大学出版社, 2014. [12] 赵林, 蔡雅红, 何荷苗, 等. 高吸水性树脂的制备工艺及应用研究进展[J]. 工程塑料应用, 2018, 46(08): 143-148. [15] 李增华. 煤炭自燃的自由基反应机理[J]. 中国矿业大学学报, 1996, 25(03): 111-114. [18] 葛岭梅, 薛韩玲, 徐精彩, 等. 对煤分子中活性基团氧化机理的分析[J]. 煤炭转化, 2001, 24(03): 23-28. [19] 陆伟, 胡千庭, 仲晓星, 等. 煤自燃逐步自活化反应理论[J]. 中国矿业大学学报, 2007, 36(01): 111-115. [20] 徐精彩. 煤自燃危险区域判定理论[M]. 北京: 煤炭工业出版社, 2001. [21] 王继仁, 邓存宝, 邓汉忠, 等. 煤表面对氧分子物理吸附的微观机理[J]. 煤炭转化, 2007, 30(04): 18-21. [22] 邓军, 张嬿妮. 煤自然发火微观机理[M]. 徐州: 中国矿业大学出版社, 2015. [23] 王洋. 物理—化学笼式复合阻化剂对煤自燃的影响研究[D]. 中国矿业大学, 2016. [24] 杨漪. 基于氧化特性的煤自燃阻化剂机理及性能研究[D]. 西安科技大学, 2015. [25] 马砺, 任立峰, 艾绍武, 等. 氯盐阻化剂对煤自燃极限参数影响的试验研究[J]. 安全与环境学报, 2015, 15(04): 83-88. [26] 张嬿妮, 侯云超, 刘博, 等. 卤盐载体无机盐阻化煤自燃的机理及性能[J]. 工程科学学报, 2021, 43(10): 1295-1303. [27] 谢锋承. 阻化剂抑制煤自燃的实验研究[D]. 河南理工大学, 2011. [30] 周清清. 煤自燃倾向性及阻化技术的实验研究[D]. 浙江大学, 2018. [31] 郑兰芳. 阻化剂抑制煤炭氧化自燃性能的实验研究[D]. 西安科技大学, 2009. [33] 张玉涛, 史学强, 李亚清, 等. 锌镁铝层状双氢氧化物对煤自燃的阻化特性[J]. 煤炭学报, 2017, 42(11): 2892-2899. [34] 杨胜强. 氢氧化钙对高硫煤的阻化实验及机理分析[J]. 中国矿业大学学报, 1996, 25(04): 68-72. [39] 卜祝龙, 吕英英. 气溶胶阻化防火技术应用[J]. 清洗世界, 2021, 37(01): 10-11. [41] 邓军, 胡安鹏, 马砺, 等. 煤自燃防治气溶胶制备的试验[J]. 煤矿安全, 2015, 46(04): 30-33. [42] 邓军, 吴会平, 马砺, 等. 煤自燃阻化剂雾化性能实验研究[J]. 煤矿安全, 2012, 43(05): 15-18. [43] 张小闯, 王旭, 董祥武. 粉煤灰轻质膏体充填防灭火技术应用[J]. 山东煤炭科技, 2012, 45(05): 202-203. [44] 刘鑫, 肖旸, 邓军. 矿用轻质膏体防灭火材料研究与应用[J]. 煤矿安全, 2011, 42(12): 77-80. [45] 肖辉, 杜翠凤. 新型高聚物阻化剂的阻化效果研究[J]. 工业安全与环保, 2006, 32(03): 6-8. [46] 王立芹. 防治煤层自燃的聚乙酸乙烯酯乳液的合成及其性能研究[D]. 山东科技大学, 2007. [47] 张亢, 杜治昊, 王德明, 等. 复合高吸水性树脂对煤自燃的抑制性能研究[J]. 工矿自动化, 2019, 45(05): 26-30. [49] 武卫荣, 刘涛, 刘振辉, 等. 煤自燃阻化剂的研究进展[J]. 应用化工, 2017, 46(02): 356-359. [50] 孙萌, 王福生, 王建涛, 等. 2-羧乙基苯基次膦酸抑制煤自燃特性研究[J]. 矿业研究与开发, 2021, 41(04): 76-80. [51] 李金亮, 陆伟, 徐俊. 化学阻化剂防治煤自燃及其阻化机理分析[J]. 煤炭科学技术, 2012, 40(01): 50-53. [55] 肖旸, 尹岚, 吕慧菲, 等. 咪唑类离子液体处理煤热失重以及传热特性[J]. 煤炭学报, 2019, 44(02): 520-527. [56] 张小艳. 柠檬酸对煤自燃特性的影响研究[D]. 中国矿业大学, 2019. [57] 郑腾蛟, 狄艳丽, 沈昊洋. 抗坏血酸和迷迭香酸复合阻化抑制煤自燃的实验研究[J]. 煤炭科技, 2020, 41(04): 48-51. [59] 郭翔宇. 儿茶素抑制煤自燃的机理研究[D]. 天津理工大学, 2020. [62] 钟演, 杨胜强, 胡新成, 等. 物化协同阻化剂的制备与性能实验研究[J]. 煤矿安全, 2017, 48(07): 44-48. [64] 许红英. 复合阻化剂抑制煤自燃的热重动力学实验研究[J]. 矿业研究与开发, 2019, 39(06): 79-84. [65] 许红英, 苗梦露, 陈鹏. 复合阻化剂抑制煤自燃的红外光谱实验研究[J]. 矿业安全与环保, 2019, 46(04): 40-44. [71] 杜杰, 邬剑明, 唐一博, 等. 聚乙酸乙烯酯乳液复合阻化剂阻燃煤的试验研究[J]. 中国安全科学学报, 2018, 28(09): 45-50. [74] 姜峰, 孙雯倩, 李珍宝, 等. 复合阻化剂抑制煤自燃过程的阶段阻化特性[J]. 煤炭科学技术, 2021. [77] 方欢乐, 于晋茹, 陶炎炎, 等. 葡萄籽原花青素抗衰老作用的研究[J]. 食品与药品, 2020, 22(06): 448-452. [78] 薛海波. 抑制煤自燃过程关键活性基团的抗氧化型复合阻化剂研究[D]. 中国矿业大学, 2018. [79] 孙雯倩. 复合阻化剂抑制煤自燃过程的阶段阻化特性[D]. 兰州理工大学, 2021. [81] 杨计先, 白祖锦. LDHs阻化剂对烟煤的阻化特性实验研究[J]. 煤矿安全, 2018, 49(08): 35-38. [82] 徐精彩, 许满贵, 文虎, 等. 煤氧复合速率变化规律研究[J]. 煤炭转化, 2000, 23(003): 63-66. [83] 彭本信. 煤的自然发火阻化剂及其阻化机理[J]. 煤炭学报, 1980, 21(03): 38-48. [84] 张嬿妮. 煤氧化自燃微观特征及其宏观表征研究[D]. 西安科技大学, 2012. [85] 张辉建, 黄寅生, 何亚丽, 等. 高分子吸水性树脂的制备及灭火应用[J]. 消防科学与技术, 2018, 37(09): 1242-1244. [86] 牛育华, 赵冬冬, 魏恩志, 等. PEG/PVA/PAA复合高吸水性树脂的制备及其保水性能[J]. 精细化工, 2016, 33(06): 628-634. [88] 翟小伟, 成倬, 徐启飞, 等. 粒径对煤低温氧化阶段表观活化能影响试验研究[J]. 煤炭工程, 2020, 52(10): 143-148. [89] 张辛亥, 李青蔚, 肖旸, 等. 风化煤自燃性程序升温氧化实验研究[J]. 矿业安全与环保, 2015, 42(05): 5-9. [90] 王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45(12): 4132-4143. |
中图分类号: | TD752.2 |
开放日期: | 2022-06-21 |