- 无标题文档
查看论文信息

论文中文题名:

 混合煤样吸附特征影响因素及热力学特性实验研究    

姓名:

 刘慧    

学号:

 18220214060    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 李树刚    

第一导师单位:

  西安科技大学    

第二导师姓名:

 赵鹏翔    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-05-30    

论文外文题名:

 Research on factors affecting adsorption and thermodynamic characteristics of mixed coal    

论文中文关键词:

 混合煤样 ; 瓦斯吸附特征 ; 吸附焓 ; 吸附熵 ; 瓦斯灾害防治    

论文外文关键词:

 Mixed coal ; Gas adsorption characteristics ; Adsorption enthalpy ; Adsorption entropy ; Gas disaster prevention    

论文中文摘要:

      构造煤分布广,储量大,开采频繁。研究构造煤的吸附及热力学特性对防治煤与瓦斯突出具有重要意义。为了研究不同质量比构造煤对混合煤样吸附瓦斯及其过程中热力学特性的影响,选用山西天池煤矿的原生质煤及构造煤,开展了理论分析及实验研究。

      (1)通过实验室测得原生质煤坚固性系数为1.51,构造煤坚固性系数为0.44。探究得到不同破坏程度煤孔隙发育特征,发现气孔和角砾孔分别主要存在原生质煤以及构造煤中,而摩擦孔多发育于混合煤样中。构造煤的平均孔径最小,比表面积最大的构造煤是混合煤样的1.08倍,比表面积为1.445~1.560 m2·g-1。孔隙体积是混合煤样的最小,仅为构造煤的83.3%,孔隙体积范围为0.254~0.305cm3·g-1

      (2)采用WY-98A进行等温吸附测试,通过实验得到随着构造煤质量比的增大,煤样的吸附量、吸附常数a值呈现先上升后下降的抛物线变化趋势,在构造煤质量占比达到50%时达到最大值;而吸附常数b值随构造煤质量占比的增加呈现与吸附常数a值相反的变化规律。

      (3)通过研究不同影响因素(温度、粒径、含水率)对瓦斯吸附量的影响,发现30°C时的同比混合煤样的吸附量分别是40°C50°C1.061.13倍,实验煤样粒径在20~100目(即0.83mm~0.15mm)时,随粒径变小吸附量增加,实验煤样的吸附量在不同含水率条件下有一定波动。吸附常数a值随着温度的升高呈现直线下降趋势,随含水率、粒径的变化呈抛物线形式变化。通过分析得到各因素对同比混合煤样瓦斯吸附量规律敏感性最高的是粒径,含水率次之,温度的敏感性最低。

      (4)基于PCT-C80吸附量热实验系统测定得到煤样瓦斯吸附热数据,得到混合煤样的吸附焓ΔHad和吸附熵ΔS随着构造煤的质量比增加呈现先增大后减小的趋势,而吸附热QstGibbs自由能随质量比的增加呈现相反的抛物线变化趋势,在构造煤质量占比为50%时达到最值。因此,当混合煤样中构造煤与原生质煤质量相等时,煤体受到扰动,会导致瓦斯大量涌出。

      研究得到当混合煤样中原生质煤与构造煤质量相等时,容易发生煤与瓦斯突出,应采取相应措施预防突出事故发生,保障了煤矿安全生产,提高了煤矿生产效益,对现场实践有重要参考意义。

论文外文摘要:

      Tectonic coal is widely distributed, with large reserves and frequent exploitation. Investigating the adsorption and thermodynamic properties of tectonic coal is important to prevent and control coal and gas outburst. To study the influence of tectonic coal with different mass ratio on gas adsorption and thermodynamic characteristics in the adsorption process of mixed coal samples, the virgin coal and tectonic coal from Tianchi Coal Mine in Shanxi Province were selected. Theoretical analysis and experimental study were carried out.

      (1) According to laboratory measurements, the robustness coefficient of virgin coal is 1.51, and that of tectonic coal is 0.44. The characteristics of micropores of coal with different degrees of damage were investigated, and it was found that pores and corner pores mainly existed in virgin coal and tectonic coal respectively, while friction pores were mostly developed in mixed coal. The average pore diameter of tectonic coal is the smallest, and the tectonic coal with the largest specific surface area is 1.08 times that of the mixed coal, and the specific surface area is 1.445~1.560 m2·g-1. The pore volume of the mixed coal sample is the smallest, which is only 83.3% of that of tectonic coal, and the pore volume ranges from 0.254 to 0.305cm3·g-1.

      (2) WY-98A was used to carry out isothermal adsorption test. Through the test, it was found that with the increase of tectonic coal mass ratio, the adsorption capacity and adsorption constant of coal samples showed a parabolic trend of first increase and then decrease, and reached the maximum value when the tectonic coal mass ratio reached 50%. With the increase of the proportion of tectonic coal mass, the adsorption constant b value is opposite to the adsorption constant value.

      (3) Through the experimental study on the influence of different influencing factors (temperature, particle size, water content) on gas adsorption capacity, it is found that the adsorption capacity of mixed coal samples at 30°C is 1.06 and 1.13 times of that at 40 °C and 50°C, respectively. When the particle size of test coal sample is between 20 mesh and 100 mesh (i.e., 0.83mm~0.15mm), the adsorption amount increases with the decrease of particle size, and there is a certain difference in the gas adsorption amount under different water content conditions. Adsorption constant showed a linear downward trend with the increase of temperature, and showed a parabolic change with the change of water content and particle size. Through the analysis, it is found that the particle size is the most sensitive factor to the gas adsorption capacity law of the mixed coal sample coMPared with the same period, followed by water content. And temperature has the lowest sensitivity.

      (4) Based on PCT-C80 test system, gas adsorption heat data of coal samples were obtained. With the increase of ratio of tectonic coal quality, ΔHad and Δ S of the mixed coal sample show a trend of decrease after the first increase, and the adsorption enthalpy Qst and Gibbs free energy shows an opposite parabolic trend. Therefore, when the mass of virgin coal and tectonic coal is equal, the disturbance of coal will lead to a large amount of gas gushes out.

      The experimental results showed that when the quality of the virgin coal and tectonic coal in the mixed coal sample is equal, the outburst of coal and gas is easy to occur, and corresponding measures should be taken to prevent the outburst accident, so as to ensure the safety of coal mine production and improve the production efficiency of coal mine, which is of important reference significance to the field practice.

参考文献:

[1]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07):1949-1960.

[2]袁亮. 煤及共伴生资源精准开采科学问题与对策[J]. 煤炭学报, 2019 (01): 1-9.

[3]刘业娇, 袁亮, 薛俊华, 等.煤与瓦斯突出机理和模拟试验研究现状及发展趋势[J].工矿自动化,2018,44(02):43-50.

[4]袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(8): 2277-2284.

[5]王诺, 张进, 吴迪, 等. 世界煤炭资源流动的时空格局及成因分析[J]. 自然资源学报, 2019, 34(3):487-500.

[6]冯国瑞, 侯水云, 梁春豪, 等. 复杂条件下遗煤开采岩层控制理论与关键技术研究[J]. 煤炭科学技术, 2020, 48(1): 144-149.

[7]张庆贺, 袁亮, 杨科, 等. 深井煤岩动力灾害的连续卸压开采防治机理[J]. 采矿与安全工程学报, 2019, 36(1): 80-86.

[8]林海飞, 李树刚, 赵鹏翔, 等.我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J].煤炭科学技术,2018,46(01):28-35.

[9]袁亮, 薛俊华, 张农, 等.煤层气抽采和煤与瓦斯共采关键技术现状与展望[J].煤炭科学技术,2013,41(09):6-11+17.

[10]Zhao P, Zhuo R, Li S, et al. Analysis of advancing speed effect in gas safety extraction channels and pressure-relief gas extraction [J]. Fuel, 2020, 265: 116825.

[11]Wang Zhenyang, Cheng Yuanping, Wang Liang, Wang Chenghao, Lei Yang, Jiang Zhaonan. Analysis of pulverized tectonic coal gas expansion energy in underground mines and its influence on the environment [J]. Environmental science and pollution research international, 2020, 27(2):134-145.

[12]Sun Y, Zhai C, Xu J, et al. Experimental study on pore structure evolution of coal in macroscopic, mesoscopic, and microscopic scales during liquid nitrogen cyclic cold-shock fracturing [J]. Fuel, 2021,291-304.

[13]付建华, 程远平. 中国煤矿煤与瓦斯突出现状及防治对策[J]. 采矿与安全工程学报, 2007, 24(003):253-259.

[14]Liu H, Guo L, Zhao X. Expansionary evolution characteristics of plastic zone in rock and coal mass ahead of excavation face and the mechanism of coal and gas outburst[J]. Energies, 2020, 13(4): 984-995.

[15] Zhao X, Sun H, Cao J, et al. Applications of online integrated system for coal and gas outburst prediction: A case study of Xinjing Mine in Shanxi, China[J]. Energy Science & Engineering, 2020, 8(2), 104-115.

[16] 周建斌, 郭春生, 马泽, 等.掘进面多级气相压裂卸压抽采防突研究[J]. 中国安全生产科学技术, 2021, 17(02):59-64.

[17] 高魁, 乔国栋, 刘泽功, 等. 煤与瓦斯突出机理分类研究构想及其应用探讨[J]. 采矿与安全工程学报, 2019, 36(5): 1043-1051.

[18] 程远平, 雷杨. 构造煤和煤与瓦斯突出关系的研究[J].煤炭学报,2021,46(01):180-198.

[19] Du F, Wang K, Zhang X, et al. Experimental Study of Coal–Gas Outburst: Insights from Coal–Rock Structure, Gas Pressure and Adsorptivity[J]. Natural Resources Research, 2020: 1-13.

[20] Meng J, Li S, Niu J, et al. Effects of moisture on methane desorption characteristics of the Zhaozhuang coal: experiment and molecular simulation[J]. Environmental Earth Sciences, 2020, 79(1): 1-16.

[21] 王子健, 程五一. 煤与瓦斯突出区域预测瓦斯地质方法的可靠性预计[J]. 煤矿安全, 2019, 50(9): 168-173.

[22] 金兵. 构造煤瓦斯解吸特征及对煤与瓦斯突出的影响[J]. 煤矿安全, 2019, 50(4): 10-13.

[23] Höök M. Coal and Peat: global resources and future supply[J]. Fossil Energy, 2020: 309-331.

[24] Wang F, Yao Y, Wen Z, et al. Effect of water occurrences on methane adsorption capacity of coal: A coMParison between bituminous coal and anthracite coal[J]. Fuel, 2020, 266: 117102-117114.

[25] 王凯, 王亮, 杜锋, 等. 煤粉粒径对突出瓦斯-煤粉动力特征的影响[J]. 煤炭学报, 2019, 44(5): 1369-1377.

[26] Cheng Y, Pan Z. Reservoir properties of Chinese tectonic coal: A review[J]. Fuel, 2020, 260: 116350-113366.

[27] Liu Y , Wen X, Jiang M , et al. IMPact of pulsation frequency and pressure amplitude on the evolution of coal pore structures during gas fracturing[J]. Fuel, 2020, 268-273.

[28] He X , Cheng Y. Effects of coal pore structure on methane‐coal sorption hysteresis: An experimental investigation based on fractal analysis and hysteresis evaluation[J]. Fuel, 2020, 269-275.

[29] 陈向军, 赵伞, 司朝霞, 等.不同变质程度煤孔隙结构分形特征对瓦斯吸附性影响[J].煤炭科学技术, 2020, 48(02): 118-124.

[30]Mastalerz M, Drobniak A, Strapo c' D, et al. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content[J]. International Journal of Coal Geology, 2008, 76: 205-216.

[31]Sharon M Swanson, Maria D Mastalerz, Mark A Engle, et al. Pore characteristics of wilcox group coal, U. S. gulf coast region: Im- plications for the occurrence of coalbed gas[J]. International Journal of Coal Geology, 2015, 139: 80-94.

[32]李树刚, 张晓宇, 严敏, 等.型煤粒度对孔隙结构特征及瓦斯吸附特性的影响[J].矿业安全与环保, 2019, 46(04): 8-12+16.

[33]琚宜文,林红,李小诗,等. 煤岩构造变形与动力变质作用[J]. 地学前缘, 2009, 16(1): 158-166.

[34] Qu Zhenghui. Study of tectonized coal texture and its controlling mechanism on gas properties[J]. Journal of China Coal Society, 2011, 36(3): 533-536.

[35]林海飞,卜婧婷, 严敏, 等.中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J].西安科技大学学报, 2019, 39(01): 1-8.

[36]姜波, 琚宜文. 构造煤结构及其储层物性特征[J]. 天然气工业, 2004, 24(5): 27-29.

[37] 刘宝莉, 严敏, 林海飞, 等.表面活性剂对煤体孔隙结构影响的实验研究[J]. 煤矿安全, 2018, 49(11): 20-23+28.

[38]董夔, 贾建称, 巩泽文, 等.淮北许疃矿构造煤孔隙结构及压敏效应[J]. 煤田地质与勘探, 2019, 47(02): 58-65.

[39]范家文,刘健.煤体解吸甲烷规律及解吸后微结构特征研究[J]. 煤炭工程, 2021, 53(02): 147-152.

[40]Gan H, Nandi S P, Jr P L W. Nature of the porosity in American coals[J]. Fuel, 2012, 51(4): 272-277.

[41]Bhatia S K. Modeling the pore structure of coal[J]. Aiche Journal, 2010, 33(10): 1707-1718.

[42]Esterle J S. Coal and Coalbed Gas: Fueling the future, R.M. flores [J]. International Journal of Coal Geology, 2014, 127: 1-2.

[43]Fu H, Tang D, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China[J]. Fuel, 2017, 193:254-264.

[44]郭品坤, 程远平, 卢守青, 等. 基于分形维数的原生煤与构造煤孔隙结构特征分析[J].中国煤炭, 2013, 39(6): 73-77.

[45]李明, 姜波, 兰凤娟, 等. 黔西-滇东地区不同变形程度煤的孔隙结构及其构造控制效应[J]. 高校地质学报, 2012, 18(3): 533-538.

[46]么玉鹏, 叶明海. 淮北祁南矿构造煤孔隙结构分析[J]. 河南科技, 2014(12):187-189.

[47]张晓东, 桑树勋, 秦勇, 等. 不同粒度的煤样等温吸附研究[J]. 中国矿业大学学报, 2005, 34(4): 427-432.

[48]张慧, 王晓刚. 煤的显微构造及其储集性能[J]. 煤田地质与勘探, 2018(6):33-36.

[49]Nie B, Liu X, Yang L, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015,158:908-917.

[50]李凤丽, 姜波, 宋昱, 等.低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J].天然气地球科学, 2017, 28(01): 173-182.

[51]Prinz D, Littke R. Development of the micro- and ultramicroporous structure of coals with rank as deduced from the accessibility to water[J]. Fuel, 2005, 84(12): 1645-1652.

[52]琚宜文, 姜波, 侯泉林, 等. 构造煤结构-成因新分类及其地质意义[J]. 煤炭学报, 2004, 29(5): 513-517.

[53]张力, 何学秋, 王恩元. 煤吸附特性的研究[J]. 太原理工大学学报. 2001, 32(5): 449-451.

[54]张力, 何学秋, 聂百胜. 煤吸附瓦斯过程的研究[J]. 矿业安全与环保. 2000, 27(6): 1-2.

[55]Ruppel TC, Grein CT, Bienstock D. Adsorption of methane on dry coal at elevated pressure [J]. Fuel. 2014, 53(3): 152-162.

[56] Ruthven, Douglas M. Principles of adsorption and adsorption processes [M]. Wiley, 2014(3): 115-118.

[57]Clarkson C R, Bustin R M, Levy J H. Application of the mono/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure[J]. Carbon, 1997, 35(12):1689-1705.

[58]Takanohashi T, Teraob Y, Iinob M. Sorption behaviors of methanol vapor by coal extracts and residues [J]. Fuel, 2000, 79(3):349-353.

[59]Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 1. Isotherms and pore volume distributions [J]. Fuel, 1999, 78(11):1333-1344.

[60]Crosdale P J, Moore T A, Mares T E. Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir[J]. International Journal of Coal Geology, 2008, 76(1–2):166-174.

[61]Zhao P, Zhuo R, Li S, et al. Research on the effect of coal seam inclination on gas migration channels at fully mechanized coal mining face [J]. Arabian Journal of Geosciences, 2019, 12(18): 597-603.

[62]Laxminarayana C, Crosdale P J. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals [J]. International Journal of Coal Geology, 1999, 40(4):309-325.

[63]李树刚, 白杨, 林海飞, 等.温度对煤吸附瓦斯的动力学特性影响实验研究[J].西安科技大学学报, 2018, 38(02): 181-186+272.

[64]严敏, 龙航, 白杨, 等.温度效应对煤层瓦斯吸附解吸特性影响的实验研究[J].矿业安全与环保, 2019, 46(03): 6-10.

[65]Krooss B M, Bergen F V, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology, 2002, 51(2): 69-92.

[66]钟玲文. 煤的吸附性能及影响因素[J]. 地球科学-中国地质大学学报, 2004, 29(3): 327-332.

[67]钟玲文, 郑玉柱, 员争荣, 等. 煤在温度和压力综合影响下的吸附性能及气含量预测[J]. 煤炭学报, 2002, 27(6): 581-585.

[68]Alexeev A D, Vasylenko T A, Ul'yanova E V. Phase states of methane in fossil coals [J]. Solid State Communications, 2004, 130(10):669-673.

[69] Alexeev A D, Ulyanova E V, Starikov G P, et al. Latent methane in fossil coals[J]. Fuel, 2004, 83(10): 1407-1411.

[70]季淮君, 李增华, 彭英健, 等. 煤的溶剂萃取物成分及对煤吸附甲烷特性影响[J]. 煤炭学报, 2015(04): 856-862.

[71]李树刚, 孙香荣, 林海飞, 等. 混煤孔隙分布规律及其瓦斯吸附特性[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(02): 155-159.

[72]Pengxiang Zhao, Hui Liu, Shugang Li, et al. Experimental investigation of the adsorption characteristics of mixed coal and variations of specific surface areas before and after CH4 adsorption[J] Applied Science, 2019, 9(3), 524-541.

[73]吴俊. 煤表面能的吸附法计算及研究意义[J]. 煤田地质与勘探, 1994(02):18-23.

[74]秦勇, 唐修义, 叶建平, 等. 中国煤层甲烷稳定碳同位素分布与成因探讨[J]. 中国矿业大学学报, 2000, 29(2):113-119.

[75]辜敏, 陈昌国, 鲜学福. 混合气体的吸附特征[J]. 天然气工业, 2001, 21(4):91-94.

[76]蔺金太, 郭勇义, 吴世跃. 煤层气注气开采中煤对不同气体的吸附作用[J]. 太原理工大学学报, 2001(01):18-20.

[77]冯艳艳, 黄宏斌, 杨文. 粒径分布对煤的孔隙结构及其CH4和CO2吸附性能的影响[J].煤炭技术,2018,37(03):163-165.

[78]林海飞, 蔚文斌, 李树刚, 等.多因素对煤样吸附瓦斯影响试验研究[J].中国安全科学学报, 2015, 25(09):121-126.

[79]Zhang L, Aziz N, Ren T, et al. Influence of coal particle size on coal adsorption and desorption characteristics [J]. Archives of Mining Sciences. 2015, 59(3): 807-820.

[80]苏士龙, 李丽兵, 郭晓阳, 等.胶结剂和粒度配比对型煤吸附与渗透性的影响[J].煤矿安全, 2020, 51(12):8-11.

[81]张遵国, 赵丹, 陈毅. 不同含水率条件下软煤等温吸附特性及膨胀变形特性[J].煤炭学报, 2017:1-8.

[82]Joubert JI, Grein CT, Bienstock D. Effect of moisture on the methane capacity of American coals [J]. Fuel. 2014, 53(3): 186-191.

[83]Joubert JI, Grein CT, Bienstock D. Sorption of methane in moist coal [J]. Fuel. 2013, 52(3): 181-185.

[84]Laxminarayana C, Crosdale P J. Controls on methane sorption capacity of Indian coals [J]. Aapg Bulletin. 2002, 86(2): 201-212.

[85]降文萍, 崔永君, 钟玲文, 等.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学, 2007(04): 576-579+583.

[86]褚庆忠, 时培兵, 陈小哲. 煤层气解吸机理及其影响因素再认识[J]. 煤炭学报, 2015:1-9.

[87]Levy J, Day SJ, Killingley JS. Methane capacity of Bowen Basin coals related to coal properties. Fuel, 1997, 74: 1-7.

[88] Krooss BM, Van BF, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology. 2002, 51(2): 69-92.

[89]赵文智, 汪泽成, 王红军,等. 中国中、低丰度大油气田基本特征及形成条件[J]. 石油勘探与开发, 2008(06):6-15.

[90]鲜学福, 辜敏. 有关间接法预测煤层气含量的讨论[J]. 中国工程科学, 2006, 8(8):15-22.

[91]崔永君, 张庆玲, 杨锡禄. 不同煤的吸附性能及等量吸附热的变化规律[J]. 天然气工业. 2003, 23(4): 130-131.

[92]崔永君, 杨锡禄, 张庆铃. 煤对超临界甲烷的吸附特征[J]. 天然气工业. 2003, 23(3): 131-133.

[93]钟玲文, 郑玉柱, 员争荣. 煤在温度和压力综合影响下的吸附性能及气含量预测[J]. 煤炭学报. 2002, 27(6): 581-585.

[94]马东民, 张遂安, 王鹏刚. 煤层气解吸的温度效应[J]. 煤田地质与勘探. 2011, 39(1): 20-23.

[95]J. J. Chaback W D M A. Sorption of nitrogen, methane, carbon dioxide and their mixtures on bituminous coals at in-situ conditions[J]. Fluid Phase Equilibria, 2016, 31(3): 289-296.

[96]Larsen J W, Kennard L, Kuemmerle E W. Thermodynamics of adsorption of organic compounds on the surface of Bruceton coal measured by gas chromatography[J]. Fuel, 2018, 57(5):309-313.

[97]Rahman K A, Chakraborty A, Saha B B, et al. On thermodynamics of methane-carbonaceous materials adsorption[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 565-573.

[98]Nodzeński A. Sorption and desorption of gases (CH4, CO2) on hard coal and active carbon at elevated pressures[J]. Fuel, 2018, 77(11): 1243-1246.

[99]李树刚, 白杨, 林海飞, 等. CH4,CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018, 43(09): 2476-2483.

[100]林海飞, 蔚文斌, 李树刚, 等.煤体吸附CH4及CO2热力学特性试验研究[J].中国安全科学学报, 2018, 28(06): 129-134.

[101]Chen F, Zhou C, Li G, et al. Thermodynamics and kinetics of glyphosate adsorption on resin D301 [J]. Arabian Journal of Chemistry, 2016, 9(S1): 665-S1669.

[102]邹勇, 陆绍信, 朱亚杰.天然气炭质吸附剂贮存的最大理论量和最大相当压力[J].石油与天然气化工, 1997, 29(3): 143-144.

[103]陈昌国, 鲜晓红, 张代钧等.温度对煤和煤炭吸附甲烷的影响[J].煤炭转化, 2015, 18(3):88-92.

[104]Tabrizi F F, Mousavi S A H S, Atashi H. Thermodynamic analysis of steam reforming of methane with statistical approaches[J]. Energy Conversion and Management, 2015, 103: 1065-1077.

[105]陈昌国, 辜敏, 鲜学福.煤层甲烷吸附与解吸的研究与发展[J].中国煤层气, 2008, 6(1): 27-29.

[106]刘志祥, 冯增朝.煤体对瓦斯吸附热的理论研究[J].煤炭学报, 2012, 37(4): 647-653.

[107]降文萍, 崔永君, 张群,等.不同变质程度煤表面与甲烷相互作用的量子化学研究[J].煤炭学报, 2007, 32(3): 292-295.

[108]卢守青, 王亮, 秦立明.不同变质程度煤的吸附能力与吸附热力学特征分析[J]. 煤炭科学技术, 2014, 42(6): 130-135.

[109]刘纪坤, 何学秋, 王翠霞.红外技术应用煤体瓦斯解吸过程温度测量[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(09): 1161-1165.

[110]白建平,张典坤,杨建强,等.寺河3号煤甲烷吸附解吸热力学特征[J]. 煤炭学报, 2014, 39(9): 1812-1819.

[111] 马东民,李来新,李小平,等.大佛寺井田4号煤CH4与CO2吸附解吸实验比较[J].煤炭学报, 2014, 39(9): 1938-1944.

[112]杨涛, 聂百胜.煤粒瓦斯解吸实验中的初始有效扩散系数[J].辽宁工程技术大学学报(自然科学版), 2016, 35(11): 1225-1229.

[113]陆壮, 王亮, 聂雷, 等.不同变质程度煤体瓦斯解吸迟滞特征实验研究[J]. 西安科技大学学报, 2020, 40(01): 88-95+132.

[114]Kumar Bej Prasanna, Mondal Koushik, Rajakumar B. Absorption cross-section measurements of ortho-xylyl radical in the 460.1-475.1 nm region and investigation of its temperature and pressure dependence using cavity ringdown spectroscopy[J]. Chemical Physics Letters, 2020, 3(02): 48-55.

[115]曹树刚, 张遵国, 李毅,等. 突出危险煤吸附、解吸瓦斯变形特性试验研究[J]. 煤炭学报, 2013(10): 1792-1799.

[116]韩思杰,桑树勋.煤岩超临界CO2吸附机理及表征模型研究进展[J]. 煤炭科学技术, 2020, 48(01): 227-238.

[117]李树刚, 赵波, 赵鹏翔, 等.类煤岩材料瓦斯吸附特性影响因素试验[J]. 中国矿业大学学报, 2019, 48(05): 943-954.

[118]宋昱, 姜波, 李明, 等.低中煤级构造煤超临界甲烷吸附特性及吸附模型适用性[J]. 煤炭学报, 2017, 42(08): 2063-2073.

[119]李元星, 吴世跃, 张美红, 等.温度对煤氧吸附模型的适应性研究[J]. 太原理工大学学报, 2017, 48(02): 179-183.

[120]Xiaoming Du, Erdong Wu. Application of the adsorption potential theory to hydrogen adsorption on zeolites above critical temperature[J]. Acta Physico Chimica Sinica,2007,23(6).

[121]M. Thommes, K. Kaneko, A.V. Neimark, et al, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J] Pure Appl Chem, 2015, (87): 1051-1069.

[122]S. Schlucker, Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications [J]Angew Chem-Int Edit, 2014, (53): 4756-4795.

[123]Zhao P, Liu H, Li S, et al. Exploring the adsorption and diffusion characteristics of tectonic coal at different mass ratios based on the specific surface Gibbs function[J] Powder Technology. 2020, 376, 604-611.

[124]卢守青, 王亮, 秦立明.不同变质程度煤的吸附能力与吸附热力学特征分析[J]. 煤炭科学技术, 2014, 42(06): 130-135.

[125]Li S , Bai Y, Lin H, et al. Molecular simulation of adsorption of gas in coal slit model under the action of liquid nitrogen[J]. Fuel, 2019, 255, 4256-4263.

[126]岳基伟, 岳高伟, 谢策. 高低温环境下煤对瓦斯的吸附平衡及热力学研究[J]. 矿业安全与环保, 2015, 42(05): 10-14.

中图分类号:

 TD712    

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式