论文中文题名: |
润湿团聚复配烟煤抑尘剂性能实验及应用研究
|
姓名: |
程玥颖
|
学号: |
19220214062
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
085224
|
学科名称: |
工学 - 工程 - 安全工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
矿井粉尘防治
|
第一导师姓名: |
肖鹏
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-21
|
论文答辩日期: |
2022-06-01
|
论文外文题名: |
Experiment and application research of wet agglomeration compound bituminous coal dust suppressant
|
论文中文关键词: |
烟煤煤尘 ; 润湿团聚作用 ; 喷雾降尘 ; 复配抑尘剂
|
论文外文关键词: |
Anthracite coal dust ; Wetting agglomeration effect ; Spray dust reduction ; Compounding dust suppressant
|
论文中文摘要: |
︿
煤尘是煤矿生产过程中的伴生物之一,是引起煤尘爆炸及工人尘肺病等风险的主要因素之一。目前,矿井煤尘治理主要采用粉尘抑制剂与喷雾降尘相结合,但同一抑尘剂对不同煤质煤尘抑制效果不同,应用过程中缺乏针对性。为提高烟煤煤尘抑制效果,针对烟煤煤尘特性,配制润湿团聚复配烟煤抑尘剂,对其性能开展实验测试和应用研究。
选用山阳煤矿烟煤煤样,通过粘度、表面张力、接触角等实验测定单体试剂团聚润湿性能参数,采用红外光谱及喷洒实验对团聚剂黄原胶(XTG)、卡拉胶(CAR)、魔芋胶(KGM)、刺槐豆胶(LBG)团聚特性进行研究。4种团聚剂润湿性参数与去离子水相同,粘度大小为XTG>CAR>KGM>LBG。4种表面活性剂十二烷基磺酸钠(SDS)、十二烷基苯磺酸钠(SDBS)、烷基甘糖(APG0810)、聚丙二醇(PPG400)溶液粘度与去离子水相近,随浓度无明显变化,表面张力及接触角随质量浓度增加迅速减小直至平稳,其中SDS与SDBS润湿效果最好。
通过单体团聚润湿性能参数实验及对煤粉作用效果,选择0.05 wt%XTG与4种表面活性剂复配,对4种复配试剂团聚润湿性能变化规律及作用效果进行研究。结果表明:4种复配试剂随表面活性剂浓度增大,表面张力、接触角、沉降时间减小,润湿性能提高;复配试剂能对煤尘有效团聚,形成致密团聚体,达到对煤尘的抑制效果。复配溶液中XTG构像改变,使得煤尘表面羟基吸附比例增加,促进混合胶束形成,减少烟煤颗粒在溶液中的下沉阻力,进一步提高润湿团聚作用,实现对烟煤煤尘润湿团聚效果。
通过搭建粉尘巷道物理模拟工业实验台进行动态降尘实验,在距产尘处1.7 m、风速5 m/s、喷雾压力1 MPa,广角实心锥形喷嘴实验条件下,复配抑尘剂相较水、SDBS、XTG单体分别增加了42.85%、40.26%、24.17%,能够有效提高全尘降尘效率,其全尘降尘效率为85.71%。通过开展现场应用实验,喷洒复配烟煤团聚抑尘剂比未采取降尘措施时的降尘效率提升86.6%,比采取喷水降尘措施时的降尘效率提升62.1%;呼吸性粉尘浓度可控制在14 mg/m3以内,平均浓度11.8 mg/m³。
﹀
|
论文外文摘要: |
︿
Coal dust is one of the concomitants of the coal mine production process and is one of the main factors causing risks such as coal dust explosion and workers' pneumoconiosis. At present, coal dust management in mines mainly uses a combination of dust inhibitors and spray dust reduction, but the same dust suppressant has different coal dust suppression effects on different coal qualities, and the application process lacks specificity. In order to improve the bituminous coal dust inhibition effect, the wetting and agglomeration complex bituminous coal dust inhibitor was formulated for the characteristics of bituminous coal dust, and experimental tests and application studies were conducted on its performance.
The coal samples of bituminous coal from Shanyang coal mine were selected to determine the agglomeration wetting performance parameters of monomeric reagents by viscosity, surface tension and contact angle, and the agglomeration characteristics of agglomerates xanthan gum (XTG), carrageenan (CAR), konjac gum (KGM) and locust bean gum (LBG) were studied by infrared spectroscopy and spraying experiments. The wettability parameters of the four agglomerates were the same as those of deionized water, and the viscosity magnitude was XTG > CAR > KGM > LBG. The viscosity of the solutions of four surfactants sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), alkyl glycol (APG0810), and polypropylene glycol (PPG400) was similar to that of deionized water and did not change significantly with the concentration, and the surface tension and contact angle decreased rapidly with the increase of mass concentration until it was smooth, among which SDS and SDBS had the best wetting effect.
Through the experiment of monomer agglomeration wetting performance parameters and the effect on coal powder, 0.05 wt% XTG was selected to be compounded with four surfactants, and the change law of agglomeration wetting performance and the effect of the four compounding reagents were studied. The results showed that the surface tension, contact angle and settling time of the four compound reagents decreased with the increase of surfactant concentration, and the wetting performance improved; the compound reagents could effectively agglomerate on coal dust and form dense agglomerates to achieve the inhibition effect on coal dust. The change of XTG conformation in the compound solution increases the proportion of hydroxyl adsorption on the surface of coal dust, promotes the formation of mixed micelles, reduces the sinking resistance of bituminous coal particles in the solution, further improves the wetting and agglomeration effect, and realizes the wetting and agglomeration effect on bituminous coal dust.
By building a dust alley physical simulation of industrial experimental bench for dynamic dust reduction experiments, at 1.7 m from the dust production, wind speed 5 m/s, spray pressure 1 MPa, wide angle solid conical nozzle experimental conditions, the compound dust suppressant compared to water, SDBS, XTG monomer increased by 42.85%, 40.26%, 24.17%, respectively, can effectively improve the full dust reduction efficiency, its full dust reduction efficiency was 85.71%. By carrying out field application experiments, the dust reduction efficiency of spraying compound bituminous coal agglomeration dust suppressant is 86.6% higher than when no dust reduction measures are taken, and 62.1% higher than when water spraying dust reduction measures are taken; the respiratory dust concentration can be controlled within 14 mg/m3, with an average concentration of 11.8 mg/m³.
﹀
|
参考文献: |
︿
[1] Long H, Lin H F, Yan M, et al., Adsorption and diffusion characteristics of CH4, CO2, and N2 in micropores and mesopores of bituminous coal: molecular dynamics[J], Fuel 2021, 2021:120268. [2] 本刊评论员.启航新时代谱写新篇章——以十九大报告精神引领煤炭工业科学健康发展评述[J].中国煤炭工业,2017(11):4-9. [3] 国家统计局.中华人民共和国2021年国民经济和社会发展统计公报[R]. 2021 [4] 中国能源中长期发展战略研究项目组. 中国能源中长期 (2030、2050) 发展战略研究[M]. 科学出版社, 2011. [5] Wang Q, Gao H K, Jiang B, et al. Research on an evaluation method for the strength of broken coal mass reinforced by cement slurry based on digital drilling test technology[J]. Bulletin of Engineering Geology and the Environment 2019, 78(6): 4599-4609. [6] Wang F, Tu S, Bai Q. Practice and prospects of fully mechanized mining technology for thin coal seams in China[J]. Journal of the Southern African Institute of Mining and Metallurgy 2012, 112(2): 161-170. [7] Yao H F, Wang H Y, Li Y C, et al. 2020. Three-dimensional spatial and temporal distributions of dust in roadway tunneling[J]. International Journal of Coal Science & Technology 7 (1), 88–96. [8] 王德明.矿尘学[M].北京:科学出版社,2015. [9] 毛翎,彭莉君,王焕强.尘肺病治疗中国专家共识(2018年版)[J].环境与职业医学,2018,35(8):677-689. [10] 郑行周,范维唐,钱鸣高.机械化采煤与非机械化采煤死亡率的分解计算[J].煤炭学报,2003(5):505-508. [11] 健康中国行动推进委员会办公室.健康中国行动(2019-2030年)新闻发布会[Z].北京,2019-07-30. [12] 贾齐林,吴蒸,沈虎,刘萌.基于瓦斯煤尘爆炸的矿井紧急避险系统研究[J].西安科技大学学报,2016,36(6):787-792. [13] 薛少谦.抑制瓦斯煤尘爆炸传播的主动喷粉抑爆技术[J].煤矿安全,2013,44(7):66-69. [14] Lin S, Liu Z, Qian J, et al. Comparison on the explosivity of coal dust and of its explosion solid residues to assess the severity of re-explosion[J]. Fuel 2019, 251: 438-446. [15] 赵丹,齐昊,潘竞涛,王冬雪.煤尘爆炸影响因素试验与爆炸危险等级预测研究[J].煤炭科学技术,2018,46(7):125-129. [16] 马艳玲. 新型煤尘润湿剂的实验研究[D].安徽理工大学,2016. [17] 彭亚,蒋仲安,付恩琦,等.综采工作面煤层注水防尘优化及效果研究[J].煤炭科学技术,2018, 46(1):224-230. [18] 聂文,程卫民,周刚,等.掘进机外喷雾负压二次降尘装置的研制与应用[J].煤炭学报,2014, 39(12):2446-2452. [19] 王超群,林柏泉,李庆钊,等.煤尘表面含氧官能团对煤尘润湿性能的影响[J].煤矿安全,2014,45(5):173-176. [20] 袁亮.煤矿粉尘防控与职业安全健康科学构想[J].煤炭学报,2020,45(1): 1-7. [21] Wang X, Yuan S, Jiang B, et al. Wetting process and adsorption mechanism of surfactant solutions on coal dust surface[J]. Chemother. 2019: 1-9. [22] Chen Y, Xu G, B. Albijanic. Evaluation of SDBS surfactant on coal wetting performance with static methods: preliminary laboratory tests, Energy Sources, Part A Recover[J]. Util. Environ. Eff. 2017(39):2140-2150. [23] Zhou Q, Qin B T, Wang J, et al. Effects of preparation parameters on the wetting features of surfactant-magnetized water for dust control in Luwa mine, China[J]. Powder Technology 2018, 2018:7-15. [24] Xi Z, Feng Z, Li A. Synergistic coal dust control using aqueous solutions of thermoplastic powder and anionic surfactant[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects2017, 2017:520. [25] 王倩男,周晓华,刘浩,等.高家堡煤矿高压注水封孔长度研究[J].煤矿安全,2019,50(6):149-152+157. [26] 王军.煤层注水在防治煤与瓦斯突出和降尘方面的研究[J].石化技术, 2019,26(5):329+331. [27] 郭军杰,邹友平,周和军,等.振兴二矿煤层注水技术应用及效果分析[J].煤矿开采,2018,23(6):122-124+107. [28] Yan H, Zhang J, Zhou N, et al. The Enhancement of Lump Coal Percentage by High-Pressure Pulsed Hydraulic Fracturing for Sustainable Development of Coal Mines[J]. Sustainability 2019, 11(10), 2731. [29] 董跃文,胡国忠,许家林,等.超前支承压力对煤层注水速率影响试验研究[J].煤炭科学技术,2013,41(11):47-49. [30] Hua, Y., Nie, W., Cai, P., et al. Pattern characterization concerning spatial and temporal evolution of dust pollution associated with two typical ventilation methods at fully mechanized excavation faces in rock tunnels[J]. Powder Technology 2018, 334: 117-131. [31] 杨卫林. 煤矿综掘工作面除尘净化装置的研究[D].武汉工程大学,2017. [32] Liu, H., Wu, X. H., Mao, S. J., et al. A Time Varying Ventilation and Dust Control Strategy Based on the Temporospatial Characteristics of Dust Dispersion[J]. Minerals 2017, 7(4),59. [33] 周刚,程卫民,陈连军. 矿井粉尘控制关键理论及其技术工艺的研究与实践[M].北京:煤炭工业出版社,2011. [34] 马中飞,施帮华, 张周权.采煤机吸尘滚筒降尘技术的初步研究[J].煤炭科学技术,2001(1):7-9. [35] Liu, X F, Chang P, Wang E Y, et al. Numerical Study of the Respirable Coal Dust Removal Performance of a Vortex Ventilation System at an Excavation Face[J]. Energies 2018, 11(9):11-18. [36] 李波.姚桥煤矿综掘工作面湿式通风除尘技术的研究与应用[J].煤矿现代化,2012(01):45-47. [37] 刘建,姚海飞,魏传光,等.掘进工作面湿式离心除尘器的结构优化及数值模拟[J].煤炭学报,2010,35(3):424-428. [38] 周福宝,李建龙,李世航,等.综掘工作面干式过滤除尘技术实验研究及实践[J].煤炭学报,2017,42(3):639-645. [39] Zhang G, Zhou T T, Zhang L, et al. Improving acoustic agglomeration efficiency of coal-fired flash particles by addition of liquidbinders, Chemical Engineering Journal. 2018,334: 891–899. [40] Liu Y H, Nie W, Jin H, et al. Solidifying dust suppressant based on modified chitosan and experimental study on its dust suppression performance[J]. Adsorption Science & Technology, 2018, 36(1-2):640-654. [41]林鸿亮,刘道银,刘猛,等.喷嘴雾化特性的试验及数值模拟[J].动力工程学报,2015,35(12):998-1005. [42] Wang H, Wang C, Wang D. The influence of forced ventilation airflow on water spray for dust suppression on heading face in underground coal mine[J]. Powder Technology 2017, 320: 498-510. [43] 张波,蒋仲安,段志博,等.气水喷雾除尘效果实验研究[J].金属矿山,2019(8):173-178. [44] 刘阳昊. 矿用新型复合型抑尘剂的研制及性能研究[D].山东科技大学,2018. [45] Jin H, Nie W, Zhang H, Liu Y, et al. Preparation and characterization of a novel environmentally friendly coal dust suppressant[J]. Appl. Polym. Sci.47354,2018:1-11. [46] 吴超.化学抑尘[M].长沙:中南大学出版社, 2003. [48] Mo J, Wang L, Au W, et al. Prevalence of coal workers’ pneumoconiosis in China: a systematic analysis of 2001-2011 studies[J]. Environ Health 217,2014:46-51. [49] Yuan L. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society,2020,45(1): 1-7. [50] 范冰倩.泡沫溶胶抑制煤尘特性分析[D].天津理工大学,2016. [51] Wang X N, Yuan S J, Jiang B Y. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples[J]. Advanced Powder Technology 2019, 30(8): 1696-1708. [52] Wang D M, Lu X X, Wang H T, et al. A new design of foaming agent mixing device for a pneumatic foaming system used for mine dust suppression[J]. International Journal of Mining Science and Technology 2016, 26(2): 187-192. [53] Zhong X X, Qin B T, Dou G L, et al. A chelated calcium-procyanidine-attapulgite composite inhibitor for the suppression of coal oxidation[J]. Fuel 2018,2018:680-688. [54] 周刚. 综放工作面喷雾降尘理论及工艺技术研究[D].山东科技大学,2009. [55] 周刚,尹文婧,冯博.综采工作面移架尘源粉尘-雾滴场分布特征模拟分析与工程应用[J].煤炭学报,2018,43(12):3425-3435. [56] 彭亚,蒋仲安,付恩琦,等.综采工作面煤层注水防尘优化及效果研究[J].煤炭科学技术,2018,46(1):224-230. [57] Dou G, Xu C. Comparison of effects of sodium carboxymethylcellulose and superabsorbent polymer on coal dust wettability by surfactants[J]. Journal of Dispersion Science & Technology, 2016, 38(11): 1542-1546. [58] 杨静,谭允祯,王振华,等.煤尘表面特性及润湿机理的研究[J].煤炭学报,2007(07):737-740. [59] 阎杰,杨永竹,段龙,等.基于响应面法的煤尘抑尘剂配方的优化研究[J].应用化工,2019,48(9):2036-2040. [60] Fan T, Zhou G, Wang J Y. Preparation and characterization of a wetting-agglomeration based hybrid coal dust suppressant[J]. Process Safety and Environmental Protection, 2018,113:282-291. [61] Liu Y, Nie Y, Jin H, et al. Solidifying dust suppressant based on modified chitosan and experimental study on its dust suppression performance[J], Ad-sorpt Sci Technol. 36, 2018:640-654. [62] Zhang H H, Nie W, Wang H K, et al. Preparation and experimental dust suppression performance characterization of a novel guar gum-modification-based environmentally-friendly degradable dust suppressant[J]. Powder Technology,2018, 339:341-325. [63] Ma Y L, Zhou G, Ding J F, et al. Preparation and characterization of an agglomeration-cementing agent for dust suppression in open pit coal mining[J]. Cellulose, 2018, 25(7): 4011-4029. [64] 杨树莹,周磊,杨林军,等.高分子抑尘剂对褐煤矿场细颗粒物的抑制特性[J].煤炭学报, 2019,44(2): 528-535. [65] 罗瑞冬,林木松,罗运柏,等.新型煤尘抑尘剂的制备及特性[J].煤炭学报,2016,41(2): 454-459. [67] 李凯崇,杨柳,蒋富强,等.改性木质素磺酸盐煤炭抑尘剂的制备与研究[J].环境工程, 2012, 30(1):66-69. [68] 程卫民,周刚,陈连军,等.我国煤矿粉尘防治理论与技术20年研究进展及展望[J].煤炭科学技术,2020,48(2):1-20. [69] 阎杰.基于表面特性的煤尘润湿性质研究[D].中国矿业大学(北京),2019. [70] Xi X, Jiang S, Zhang W, Wang K, et al. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal, Fuel 244,2019:176-183. [71] 张晓宇.表面活性剂润湿煤体的实验研究[D].中国地质大学(北京),2010. [72] 董平,单忠健,李哲.超细煤粉表面润湿性的研究[J].煤炭学报,2004(3):346-349. [73] 聂百胜,学秋,王恩元,等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):379-383. [74] 杨静. 煤尘的润湿机理研究[D].山东科技大学,2008. [75] 林海飞,刘宝莉,严敏,等.非阳离子表面活性剂对煤润湿性能影响的研究[J].中国安全科学学报,2018,28(5):123-128. [76] 赵璐,张蕾,赵晓光,等.无患子皂苷及其复配体系表面性能及润湿煤尘作用研究[J].西安科技大学学报,2021,41(4):632-639. [77] 李庆钊,林柏泉,张军凯,等.矿井煤尘的分形特征及对其表面润湿性能的影响[J].煤炭学报,2012,37(S1):138-142. [78] 李海英,张春奇,刘东.细颗粒物PM2.5团聚除尘技术的研究进展[J].环境工程, 2018 (09):93-98. [79] 张春奇.基于化学团聚的细微颗粒物脱除技术研究[D].华北理工大学,2019. [80] 徐超.低浓度细颗粒物声波团聚特性研究与机理分析[D].东南大学,2019. [81] 李海英,张军亚,王烁鑫,等.化学团聚剂在微细颗粒除尘中的研究现状及发展[J]. 现代化工:1-6. [82] 姚辉辉,张光学,吴林陶,等.变频声波团聚超细液滴气溶胶的实验研究[J].热能动力工程,2021,36(7):54-59. [83] 赵汶,刘勇,鲍静静,等.化学团聚促进燃煤细颗粒物脱除的试验研究[J].中国电机工程学报, 2013(20):52-58. [84] YE Z, BISWAS P. Submicrometer Particle Formation and Control in a Bench-Scale Pulverized Coal Combustor[J]. Energy & Fuels, 2001,15(3):130. [85] 周磊. 应用化学添加剂抑制褐煤扬尘和增强电除尘脱除细颗粒物的研究[D].东南大学,2018. [86] Ji Y S, Cui X Z, Liu J C, et al. Retention of trace elements in coal-fired flue gas by a novel heterogeneous agglomeration technology[J]. Journal of Environmental Sciences. 2023,125:234-243. [87] 林宸煜,张光学,马振方,等.细颗粒物声波团聚的微观机理研究[J].声学技术, 2021,40(5):587-593. [88] 魏凤.燃煤亚微米颗粒的形成和团聚机制的研究[D].华中科技大学,2005. [89] 罗根华,李博,丁莹莹,等.煤尘化学组成及结构参数对煤尘润湿性的影响规律[J].大连交通大学学报, 2016, 37(3). [90] 齐国杰. 燃煤超细颗粒物增湿团聚实验研究[D]. 山东:山东大学,2009. [91] 蒋建新,刘彦涛,周自圆,等.高分子多糖水凝胶功能材料研究与应用进展[J].林产化学与工业,2017,37(2):1-10. [92] 邱嘉辉,何亚文.微生物胞外多糖黄原胶的应用与研究进展[J].激光生物学报,2019,28(5):385-393+409. [93] 罗大珍,林稚兰.现代微生物发酵及技术教程[M].北京:北京大学出版社,2006. [94] 杨静,谭允祯,伍修锟,等.煤尘润湿动力学模型的研究[J].煤炭学报,2009,34(8):1105-1109. [95] 张鹏,魏文珑,李兴,等.4种阴离子表面活性剂在煤沥青表面的润湿规律[J].煤炭学报,2014,39(5):966-970. [96] 张坤尹,严敏,李树刚,等.煤体表面粗糙度对非阳离子表面活性剂润湿性影响的实验研究[J].煤矿安全,2021,52(11):8-15. [97] 李静,杨勇,曹绪龙,张继超,张磊,张路,赵濉.不同结构驱油聚合物的界面剪切流变性质[J].高等学校化学学报,2014,35(4):791-797. [98] 周盛华.黄原胶在水溶液中的构象转变及其流变学研究[D].上海交通大学,2008. [99] 张艳,兰晶,张敏燕,等.浓度对魔芋葡甘聚糖分子水溶液行为的影响研究[J].食品科技, 2009, 34(9): 83-87. [100]O N Makshakova, D A Faizullin, Yu F Zuev. Interplay between secondary structure and ion binding upon thermoreversible gelation of κ-carrageenan[J]. Carbohydrate Polymers. 2020, 227:115342. [101]郭杰,郭肖,张朝阳,等.刺槐豆胶/瓜尔豆胶复合体系的流变学性质研究[J].食品工业科技,2017,38(14):40-45. [102]Xu C H, Wang D M, Wang H T, et al. Experimental investigation of coal dust wetting ability of anionic surfactants with different structures[J].Process Safety and Environmental Protection, 2019,121: 69-76. [103]王小金.黄原胶的化学改性与性能研究[D].山东大学,2015. [104]李娇阳,李凯琦.煤表面润湿性的影响因素[J].煤炭学报,2016,41(S2):448-453.
﹀
|
中图分类号: |
TD714
|
开放日期: |
2024-06-23
|