- 无标题文档
查看论文信息

题名:

 ScCO2对煤孔隙结构与吸附性能的作用特征及机制    

作者:

 李争岩    

学号:

 21209071016    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 081801    

学科:

 工学 - 地质资源与地质工程 - 矿产普查与勘探    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 非常规天然气地质    

导师姓名:

 鲍园    

导师单位:

 西安科技大学    

提交日期:

 2024-06-27    

答辩日期:

 2024-06-02    

外文题名:

 Effects of ScCO2 on pore structure and adsorption properties of coal and its mechanism    

关键词:

 ScCO2 ; 储层改造 ; 吸附性能 ; 分子结构 ; 小分子化合物    

外文关键词:

 ScCO2 ; Reservoir reconstruction ; Adsorption property ; Molecular structure ; Small molecule compound    

摘要:

在“双碳”目标和我国“相对富煤、缺油、少气”的背景下,将CO2注入到一定深度的煤层,一方面可实现CO2地质封存的目的,另一方面可驱替煤层CH4,提高煤层气产收率,具有重要的现实意义。前人对CO2驱替煤层CH4做了大量研究,但对超临界CO2(ScCO2)对不同埋深煤的孔隙和分子结构及气体吸附能力作用机制方面研究较少。基于此,本文以鄂尔多斯盆地东缘保德区块(8+9#煤层和4+5#煤层)和临汾区块(5#煤层和8#煤层)为研究对象,以四种不同埋深(800m、1000m、1500m、2000m)煤层的实际储层温压为实验条件,在高温高压反应釜中模拟ScCO2与煤样的作用过程,采用低温氮气吸附、低场核磁共振、CH4等温吸附和CO2等温吸附等测试手段,探讨ScCO2对煤体孔隙结构和吸附性能的作用特征,采用傅里叶红外光谱、碳谱核磁共振、索氏抽提和气相色谱-质谱联用等测试手段,从分子角度揭示ScCO2对煤的作用机制。取得的主要结论和认识如下:

第一,查明了ScCO2对不同埋深煤孔隙结构的作用特征。ScCO2作用促使煤的微孔向过渡孔转变,孔体积增加,比表面积降低,增加孔隙连通性,表现出扩孔、增透作用,有利于CH4的解吸、扩散和渗流。ScCO2作用后煤样的孔隙类型不会有明显的改变,其作用主要是改变孔隙的大小。

第二,阐明了ScCO2对不同埋深煤吸附性能的作用特征。原煤对CO2的吸附量远远大于对CH4的吸附量,说明CO2相对于CH4更有利于被煤层吸附。800米埋深和1000米埋深原煤对CH4的吸附量低于1500米埋深和2000米埋深原煤。经过ScCO2作用后, CH4的吸附量减少,这与ScCO2的扩孔作用导致煤孔隙比表面积减小有关,CO2吸附量明显增加,说明ScCO2作用既可以进行CO2地质封存又能达到驱替CH4增加煤层气产量的效果。

第三,揭示了ScCO2对不同埋深煤分子结构的作用特征及其机制。ScCO2作用后煤中多种官能团占比降低,ScCO2会将煤中的小分子化合物萃取出来,并且破坏芳香层面之间连接的化学键,降低了芳香层面之间的作用力,增加了芳香层面网间距,破坏芳香环增加烷基侧链,造成分子结构变得松散,使其缩合程度降低。同时ScCO2会破坏煤样的脂肪侧支链,降低脂肪结构丰度。

第四,厘清了ScCO2对不同埋深煤小分子化合物的作用特征及其机制。ScCO2作用过程中会将煤中的小分子化合物萃取出来,同时改造煤体储层结构。800米埋深和1000米埋深煤样中的正构烷烃、三环萜烷和藿烷等饱和烃以及菲类化合物等芳香烃的含量降低,萘类化合物含量升高;1500米埋深和2000米埋深煤样中的正构烷烃、三环萜烷和藿烷等饱和烃以及萘类化合物和菲类化合物等芳香烃含量升高。

外文摘要:

Under the background of "dual carbon" goal and China's "relatively rich coal, lack of oil and less gas", CO2 injection into a certain depth of coal seam can achieve the purpose of CO2 geological storage on the one hand, on the other hand, it can displace coal seam CH4 and improve the yield of coalbed gas, which has important practical significance. A lot of studies have been done on CO2 displacement of coal seam CH4, but few studies have been done on the mechanism of supercritical CO2 (ScCO2) on pore and molecular structure and gas adsorption capacity of coal at different buried depths. Based on this, this paper takes Bade Block (8+9# coal seam and 4+5# coal seam) and Linfen Block (5# coal seam and 8# coal seam) in the eastern margin of Ordos Basin as the research object, and takes the actual reservoir temperature and pressure of four coal seams with different burial depths (800m, 1000m, 1500m, 2000m) as the experimental conditions. The interaction between ScCO2 and coal samples was simulated in a high-temperature and high-pressure reactor, and the effects of ScCO2 on pore structure and adsorption properties of coal were investigated by means of low-temperature nitrogen adsorption, low-field nuclear magnetic resonance, CH4 isothermal adsorption and CO2 isothermal adsorption. Fourier infrared spectroscopy, carbon NMR, Soxhlet extraction and gas chromatography-mass spectrometry were used to reveal the molecular mechanism of ScCO2 on coal. The main conclusions and understandings are as follows:

First, the effects of ScCO2 on pore structure of coal at different buried depths were identified. ScCO2 can promote the transformation of coal micropores into transition pores, increase pore volume, decrease specific surface area, increase pore connectivity, and show the effects of pore expansion and anti-reflection, which is conducive to the desorption, diffusion and seepage of CH4. The pore type of coal sample does not change significantly after ScCO2, and its effect is mainly to change the pore size.

Second, the effect of ScCO2 on the adsorption properties of coal at different buried depths is illustrated. The adsorption amount of CO2 in raw coal is much greater than that of CH4, indicating that CO2 is more favorable to be adsorbed by coal seam than CH4. The adsorption capacity of CH4 in raw coal buried at 800 meters and 1000 meters is lower than that in raw coal buried at 1500 meters and 2000 meters. After ScCO2 action, the adsorption amount of CH4 decreases, which is related to the reduction of specific surface area of coal pores caused by ScCO2 reaming action. The adsorption amount of CO2 increases significantly, indicating that ScCO2 action can not only carry out CO2 geological storage but also achieve the effect of displacing CH4 to increase coalbed methane production.

Thirdly, the effect of ScCO2 on the molecular structure of coal at different buried depths and its mechanism were revealed. After the action of ScCO2, a variety of functional groups in coal will change, ScCO2 will extract small molecular compounds in coal, and destroy the chemical bond between the aromatic layers, reduce the force between the aromatic layers, increase the spacing of the aromatic layers, destroy the aromatic ring and increase the alkyl side chain, resulting in the molecular structure becoming loose and reducing the degree of condensation. At the same time, ScCO2 can destroy the fatty collateral chain of coal sample and reduce the fat structure abundance.

Fourthly, the effects and mechanisms of ScCO2 on small molecule compounds in coal at different burial depths were clarified. In the process of ScCO2, small molecular compounds in coal are extracted and the structure of coal reservoir is reformed. The content of saturated hydrocarbons such as n-alkanes, tricyclic terpenes and hopanes and aromatic hydrocarbons such as phenanthrene compounds decreased in the coal samples buried at 800 m and 1000 m, while the content of nano compounds increased. The content of saturated hydrocarbons such as n-alkanes, tricyclic terpenes and hopanes, and aromatic hydrocarbons such as nano and phenanthrene compounds increased in the coal samples buried at 1500 m and 2000 m.

参考文献:

[1] 王少洪. 碳达峰目标下我国能源转型的现状、挑战与突破[J]. 价格理论与实践, 2021(8): 82-86, 172.

[2] 王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(1): 8-15.

[3] 刘瑞, 王文文, 刘笑, 等. 二氧化碳排放与经济增长脱钩关系研究[J]. 环境科学与技术, 2013, 36(11): 199-204.

[4] 李阳, 黄文欢, 金勇, 等. 双碳愿景下中国石化不同油藏类型CO2驱提高采收率技术发展与应用[J]. 油气藏评价与开发, 2021, 11(6): 793-804.

[5] 国务院.国务院关于印发中国(海南)自由贸易试验区总体方案的通知:国发〔2018〕34号[A/OL]. (2018-10-16) [2022-08-09].

[6] 陈贞龙, 郭涛, 李鑫, 等. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术, 2019, 47(9): 112-118.

[7] Yan H, Zhang J X, Li B Y, et al. Crack propagation patterns and factors controlling complex crack network formation in coal bodies during tri-axial supercritical carbon dioxide fracturing[J]. Fuel, 2021, 286 (P1).

[8] 贾金龙. 超临界CO2注入无烟煤储层煤岩应力应变效应的实验模拟研究[D]. 徐州: 中国矿业大学, 2016.

[9] 李辛子, 王运海, 姜昭琛, 等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报, 2016, 41(1): 24-31.

[10] Li X C, Fang Z M. Current status and technical challenges of CO2 storage in coal seams and enhanced coalbed methane recovery: an overview[J]. International Journal of Coal Science and Technology, 2014, 1(1): 93-102.

[11] Scott R, Reinaldo G, Satya H. Results, status and future activities of the coal-seq consortium[J]. Energy Procedia, 2009, 1(1): 1719-1726.

[12] Sander R, Allinson W G, Connell L D, et al. Methodology to determine the economics of CO2 storage in coal seams with enhanced coalbed methane recovery[J]. Energy Procedia. 2011, 4(2): 2129-2136.

[13] Fujioka M, Yamaguchi S, Nako M. CO2-ECBM field tests in the Ishikari Coal Basin of Japan[J]. International Journal of Coal Geology, 2010, 82(3): 287-298.

[14] Bergen F V, Krzystolik P, Wageningen N V, et al. Production of gas from coal seams in the Upper Silesian Coal Basin in Poland in the post-injection period of an ECBM pilot site[J]. International Journal of Coal Geology, 2009, 77(1-2): 175-187.

[15] Yamazaki T, Aso K, Chinju J. Japanese potential of CO2 sequestration in coal seams[J]. Applied Energy, 2006, 83(9): 911-920.

[16] Kapila R V, Chalmers H, Haszeldine S, et al. CCS prospects in India: results from an expert stakeholder survey[J]. Energy Procedia, 2011, 4(8): 6280-6287.

[17] Yu H, Zhuo G, Fan W, et al. Predicted CO2 enhanced coalbed methane recovery and CO2 sequestration in China[J]. International Journal of Coal Geology, 2007, 71(2): 345-357.

[18] 叶建平, 冯三利, 范志强, 等. 沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J]. 石油学报, 2007, 28(4): 77-80.

[19] Wong S, Macdonald D, Andrei S, et al. Conceptual economics of full scale enhanced coalbed methane production and CO2 storage in anthracitic coals at South Qinshui Basin, Shanxi, China[J]. International Journal of Coal Geology, 2010, 82(3): 280-286.

[20] 刘延锋, 李小春, 白冰. 中国CO2煤层储存容量初步评价[J]. 岩石力学与工程学报, 2005, 24(16): 2947-2952.

[21] 凡永鹏, 霍中刚, 赵晶, 等. 煤的表面自由能随瓦斯抽采的变化规律[J]. 煤矿安全, 2021, 52(12): 15-20.

[22] 潘结南, 张召召, 李猛, 等. 煤的多尺度孔隙结构特征及其对渗透率的影响[J]. 天然气工业, 2019, 39(1): 64-73.

[23] B. B 霍多特著, 宋士钊等译. 煤与瓦斯突出[M]. 北京: 中国工业出版社, 1966.

[24] Kuila U, Prasad M. Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61: 341-362.

[25] 熊添. 井研—犍为地区筇竹寺组页岩孔隙结构特征及其影响因素[D]. 北京: 中国石油大学(北京), 2017.

[26] Tian H, Pan L, Zhang T, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.

[27] Yi M H, Cheng Y, Wang Z, et al. Effect of particle size and adsorption equilibrium time on pore structure characterization in low pressure N2 adsorption of coal: An experimental study[J]. Advanced Powder Technology, 2020, 31(10): 4275-4281.

[28] 张艺宣. 煤储层压裂液滞留效应特征及其影响因素[D]. 太原: 太原理工大学, 2021.

[29] Gupta I, Rai C, Tinni A, et al. Using dry pyrolysis to understand crude oil production characteristics and calculate tortuosity in unconventional shales[J]. Journal of Petroleum Science and Engineering. 2019, 184: 106540.

[30] Liu Z S, Liu D M, Cai Y D, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology, 2020, 218: 103261.

[31] Si L L, Zhang H T, Wei J P, et al. Modeling and experiment for effective diffusion coefficient of gas in water-saturated coal[J]. 2021, Fuel, 284(1): 118887.

[32] Li Q, Li X B, Yin T B. Factors affecting pore structure of granite under cyclic heating and cooling: A nuclear magnetic resonance investigation[J]. Geothermics, 2021, 96: 102198.

[33] Jiang H, Daigle H, Tian X, et al. A Comparison of Clustering Algorithms applied to Fluid Characterization using NMR T1-T2 Maps of Shale[J]. Computers & Geosciences, 2019, 126: 52-61.

[34] Liu Y L, Tang D Z, Xu H, et al. Quantitative characterization of middle-high ranked coal reservoirs in the Hancheng Block, eastern margin, Ordos Basin, China: implications for permeability evolution with the coal macrolithotypes[J]. Energy Sources, 2019, 41(1-6): 201–215.

[35] Xu H, Tang D Z, Chen Y P, et al. Effective porosity in lignite using kerosene with low-field nuclear magnetic resonance[J]. Fuel, 2018, 213: 158-163.

[36] Plyatsuk L, Chernysh Y, Ablieieva I, et al. Modelling and development of technological processes for low rank coal bio-utilization on the example of brown coal[J]. Fuel, 2020, 267:117298.

[37] 杨明, 刘亚鹏. 高阶煤孔隙特征的低场核磁共振实验研究[J]. 中国安全生产科学技术, 2016, 12(11): 63-69.

[38] 李志愿, 崔云江, 关叶钦, 等. 基于孔径分布和T2谱的低孔渗储层渗透率确定方法[J]. 中国石油大学学报(自然科学版), 2018, 42(04): 34-40.

[39] Li L J, Liu D M, Cai Y D, et al. Coal structure and its implications for coalbed methane exploitation: a review[J]. Energy & Fuels, 2020, 35(1): 86-110.

[40] 简阔, 刘顺喜, 陈义林, 等. 低阶煤热解结构演化及与烷烃气碳同位素相关性的红外光谱[J]. 光谱学与光谱分析, 2018, 38(7): 6.

[41] Teng J, Masralerz M, Liu B, et al. Variations of organic matter transformation in response to hydrothermal fluids: Example from the Indiana part of the Illinois Basin[J]. International Journal Coal Geology, 2020, 219: 103410.

[42] Rojas O P G, Blandón A, Perea C, et al. Petrographic characterization, variations in chemistry, and paleoenvironmental interpretation of Colombian coals[J]. International Journal of Coal Geology, 2020, 227: 103516.

[43] 徐龙君, 鲜学福, 刘成伦, 等. 用X射线衍射和FTIR光谱研究突出区煤的结构[J]. 重庆大学学报(自然科学版), 1999(04): 23-27.

[44] 曹代勇, 李小明, 张守仁. 构造应力对煤化作用的影响-应力降解机制与应力缩聚机制[J]. 中国科学(D辑: 地球科学), 2006, 36(1): 59-68.

[45] Solum M S,Pugmire R J,Grant D M.Carbon-13 solid-state NMR of Argonne-premium coals[J]. Energy & Fuels, 1989, 3(2): 187-193.

[46] 王永刚, 周剑林, 陈艳巨, 等. 13C固体核磁共振分析煤中含氧官能团的研究[J]. 燃料化学学报, 2013, 41(12): 1422-1426.

[47] 郭德勇, 叶建伟, 王启宝, 等. 平顶山矿区构造煤傅里叶红外光谱和13C核磁共振研究[J]. 煤炭学报, 2016, 41(12): 3040-3046.

[48] 聂百胜, 段三明. 煤吸附瓦斯的本质[J]. 太原理工大学学报, 1998(4): 88-92.

[49] 贾腾飞. 准东南低阶煤孔隙结构特征及对甲烷吸附的影响[D]. 乌鲁木齐: 新疆大学, 2021.

[50] Langmuir I. The constitution and fundamental properties of solids and liquids[J]. Langmuir Irving, 1917, 183(1): 102-105.

[51] Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-19.

[52] 韩文成, 李爱芬, 方齐, 等. 含水煤岩超临界等温吸附模型的对比分析[J]. 煤炭学报, 2020, 45(12): 4095-4103.

[53] 乔军伟. 低阶煤孔隙特征与解吸规律研究[D]. 西安: 西安科技大学, 2009.

[54] 马东民. 煤层气吸附解吸机理研究[D]. 西安: 西安科技大学, 2008.

[55] 唐书恒. 晋城地区煤储层特征及多元其他的吸附-解吸特征[D]. 徐州: 中国矿业大学, 2001.

[56] 唐书恒, 汤达祯, 杨起. 二元气体等温吸附-解吸中气分的变化规律[J]. 中国矿业大学学报. 2004, 33(4): 448-452.

[57] 傅雪海. 多相介质煤岩体物性的物理模拟与数值模拟[D]. 徐州: 中国矿业大学, 2001.

[58] 张遂安, 霍永忠, 叶建平, 等. 煤层气的置换解吸实验及机理探索[J]. 科学通报, 2005, 50(增刊I): 143-146.

[59] 吴世跃, 郭永义. 注气开采煤层气增产机制的研究[J]. 煤炭学报, 2001, 26(2): 199-203.

[60] 吴世跃, 赵文. 自然降压开采和注气开采煤层气的效果评价[J]. 中国矿业, 2004, 13(10): 76-79.

[61] Lifshits S K, Chalaya O N, Kashirtsev V A. Extraction of brown coal with carbon dioxide at supercritical parameters[J]. Solid Fuel Chemistry, 2012, 46(2): 85-89.

[62] Kolak J J, Burruss R C. Geochemical Investigation of the Potential for Mobilizing Non-Methane Hydrocarbons during Carbon Dioxide Storage in Deep Coal Beds[J]. Energy & Fuels, 2006, 20(2): 566-574.

[63] Zhang D, Gu L, Li S, et al. Interactions of Supercritical CO2 with Coal[J]. Energy & Fuels, 2013, 27(1): 387-393.

[64] Dawson G K W, Golding S D, Massarotto P, et al. Experimental supercritical CO2 and water interactions with coal under simulated in situ conditions[J]. Energy Procedia, 2011, 4: 3139-3146.

[65] Iwai Y, Okamoto N, Ohta S, et al. Extraction of iron and calcium from low rank coal by supercritical carbon dioxide with entrainers[J]. The Journal of Supercritical Fluids, 2007, 40(2): 227-231.

[66] Kumar S K, Johnston K P. Modelling the solubility of solids in supercritical fluids with density as the independent variable [J]. The Journal of Supercritical Fluids, 1988, 1(1): 15-22.

[67] 岳立新, 孙可明, 郝志勇. 低渗透煤层注超临界CO2增透微观机理研究[J]. 煤炭科学技术, 2016, 44(12): 85-90, 117.

[68] Hu R N, Wang Z C, Li L, et al. Effect of solvent extraction pretreatments on the variation of macromolecular structure of low rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 778-786.

[69] Epstein S, Mayeda T. Variation of O18 content of waters from natural sources[J]. Geochimica et Cosmochimica Acta, 1953, 4(5): 213-224.

[70] Liu C J, Wang G X, Sang S X, et al. Fractal analysis in pore structure of coal under conditions of CO2 sequestration process[J]. Fuel, 2015, 139(3): 125-132.

[71] Farquhar S M, Pearce J K, Dawson G K W, et al. A fresh approach to investigating CO2, storage: Experimental CO2-water-rock interactions in a low-salinity reservoir system[J]. Chemical Geology, 2015, 399(3): 98-122.

[72] 杜艺. ScCO2注入煤层矿物地球化学及其储层结构响应的实验研究[D]. 徐州: 中国矿业大学, 2018.

[73] Kamble A D, Mendhe V A, Chavan P D, et al. Insights of mineral catalytic effects of high ash coal on carbon conversion in fluidized bed Co-gasification through FTIR, XRD, XRF and FE-SEM[J]. Renewable Energy. 2022, 183: 729-751.

[74] Zhao J W, Wang W C, Fu P, et al. Evaluation of the spontaneous combustion of soaked coal based on a temperature-programmed test system and in-situ FTIR[J]. Fuel, 2021, 294: 120583.

[75] Peinter P, Starsinic M, Coleman M. Determination of functional groups in coal by Fourier Transform Interferometry[J]. Academic Press, New York, 1985, 4: 169.

[76] Liu J, Holuszko M, Mastalerz M. Applications of micro-FTIR technique in studying hydrophobicity of coal[J]. International Journal of Coal Geology, 2017, 178: 74-83.

[77] Mastalerz M, Bustin R M. Application of reflectance micro-Fourier Transform infrared analysis to the study of coal macerals: an example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada[J]. International Journal of Coal Geology, 1996, 32(1-4): 55-67.

[78] Ibarra J V, Moliner R. Coal characterization using pyrolysis-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 1991, 20: 171-184.

[79] Varma A K, Sahoo A, Saikia B K, et al. Petrographic controls of coal from Ib valley Basin for carbon nano-products formation[J]. International Journal of Coal Geology, 2019, 211: 103211.

[80] 丁超, 韩作颖, 杨秀清. 褐煤微生物成气的影响因素与菌群变化的关系分析[J]. 山西大学学报(自然科学版), 2021, 44(6): 1210-1220.

[81] Zhou L, Kang Z H. Fractal characterization of pores in shales using NMR: A case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 860-872.

[82] Xie H C, Ni G H, Li S, et al. The influence of surfactant on pore fractal characteristics of composite acidized coal[J]. Fuel, 2019, 253: 741-753.

[83] Li H J, Chang Q H, Gao R, et al. Fractal characteristics and reactivity evolution of lignite during the upgrading process by supercritical CO2 extraction[J]. Applied Energy, 2018, 225: 559-569.

[84] 鲍园, 李争岩, 安超, 等. 多手段表征富油煤微生物厌氧发酵孔隙结构变化特征及机制[J]. 煤炭学报, 2023, 48(2): 891-899.

[85] Stone A. Theory of intermolecular forces [M]. New York: Oxford University Press; 2013.

[86] Zhou F B, Liu S Q, Pang Y Q, et al. Effects of coal functional groups on adsorption microheat of coal bed methane[J]. Energy & Fuels, 2015, 29(3): 1550-1557.

[87] Zhao W Z, Su X B, Xia D P, et al. Enhanced coalbed methane recovey by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion[J]. Energy, 2022, 259: 124914.

[88] 郝盼云, 孟艳军, 曾凡桂, 等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析, 2020, 40(3): 787-792.

[89] Koch A, Krzton A, Finqueneisel G, et al. A study of carbonaceous oxidation in air by semi-quantitative FTIR spectroscopy[J]. Fuel, 1998, 77(6): 563-569.

[90] Chen Y, Mastalerz M, Schimmelmann A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology, 2012, 104(1): 22-23.

[91] 朱学栋, 朱子彬, 韩崇家, 等. 煤中含氧官能团的红外光谱定量分析[J]. 燃料化学学报, 1999(4): 335-339.

[92] Li H, Shi S, Lin B, et al. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy, 2019, 187.

[93] 郝长胜, 袁迎春, 贾廷贵, 等. 不同变质程度煤的化学结构红外光谱研究[J]. 煤矿安全, 2022, 53(11): 15-22.

[94] 贾建波. 神东煤镜质组结构模型的构建及其热解甲院生成机理的分子模拟[D]. 太原: 太原理工大学, 2010.

[95] 王丽, 张蓬洲. 用固体核磁共振和电子能谱研究我国高硫煤的结构[J]. 燃料化学学报, 1996, 24(6): 539-543.

[96] 梅远飞, 赵新, 孙万赋, 等. 小黄山煤焦油成分的谱学分析[J]. 波谱学杂志, 2011, 28(3): 339-348.

[97] 梅远飞. 新疆地产煤的谱学及其生烃潜能的研究[D]. 乌鲁木齐: 新疆大学, 2011.

[98] Li Y, Cao X, Zhu D, et al. Characterization of coals and their laboratory-prepared black carbon using advanced solid-state 13C nuclear magnetic resonance spectroscopy[J]. Fuel Process Technol, 2012, 96: 56-64.

[99] Castrom M F, Lobodin V V, Rodgers R P, et al. A molecular model for Illinois No.6 Argonne Premium coal: Moving toward capturing the continuum structure[J]. Fuel, 2012, 95: 35-49.

[100] 相建华, 曾凡桂, 梁虎珍, 等.不同变质程度煤的碳结构特征及其演化机制[J]. 煤炭学报, 2016, 41(6): 1498-1506.

[101] Sun Y, Wang X, Feng T, et al. Evaluation of Coal Extraction with Supercritical Carbon Dioxide/1 Methyl-2-pyrrolidone Mixed Solvent[J]. Energy & Fuels, 2014, 28(2): 816-824.

[102] 孙诗炜. 超临界CO2与DMF混合溶剂萃取煤的研究[D]. 上海: 华东理工大学, 2012.

[103] Lifshits S K, Chalaya O N, Kashirtsev V A. Extraction of brown coal with carbon dioxide at supercritical parameters[J]. Solid Fuel Chemistry, 2012, 46(2): 85-89.

中图分类号:

 P618.13    

开放日期:

 2026-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式