- 无标题文档
查看论文信息

论文中文题名:

 注浆裂隙岩石应力波传播机制及能量耗散规律研究    

姓名:

 杨文轩    

学号:

 21204228114    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 岩土力学与工程应用    

第一导师姓名:

 王磊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-06-02    

论文外文题名:

 Study on the Propagation Mechanism and Energy Dissipation Law of Stress Waves in Fractured Rocks    

论文中文关键词:

 注浆裂隙岩石 ; SHPB试验 ; 结构面 ; 应力波传播 ; 能量耗散    

论文外文关键词:

 Grouting fissure rock ; SHPB test ; Structural plane ; Stress wave propagation ; Energy dissipation    

论文中文摘要:

地下工程中,裂隙岩石广泛分布。富水裂隙岩石中,随原、次生裂隙不断成核、扩展、贯通,使得地下岩石发生突泥涌水灾害,现场施工常采用注浆加固技术来维持岩石稳定性,注浆加固体受各类扰动荷载响应,发生失稳破坏。本文研究采用霍普金森压杆(SHPB)试验装置,通过对经过注浆处理且倾角各异的裂隙红砂岩试样进行单轴冲击压缩试验,旨在深入研究岩石在动态载荷作用下的力学响应特性、能量耗散行为、内部结构面的破坏机制以及应力波在岩石中传播和衰减的具体规律,具体研究工作及结论如下:

(1)对注浆裂隙岩石开展SHPB单轴冲击试验,揭示不同裂隙倾角、不同应变率条件下注浆裂隙岩石动态力学参数及强度变形规律。研究结果表明:大角度结构面试件应力-应变曲线变化趋势相同,60°与45°试件呈现出明显的脆性断裂特征。45°的试件的动态抗压强度先增大后减小。随着应变率的提高,峰值应变持续增长,应力波波动、动态应力应变及动态强度等表现出明显的率强化效应和结构面劣化效应,贯通结构面将显著劣化岩石极限承载能力。在相同的冲击应变率条件下,随着裂隙倾角的增大,试件的抗压强度呈现出持续增强的趋势。动态峰值应变随着节理倾角的改变,呈现出多样化的变化趋势。

(2)根据一维应力波理论对冲击作用下注浆裂隙岩石能量构成进行解析,阐述单结构面岩体强度破坏模式并分析其破坏机理。通过试验过程中高速摄影系统捕捉图像与最终破坏形态总结岩石冲击损伤破坏过程。研究发现:砂岩试件吸收能除透射能外随应变率的增加呈线性关系增加,相比于裂隙倾角,入射能、反射能、耗散能对加载率的变化更敏感,透射能对裂隙倾角的变化更敏感。相较于90°试件,45°、60°、75°试件沿结构面发生剪切破坏,低角度结构面引起岩体稳定性降低;含单结构面岩体破坏由内因(固有强度)和外因(外荷载)共同决定,受力变形特征受结构面方位和各部分强度共同控制,岩体强度与结构面的强度参数(黏聚力、摩擦角)和界面角度有关。失效破坏形式基于强度理论主要有注浆层压缩、注浆层剪断、浆岩压缩及浆岩压剪破坏,影响因素有应变率和结构面倾角。

(3)通过详尽追溯并分析应力波在岩石内部的不同界面与结构面上所经历的反复透射与反射过程,构建描述应力波传播与能量衰减过程的定量表达式,探究应力波在注浆裂隙岩石结构面内部的透反射传播规律及衰减规律。进一步研究明确了反射系数与透射系数的概念,并对这两个参数随条件变化的规律进行了系统的探讨:当应力波穿透具有较大倾角的结构面时,其能量衰减的现象尤为显著,表明在这种条件下,反射作用相对减弱,而透射作用相对增强。相较于应变率可能带来的强化作用,结构面引起的能量削弱效应更为显著,尤其是在较低应变率的条件下,结构面对应力波的透射能力施加了明显的限制。

本文对室内试验结果进行理论分析,探究不同结构面注浆裂隙岩石的动力学特性、能量耗散规律,对试验得到的应力应变曲线、峰值强度、峰值应变等动力学参数进行分析,并根据能耗特征分析其结构面破坏机理及应力波传播衰减规律,研究结果可为不良地质区域动力失稳事故的防治提供分析计算依据和理论基础。

论文外文摘要:

In underground engineering, fractured rocks are widely distributed. In water rich fractured rocks, as primary and secondary fractures continue to nucleate, expand, and penetrate, underground rocks are prone to sudden mud and water inrush disasters. On site construction often uses grouting reinforcement technology to maintain rock stability. Grouting combined with solid response to various disturbance loads can cause instability and failure. This article investigates the mechanical response characteristics, energy dissipation behavior, failure mechanism of internal structural planes, and specific laws of stress wave propagation and attenuation in rocks under dynamic loads by conducting uniaxial impact compression tests on fractured red sandstone samples treated with grouting and with different inclination angles using the Hopkinson compression bar (SHPB) testing device. The specific research work and conclusions are as follows:

Conduct SHPB uniaxial impact tests on grouting fractured rocks to reveal the dynamic mechanical parameters and strength deformation laws of grouting fractured rocks under different crack angles and strain rates. The research results indicate that the stress-strain curve of large-angle structural specimens shows the same trend, while the 60° and 45°specimens exhibit obvious brittle fracture characteristics. The dynamic compressive strength of the 45°specimen first increases and then decreases. As the strain rate increases, the peak strain continues to increase, and stress wave fluctuations, dynamic stress-strain, and dynamic strength exhibit obvious rate strengthening effects and structural plane degradation effects. The through structural plane will significantly degrade the ultimate bearing capacity of the rock. Under the same impact strain rate conditions, as the crack inclination angle increases, the compressive strength of the specimen shows a continuous increasing trend. The dynamic peak strain shows a diversified trend with the change of joint inclination angle.

Based on one-dimensional stress wave theory, the energy composition of grouting fractured rock under impact is analyzed, and the strength failure mode of single structural plane rock mass is explained and its failure mechanism is analyzed. Summarize the process of rock impact damage and failure by capturing images and the final failure morphology using a high-speed photography system during the experiment. Research has found that the absorption energy of sandstone specimens increases linearly with the increase of strain rate, except for the transmission energy. Compared to the inclination angle of fractures, the incident energy, reflected energy, and dissipated energy are more sensitive to changes in loading rate, while the transmission energy is more sensitive to changes in fracture inclination angle. Compared to the 90° specimens, the 45°, 60°, and 75° specimens experienced shear failure along the structural plane, and the low angle structural plane caused a decrease in rock stability; The failure of a rock mass with a single structural plane is determined by both internal factors (intrinsic strength) and external factors (external load). The stress deformation characteristics are controlled by the orientation of the structural plane and the strength of each part. The strength of the rock mass is related to the strength parameters (cohesion, friction angle) and interface angle of the structural plane. The failure modes based on strength theory mainly include grouting layer compression, grouting layer shear, grouting rock compression, and grouting rock compression shear failure. The influencing factors include strain rate and structural plane inclination angle.

(3) By tracing and analyzing the repeated transmission and reflection processes of stress waves at different interfaces and structural planes inside rocks in detail, a quantitative expression describing the propagation and energy attenuation process of stress waves is constructed to explore the transmission, reflection, and attenuation laws of stress waves inside the structural planes of grouted fractured rocks. Further research has clarified the concepts of reflection coefficient and transmission coefficient, and systematically explored the patterns of these two parameters changing with conditions: when stress waves penetrate structural surfaces with larger inclinations, the phenomenon of energy attenuation is particularly significant, indicating that under these conditions, the reflection effect is relatively weakened, while the transmission effect is relatively enhanced. Compared to the strengthening effect that strain rate may bring, the energy weakening effect caused by structural planes is more significant, especially under lower strain rate conditions, where structural planes impose significant limitations on the transmission ability of stress waves.

This article theoretically analyzes the results of indoor experiments, explores the dynamic characteristics and energy dissipation laws of grouting cracks in rocks with different structural planes, analyzes the dynamic parameters such as stress-strain curves, peak strength, and peak strain obtained from the experiments, and analyzes the failure mechanism of structural planes and the attenuation law of stress wave propagation based on energy consumption characteristics. The research results can provide analysis and calculation basis and theoretical basis for the prevention and control of dynamic instability accidents in unfavorable geological areas.

参考文献:

[1]李建林. 岩石力学[M]. 重庆大学出版社: 高等学校土木工程本科指导性专业规范配套系列教材, 201409. 318.

[2]孔思丽, 程辉, 胡燕妮, 等. 工程地质学[M]. 重庆大学出版社: 201708. 226.

[3]夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展[J]. 岩石力学与工程学报, 2021, 40(03): 448-475.

[4]柴少波, 王昊, 井彦林, 等. 充填节理岩石累积损伤动力压缩特性试验研究[J]. 岩石力学与工程学报, 2020, 39(10): 2025-2037.

[5]杨仁树, 王茂源, 杨阳, 等. 充填材料对节理岩石动力学性能影响的模拟试验[J]. 振动与冲击, 2016, 35(12): 125-131.

[6]杨阳, 杨仁树, 王建国. 节理厚度对岩石动力特性影响的模拟试验[J]. 中国矿业大学学报, 2016, 45(02): 211-216+309.

[7]柴少波, 宋浪, 刘欢, 等. 酸性干湿循环下充填节理岩石劣化性能试验研究[J]. 岩土力学, 2022, 43(11): 2993-3002.

[8]柴少波, 宋浪, 刘欢, 等. 干湿循环作用下充填节理岩石压缩特性试验[J/OL]. 交通运输工程学报: 1-11[2023-09-25].

[9]马芹永, 苏晴晴, 马冬冬, 等. 含不同节理倾角深部巷道砂岩SHPB动态力学破坏特性试验研究[J]. 岩石力学与工程学报, 2020, 39(06): 1104-1116.

[10]李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究[J]. 岩石力学与工程学报, 2017, 36(12): 2872-2883.

[11]刘红岩, 邓正定, 王新生, 等.节理岩体动态破坏的SHPB相似材料试验研究[J]. 岩土力学, 2014, 35(03): 659-665.

[12]李祥龙, 王建国, 张智宇, 等.应变率及节理倾角对岩石模拟材料动力特性的影响[J]. 爆炸与冲击, 2016, 36(04): 483-490.

[13]石竟成, 李建春, 李星, 等. 循环冲击下节理表面粗糙度对其法向刚度与形貌的影响[J]. 中南大学学报(自然科学版), 2021, 52(08): 2661-2668.

[14]潘博, 汪旭光, 徐振洋, 等. 节理角度对岩石材料的动态响应影响研究[J]. 岩石力学与工程学报, 2021, 40(03): 566-575.

[15]Sachin K ,Gaurav T ,Venkitanarayanan P , et al. Rate-dependent mechanical behavior of jointed rock with an impersistent joint under different infill conditions[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(5).

[16]王建国, 郭延辉, 张小华, 等.冲击荷载下节理数对类岩石动力学特性的影响[J]. 地下空间与工程学报, 2017, 13(S2): 559-564.

[17]李淼, 乔兰, 李庆文. 高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析[J]. 岩土工程学报, 2017, 39(07): 1336-1343

[18]Junpeng Z ,Xiaoyue H ,Yong Y J , et al. Dynamic Mechanical Behaviors of Rock's Joints Quantified by Repeated Impact Loading Experiments with Digital Imagery[J]. Rock Mechanics and Rock Engineering,2022,55(11).

[19]Li D, Han Z, Zhu Q, et al. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 162-170.

[20]Han Z, Li D, Li X. Dynamic mechanical properties and wave propagation of composite rock-mortar specimens based on SHPB tests[J]. International Journal of Mining Science and Technology, 2022, 32(4): 793-806.

[21]许江波, 费东阳, 孙浩珲, 等. 节理千枚岩能量传递与动力学特性[J]. 东北大学学报(自然科学版), 2021, 42(07): 986-995.

[22]李业学, 马彦熊, 潘洪科, 等. 两条粗糙平行节理表面形貌对应力波能耗的影响研究[J]. 中国安全生产科学技术, 2016, 12(11): 75-81.

[23]王建国, 李克钢, 张智宇, 等. 低速冲击下平行节理岩石能量传递及动力学特性[J]. 湖南大学学报(自然科学版), 2018, 45(S1): 14-19.

[24]鞠杨, 李业学, 谢和平, 等. 节理岩石的应力波动与能量耗散[J]. 岩石力学与工程学报, 2006(12): 2426-2434.

[25]戎密仁. 围岩裂隙注浆加固体力学特性及破坏机理研究[D]. 石家庄铁道大学, 2021.

[26]王昊. 考虑累积损伤效应的岩石充填裂隙动态力学特性试验研究[D]. 长安大学, 2021.

[27]Yan B, Kang H, Zuo J, et al. Study on damage anisotropy and energy evolution mechanism of jointed rock mass based on energy dissipation theory[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(8): 294.

[28]李业学, 彭琦, 朱建波, 等. 分形截距对应力波能耗影响规律的试验研究[J]. 岩石力学与工程学报, 2011, 30(S2): 3982-3988.

[29]宋洋, 任萌, 张维东, 等. 非贯通非共面凝灰岩裂隙岩体各向异性及其能量特征分析[J]. 中国地质灾害与防治学报, 2019 (1): 126-132.

[30]蒲超, 孟陆波, 李天斌. 三轴压缩条件下千枚岩破裂与能量特征研究[J]. 工程地质学报, 2017, 25(02): 359-366.

[31]王桂林, 张亮, 许明, 等. 单轴压缩下非贯通节理岩体损伤破坏能量演化机制研究[J]. 岩土工程学报, 2019, 41(04): 639-647.

[32]Li P, Cai M. Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression[J]. Journal of Central South University, 2021, 28(6): 1857-1874.

[33]柴少波, 李建春, 赵均海, 等. P波在非线性交叉节理岩体中的传播特性研究[J]. 岩石力学与工程学报, 2019, 38(06): 1149-1157.

[34]李业学, 谢和平, 朱哲明, 等. 应力波穿越分形节理时的透反射规律研究[J]. 岩石力学与工程学报, 2009, 28(01): 120-129.

[35]王帅, 盛谦, 朱泽奇, 等. 频域分析方法在层状节理岩体波动问题中的应用[J]. 长江科学院院报, 2013, 30(04): 62-66.

[36]饶宇, 赵根, 吴新霞, 等. 应力波入射黏弹性节理的传播特性研究[J]. 岩土工程学报, 2016, 38(12): 2237-2245.

[37]俞缙, 宋博学, 钱七虎. 节理岩体双重非线性弹性介质中的纵波传播特性[J]. 岩石力学与工程学报, 2011, 30(12): 2463-2473.

[38]王卫华, 李夕兵, 周子龙, 等. 不同应力波在张开节理处的能量传递规律[J]. 中南大学学报(自然科学版), 2006(02): 376-380.

[39]王卫华. 裂隙动态闭合变形性质及应力波在节理处的传播[D]. 中南大学, 2006.

[40]陈凯华, 石崇, 王芳, 等. 基于波场, 等效的节理面刚度参数取值研究[J]. 地下空间与工程学报, 2017, 13(02): 357-363.

[41]周剑, 张路青. 应力波时延与结构面刚度的关联性分析[J]. 岩石力学与工程学报, 2013, 32(S2): 3266-3274.

[42]郭力群, 俞缙, 张亚洲, 等. 纵波垂直入射层状非线性节理岩体的半数值时域解[J]. 土木工程学报, 2013, 46(S2): 158-165.

[43]Huang X ,Qi S ,Zheng B , et al. Stress Wave Propagation through Rock Joints Filled with Viscoelastic Medium Considering Different Water Contents[J]. Applied Sciences, 2020, 10(14).

[44]Jianchun L ,Mengmeng N ,Xing L .Study of stress wave propagation across a non-persistent joint based on a boundary integral equation method[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1).

[45]Qirui W ,Erxiang S ,Peng X , et al. Dynamic Performance and Stress Wave Propagation Characteristics of Parallel Jointed Rock Mass Using the SHPB Technique[J]. KSCE Journal of Civil Engineering, 2023, 27(5).

[46]Jiefang J ,Hong X ,Zhongqun G , et al. An equivalent medium model of stress wave propagation through athree-dimensional geo-stressed rock[J]. Arabian Journal of Geosciences, 2022, 15(14).

[47]李建春, 范立峰, 李郑梁. 岩体中应力波传播规律研究方法进展[J]. 应用力学学报, 2022, 39(05): 845-858.

[48]邹有纯, 熊超, 殷军辉, 等. 层状复合结构的应力波传播规律及能量耗散机制研究[J]. 振动与冲击, 2022, 41(15): 209-216.

[49]王海洋, 陈祥, 卢保东, 等. 层理面对水压爆破应力波传播规律的影响[J]. 工程爆破, 2022, 28(01): 17-25.

[50]陈雪峰, 赵孝学, 汪海波, 等. 节理充填岩体爆炸应力波传播规律模型试验与应用研究[J]. 中国安全生产科学技术, 2018, 14(12): 130-134.

[51]Li Y, Zhu Z, Li B, et al. Study on the transmission and reflection of stress waves across joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 364-371.

[52]李新平, 董千, 刘婷婷, 等. 不同地应力下爆炸应力波在节理岩体中传播规律模型试验研究[J]. 岩石力学与工程学报, 2016, 35(11): 2188-2196.

[53]]刘婷婷, 李新平, 李海波, 等. 应力波在充填节理岩体中传播规律的数值研究[J]. 岩石力学与工程学报, 2016, 35(S2): 3552-3560.

[54]宋林, 邵珠山, 吴敏哲. 应力波在节理岩体中的传播特性探析[J]. 煤炭学报, 2011, 36(S2): 241-246.

[55]Li J C, Rong L F, Li H B, et al. An SHPB test study on stress wave energy attenuation in jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2019, 52: 403-420.

[56]Li J C, Ma G W. Experimental study of stress wave propagation across a filled rock joint[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 471-478.

[57]Han Z, Li D, Zhou T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104352.

[58]Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transaction of the Royal Society of London, 1914, 213(612): 437-456.

[59]李淼. 节理岩体的动态力学特性及应力波传播特征的试验研究[D]. 北京科技大学, 2018.

[60]贾帅龙. 花岗岩体热力学特性及其应力波传播规律研究[D]. 合肥工业大学, 2023.

[61]李夕兵. 岩石动力学基础与应用[M]. 北京: 科学出版社, 2014: 67-110.

[62]张华, 杨军, 高富强, 等. 大直径SHPB弥散效应实验研究[J]. 昆明理工大学学报(理工版), 2010, 35(01): 14-18+37.

[63]孟益平, 胡时胜. 混凝土材料冲击压缩试验中的一些问题[J]. 实验力学, 2003(01): 108-112.

[64]王思维, 李建春. 节理接触面积比对压缩波传播影响的动光弹实验研究[J]. 岩石力学与工程学报, 2021, 40(05): 939-947.

[65]Zhou Y,Xia K,Li X, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 49.

[66]洪亮. 冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D]. 中南大学, 2010.

中图分类号:

 TU452    

开放日期:

 2024-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式