- 无标题文档
查看论文信息

论文中文题名:

 基于煤矸石资源属性的综合利用方案评价研究    

姓名:

 屈恒祥    

学号:

 22203226052    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 能源与矿业工程学院    

专业:

 资源与环境    

研究方向:

 煤矸石利用    

第一导师姓名:

 丁自伟    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-19    

论文答辩日期:

 2025-05-29    

论文外文题名:

 Research on the evaluation of comprehensive utilization scheme based on the attributes of coal gangue resources    

论文中文关键词:

 煤矸石 ; 资源化利用 ; 属性特征 ; 组合赋权 ; TOPSIS法    

论文外文关键词:

 coal gangue ; resource utilization ; attribute characteristics ; combination weighting ; TOPSIS method     

论文中文摘要:

煤炭开采伴生的煤矸石是我国大宗工业固废之一,其高效资源化利用对降低环境负 荷、推动循环经济发展具有关键作用。本研究以陕西某矿煤矸石为对象,通过物理化学 全面系统测试其资源属性,结合多准则(技术可行性、经济效益、环境影响)决策方法 综合评价其利用方案,旨在为煤矸石高效资源化提供科学依据。

(1)研究首先对煤矸石进行取样与保存,采用X射线荧光光谱仪(XRF)、电感耦 合等离子体质谱仪(ICP-MS)、 X射线衍射仪(XRD)等设备,全面分析了煤矸石的化 学成分、矿物组成及力学特性。结果表明:该矿煤矸石以SiO₂(57.41%)和 Al₂O₃(28.94%) 为主,铝硅比为0.54,属高铝硅比黏土岩类煤矸石;矿物组成以绿泥石(34.4%)、石英 (33.6%)和高岭石(20.1%)为主,具有中等单轴抗压强度(16.4 MPa)、低塑性指数 (9.3%)、低热值(556.33 kJ/kg)及低放射性风险(内/外照射指数分别为0.0、0.1)。

(2)结合相关煤矸石利用政策文件与其理化特性分析得出该矸石适用于陶粒、加 气混凝土、微生物肥料、土壤改良剂与路基填筑五种利用方向。基于属性特征,围绕五 种利用途径研究构建了涵盖技术可行性、经济效益与环境影响的综合评价指标体系。

(3)采用层次分析法(AHP)与熵权法组合赋权,结合逼近理想解排序法(TOPSIS) 法对五种煤矸石资源化利用方案进行排序。通过确定正负理想解并计算欧式距离及相对 贴近度得出结果显示:路基填料的贴近度最高(0.7658),主要因其技术门槛低、成本低 廉及大规模消纳能力;陶粒(0.4459)与加气混凝土(0.3402)次之,受限于能耗高与本 地产业链配套不足;微生物肥料(0.1670)与土壤改良剂(0.3363)因技术复杂度和市场 需求有限排序靠后。进一步分析表明,路基填料方案符合矿区道路建设需求,可快速实 现矸石减量化;而陶粒等高附加值方案需通过政策扶持与技术创新提升竞争力。

本研究通过“属性测试—特征明确—路径匹配—方案评价”的系统框架,研究方法 为煤矸石的分质分级资源化提供科学范式。研究成果可为同类矿区煤矸石综合利用提供 理论支持与实践参考,对推动固废资源化、促进循环经济发展具有重要应用价值。

论文外文摘要:

Coal gangue associated with coal mining is one of the major industrial solid wastes in China. Its efficient resource utilization plays a key role in reducing environmental load and promoting the development of circular economy. This study takes the gangue of a mine in Shaanxi Province as the object, comprehensively and systematically tests its resource properties through physical chemistry, and comprehensively evaluates its utilization scheme by combining the multi-criteria (technological feasibility, economic benefits, environmental impact) decision making method, aiming at providing a scientific basis for the efficient resourcing of the coal gangue.

(1)The study first sampled and preserved the gangue, and comprehensively analyzed the chemical composition, mineral composition and mechanical properties of the gangue by using X-ray fluorescence spectrometer (XRF), inductively coupled plasma mass spectrometer (ICP MS), X-ray diffractometer (XRD) and other equipment. The results show that: the gangue of this mine is dominated by SiO₂ (57.41%) and Al₂O₃ (28.94%), with an aluminum-silicon ratio of 0.54, which is a high-aluminum-silicon ratio of claystone gangue; the mineral composition is dominated by chlorite (34.4%), quartz (33.6%), and kaolinite (20.1%), and it has a medium uniaxial compressive strength (16.4 MPa), low plasticity index (9.3%), and low heat content. 9.3%), low calorific value (556.33 kJ/kg) and low radioactive risk (internal/external irradiation index is 0.0/0.1 respectively).

(2)Combined with the relevant gangue utilization policy documents and its physical and chemical properties, it is concluded that the gangue is suitable for five utilization directions: ceramic pellets, aerated concrete, microbial fertilizer, soil conditioner and roadbed filling. Based on the attribute characteristics, around the five ways of utilization research to build a comprehensive evaluation index system covering the technical feasibility, economic efficiencyand environmental impact.

(3)Using hierarchical analysis (AHP) and entropy weight method combined with a combination of assignment, combined with the approach to the ideal solution sorting method (TOPSIS) method of the five kinds of coal gangue resource utilization program for sorting. By determining the positive and negative ideal solutions and calculating the Euclidean distance and relative closeness, the results show that: the closeness of roadbed filler is the highest (0.7658), mainly due to its low technological threshold, low cost and large-scale consumption capacity; ceramic granule (0.4459) and aerated concrete (0.3402) are next to it, which is limited by high energy consumption and insufficient support of the local industrial chain; microbial fertilizer (0.1670) and soil conditioner (0.3370) are next to it. Microbial fertilizer (0.1670) and soil conditioner (0.3363) are ranked lower due to technical complexity and limited market demand. Further analysis shows that the roadbed filler solution meets the demand for road construction in mining areas and can quickly realize gangue reduction; while high value-added solutions such as ceramic granules need to enhance competitiveness through policy support and technological innovation.

In this study, through the system framework of attribute testing-feature clarification-path matching-scheme evaluation, the research method provides a scientific paradigm for the resource utilization of coal gangue through quality-classification and priority-based grading. The research results can provide theoretical support and practical reference for the comprehensive utilization of coal gangue in similar mining areas, and have important application value for promoting the recycling of solid waste and promoting the development of circular economy.

参考文献:

[1] 顾成,李宇.煤基固废物综合利用研究进展[J].煤炭与化工,2020,43(9):98⁃101,106.

[2] WANG B, MA Y N, LEE X Q, et al. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer[J]. Science of The Total Environment,2020, 758:143664.

[3] YI C, MA H Q, CHEN H Y, et al. Preparation and characterization of coal gangue geopolymers[J]. Construction and Building Materials,2018,187:318-326.

[4] 李淑强,冉景煜,张力,等.煤矸石能源化高效清洁利用技术研究现状与发展趋势[J].电站系统工程,2008,24(5):1-4.

[5] HAO Y, GUO X N, YAO X H, et al. Using Chinese coal gangue as an ecological aggregate and its modification:a review[J]. Materials,2022,15(13):4495.

[6] 田莉,于晓萌,秦津.煤矸石资源化利用途径研究进展[J].河北环境工程学院学报,2020,30(5):31⁃36.

[7] 石磊,薛婷.煤矸石山的危害及其植被恢复的一般途径[J].安徽农业科学,2013,41(36):14009-14010.

[8] 王小云,牛艳霞.煤矸石研究综述:分类、危害及综合利用[J].化工矿物与加工,2023,52(11):18-25.

[9] 焦亚东,徐树全,彭道军,等.煤矸石的活化方法与活化机理研究进展[J].应用化工,2022,51(8):2362⁃2366,2372.

[10] 刘春晖,宋慧平,张泽鹏,等.煤矸石提铝提硅废液对烧结砖性能的影响研究[J].应用化工,2021,50(7):1816⁃1820,1825.

[11] 中华人民共和国国家发展和改革委会,中华人民共和国科学技术部,中华人民共和国工业和信息化部,等.煤矸石综合利用管理办法(2014年修订版)(中华人民共和国国家发展和改革委员会令第18号).

[12] 王丽萍,李超,常宁,等.煤矸石中有价元素回收技术研究进展[J].无机盐工业,2023,55(07):10-17.

[13] 李宛霖.煤矸石多金属提取过程及固化机理研究[D].昆明理工大学,2019.

[14] 刘玉林,刘长淼,刘岩,等.我国朔州地区煤矸石的矿物学特征及煅烧组分变化研究[J].矿产保护与利用,2020,40(03):100-105.

[15] 邬立国.矿山废石堆空气污染的控制和预防-煤矸石堆燃烧问题综述[J].煤炭转化,1991,14(4):74-79.

[16] 邓丁海,岑文龙.煤矸石堆放区的环境效应研究[J].中国矿业,1999,8(6):88-91.

[17] Sahoo, P.K., Equeenuddin, S.M. and Powell, M.A. (2016) Trace Elements in Soils around Coal Mines: Current Scenario, Impact and Available Techniques for Management. Current Pollution Reports, 2, 1-14.

[18] Li, D.Y., Pang, S.P., Xu, X.Y., et al. (2015) Morphology Distribution and Risk Assessment of Heavy Metals in Agri cultural Soils around Coal Gangue Heap. Journal of Henan Polytechnic University, 34, 722-729.

[19] Jiang, X., Lu, W.X., Yang, Q.C. and Yang, Z.P. (2014) Potential Ecological Risk Assessment and Prediction of Soil Heavy Metal Pollution around Coal Gangue Dump. Natural Hazards & Earth System Sciences, 14, 1599-1610.

[20] 胡荣涛.浅谈煤炭开采对矿区及周边生态环境的影响[J].山东煤炭科技,2020(8):163-165.

[21] 安广楠,曹晓红,黄德彬,李敏.煤矸石纳入排污许可管理的初步思考[J].环境与发展,2020,32(8):198-199.

[22] 赵亚楠,李小平,杨涛,孙薛梦,刘东英,吴婷,等.典型能源开发区灰尘金属元素的空间分布特征、来源与健康风险[J].环境科学学报,2018,38(1):350-362.

[23] 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜.龙口煤矿区土壤重金属污染评价与空间分布特征[J].环境科学,2016,37(1):270-279.

[24] 王万军,赵彦巧.青峰煤矸石矿物学特征及分子筛制备研究[J].矿产保护与利用,2006(6):18-23.

[25] 杨莎莎,张贵泉.煤矸石特性与资源化利用研究综述[C].第四届中国国际砂石骨料大会,论文集.2017:200-203.

[26] 林海.矿业环境工程.[M].长沙:中南大学出版社,2010.

[27] 杨建英,赵廷宁等.矿业废弃地生态恢复材料与应用技术研究[M].北京:科学出版社,2011.

[28] Wu J,Hobbs R.Key issues and research priorities in landscape ecology:An idiosyncratic synthesis[J].Landscape Ecology,2002,17(4):355-365.

[29] You Z,Li Z B,Yuan Q GThe application of landscape ecology principles in soil erosion and a case analysis[J] .Research of soil and water conservation,2005,12(3): 12~14.

[30] R. L. Langford, W. R. Ormsby, H. M. Howard. Managing abandoned mine sites in western Australia creating the inventory[A]. Proceeding of workshop on management and remediation of abandoned mines[C]. 2003:59~65.

[31] Sadiq, Rehan; Husain, Tahir. A fuzzy-based methodology for an arregative environmental risk assessment: A case study of drilling waste[J]. environmental Modeling and Software, 2005, 20(1):33-46

[32] 刘宁,刘开平,等.煤矸石及其在建筑材料中的应用研究[J].混凝土与水泥制品,2012(9):74-76.

[33] 闫开放.我国煤矸石制砖的现状及未来创新发展的思考[J].粉煤灰,2000,(06):4-6.

[34] 李振,雪佳,朱张磊,等.煤矸石综合利用研究进展[J].矿产保护与利用,2021,41(06):165-178.

[35] GUO Y X, YAN K Z, CUI L, et al. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J].International Journal of Mineral Processing, 2014, 131: 51-57.

[36] 张宗堂,高文华,刘昌平,等.级配对煤矸石路基填料压实与强度特性的影响试验研究[J].工程地质学报,2023,31(05):1774-1781.

[37] 任冬冬,任晓玲,宋如愿,等.煤矸石制农肥可行性分析[J].西部探矿工程,2021,33(1):86-87.

[38] 刘国强,吴建国,王晨阳,等.煤矸石资源化技术现状研究[J].现代矿业,2021,37(10):130-132.

[39] 李启辉.煤矸石的性质及综合利用研究进展[J].应用化工,2023,52(05):1576-1581.

[40] 时培涛,张吉雄,张强,等.综合赋权的TOPSIS充填采煤液压支架评价方法研究[J].采矿与安全工程学报,2023,40(03):543-553.

[41] 赵小龙,陈雁,丁永刚,等.基于AHP-熵权-TOPSIS法对粮仓屋面隔热改造方案的决策分析[J].中国粮油学报,2023,38(06):12-21.

[42] 张丽维,侯恩科,段中会,等.基于AHP熵权TOPSIS模型的矸石充填方案评价和优选研究[J].中国煤炭,2024,50(05):120-126.

[43] 李悦, 伍林玲, 苏丹, 亓蒙, 张千峰. 一种煤矸石的成分分析与组份鉴定[J]. 分析化学进展, 2021, 11(3): 117-122.

[44] 孙红刚.浅析煤矸石原料对烧结砖质量的影响[J].煤,2014,23(10):79-80.

[45] 《公路土工试验规程》(JTG 3430-2020)[S]. 北京: 中华人民共和国交通运输部. 2021.

[46] 国家质量监督检验检疫总局,国家标准化管理委员会.煤和岩石物理力学性质测定方法 第5部分: 煤和岩石吸水性测定方法: GB/T 23561.5-2009[S]. 北京: 中国标准出版社, 2009.

[47] 《建筑材料放射性核素限量》(GB 6566—2010)[S]. 北京: 中国标准出版社, 2011.

[48] 王长根.关于煤矸石分类和命名问题的探讨[J]. 煤炭科学技术,1983,11(6):42−45.

[49] 卞正富,金丹,董霁红,等.煤矿矸石处理与利用的合理途径探讨[J].采矿与安全工程学报,2007,24(2):132−136.

[50] 《煤矸石综合利用技术政策要点》[Z].北京:国家经济贸易委员会,科学技术部,1999

[51] 尹相勇.自燃煤矸石低熟料复合水泥的配制及其性能研究[D].太原:太原科技大学,2016:1⁃4.

[52] 史晓凯,陈文慧,等.煤矸石规模化综合利用整体解决方案研究[J].中国煤炭,2024,50(03):133-142.

[53] 汪振双,周梅.基于价值工程原理的煤矸石混凝土配合比设计方案选择[J].数学的实践与认识,2015,45(07):126-132.

[54] 袁伟嘉.煤矸石路堑边坡生态防护评价体系[D].中南林业科技大学,2022.

[55] 王鹏建.基于模糊综合评价法的显德旺矿区煤矸石利用方案的研究[D].中国矿业大学,2016.

[56] 原伟飞.煤矸石烧结空心砖项目综合评价[J].山西焦煤科技,2012,36(11):54-56.

[57] 李小龙.ABC电厂煤矸石发电项目后评价[D].华北电力大学,2012.

[58] 李龙清,马彩莲,郭振兴.煤矸石发电项目综合效益评价指标体系构建[J].西安科技大学学报,2011,31(02):132-136.

[59] 薛宝华,郭凯.基于BP神经网络的煤矸石电厂烟气脱硫效果评价[J].中国矿业,2011,20(05):96-98.

[60] 鲍学英.西北寒旱地区铁路绿色施工等级评价体系构建及应用研究[D].兰州:兰州交通大学,2017.

[61] 方磊.基于偏好DEA的应急系统选址模型研究[J].系统工程理论与实践,2006(8):116-122.

[62] 金菊良,魏一鸣,丁晶.基于改进层次分析法的模糊综合评价模型[J].水利学报,2004(3):65-70.

[63] 贾开华,于云霞,范秀波,等.基于AHP-EWM综合赋权和TOPSIS法的多能互补系统综合评价[J].中国电力,2023,56(7):228-238.

[64] 王春枝,斯琴.德尔菲法中的数据统计处理方法及其应用研究[J].内蒙古财经学院学报(综合版),2011,9(4):92-96.

[65] 王晖,陈丽,陈垦,等.多指标综合评价方法及权重系数的选择[J].广东药学院学报,2007(5):583-589.

[66] 张天云.工程材料综合评价系统研究与实现[D].兰州:兰州理工大学,2008.

[67] 宋冬梅,刘春晓,沈晨,等.基于主客观赋权法的多目标多属性决策方法[J].山东大学学报(工学版),2015,45(04):1-9.

[68] 李慧玲,芦新波,刘大川,等.基于AHP-TOPSIS的电力能效项目综合评价[J].现代电力,2014,31(4):88-94.

[69] 杨慧敏,付萍.基于熵权的多级模糊综合评价的应用[J].华北电力大学学报, 2005,32(5):104-107

[70] 张洪,张燕.基于加权TOPSIS法的旅游资源区际竞争力比较研究——以长江三角洲为例[J].长江流域资源与环境,2010,19(5):500-505.

中图分类号:

 TD235.2    

开放日期:

 2025-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式