论文中文题名: |
含构造煤组合体加载破裂力学及渗透率演化规律实验研究
|
姓名: |
王玉龙
|
学号: |
20220089038
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
矿井瓦斯灾害防治
|
第一导师姓名: |
赵鹏翔
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-27
|
论文答辩日期: |
2023-06-03
|
论文外文题名: |
Study on loading fracture mechanics and permeability evolution law of containing tectonic coal combination
|
论文中文关键词: |
含构造煤组合体 ; 加载破裂 ; 声发射 ; 裂隙演化 ; 渗透率
|
论文外文关键词: |
Containing tectonic coal combination ; Loading fracture ; Acoustic emission ; Fracture evolution ; Permeability
|
论文中文摘要: |
︿
我国煤炭资源储量丰富,煤炭资源在未来一定时期内仍然是我国经济繁荣发展的重要保障。然而,随着我国矿井逐步进入深部高强开采阶段,矿井灾害事故多发,严重制约矿井安全生产。本文基于内蒙古自治区某高瓦斯矿井煤层赋存特征,制作含构造煤组合体试件,开展含构造煤组合体加载破裂过程力学特性、红外辐射、声发射及渗透特性测试实验,得到以下结论:
(1)利用高低频冲击力学仪和高清摄像系统对含构造煤组合体开展力学特性测试实验,得到含构造煤组合体试件的抗压强度、弹性模量及裂隙起裂应力随构造煤厚占比的增加均呈现出不断减小的变化趋势,试件的峰值应变、裂隙扩展时间及裂隙率随构造煤厚占比的增加均呈现出不断增加的变化趋势;结合分形理论,对含构造煤组合体试件进行二值化处理,得到试件的分形维数普遍分布在1.1437~1.2052之间。
(2)通过Fotric223s型红外热像仪和PCI-8型声发射信号采集系统对含构造煤组合体开展红外辐射、声发射测试实验,得到含构造煤组合体试件在临近失稳破坏时,试件的表面最高红外辐射温度和声发射振铃计数均发生突增,最高红外辐射温度和声发射振铃计数的最大值均随构造煤厚占比的增加不断降低,其变化范围分别为5.9℃~1.1℃和3.24×104~1.99×104。
(3)运用煤岩芯渗透率自动测试仪对含构造煤组合体开展渗透特性测试实验,得到含构造煤组合体试件的渗透率与轴压、围压、气体压力均呈负相关;含构造煤组合体试件的渗透率受围压影响程度大于轴压,且相同应力加载条件下,全构造煤试件对应力的响应更明显;结合含构造煤组合体试件加载过程裂隙与应力之间的演化关系,探讨了含构造煤组合体的渗透率与各力学加载环境之间的相互作用特征。
通过上述研究,本文得到了含构造煤组合体加载破裂过程的裂隙、红外辐射、声发射演化特征以及不同因素水平影响下的渗透特性,研究结果可对卸压瓦斯抽采及矿井瓦斯灾害防治提供一定的理论基础。
﹀
|
论文外文摘要: |
︿
China is rich in coal resources, and coal resources will remain an important guarantee for China's economic prosperity and development in a certain period of time in the future. However, as the mine gradually enters the stage of deep high-strength mining, mine disasters and accidents occur frequently, which seriously restricts the safe production of the mine. Based on the occurrence characteristics of coal seam in a high gas mine in Inner Mongolia Autonomous Region, this paper makes the specimens of containing tectonic coal combination, and carries out the mechanical properties, infrared radiation, acoustic emission and permeability test experiments of containing tectonic coal combination loading and fracture process. The following conclusions are obtained :
(1) Using high and low frequency impact mechanics instrument and high-definition camera system to test the mechanical properties of containing tectonic coal combination, we obtained that the compressive strength, elastic modulus and fracture initiation stress of containing tectonic coal combination specimens showed a decreasing trend with the increase of tectonic coal thickness, and the peak strain, fracture expansion time and fracture rate of specimens showed an increasing trend with the increase of tectonic coal thickness. The fractal dimension values of the specimens were generally distributed between 1.1437 and 1.2052 by binarizing the specimens with the fractal theory.
(2) Through the Fotric223 s infrared thermal imager and PCI-8 acoustic emission signal acquisition system, the infrared radiation and acoustic emission test experiments were carried out on the combined body containing tectonic coal. It was found that when the combined body containing tectonic coal was near the instability failure, the maximum infrared radiation temperature and acoustic emission ringing count of the surface of the specimen increased sharply. The maximum infrared radiation temperature and the maximum acoustic emission ringing count decreased with the increase of the proportion of tectonic coal thickness, and the variation range was 5.9℃~1.1℃and 3.24×104~1.99×104, respectively.
(3) The permeability test experiment of containing tectonic coal combination was carried out by using the automatic permeability tester of coal and rock core. The permeability of containing tectonic coal combination specimens were negatively correlated with axial pressure, confining pressure and gas pressure. The permeability of the containing tectonic coal combination specimens are more affected by confining pressure than axial pressure, and the response of the whole tectonic coal specimen to stress is more obvious under the same stress loading condition. Combined with the evolution relationship between cracks and stress in the loading process of the containing tectonic coal combination specimens, the interaction characteristics between the permeability of the containing tectonic coal combination specimens and various mechanical loading environments are discussed.
Through the above research, this paper obtained the fracture, infrared radiation, acoustic emission evolution characteristics and permeability characteristics under the influence of different factor levels in the loading and fracture process of containing tectonic coal combination. The research results can provide a theoretical basis for pressure relief gas drainage and mine gas disaster prevention.
﹀
|
参考文献: |
︿
[1] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[N]. 人民日报, 2023-03-01(009). [2] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960. [3] 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(01): 1-15. [4] Xie H P, Li C, He Z Q, et al. Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 1-12. [5] 张超林, 王培仲, 王恩元, 等. 我国煤与瓦斯突出机理70年发展历程与展望[J]. 煤田地质与勘探, 2023, 51(02): 59-94. [6] 林海飞, 季鹏飞, 孔祥国, 等. 我国低渗煤层井下注气驱替增流抽采瓦斯技术进展及前景展望[J]. 煤炭学报, 2023, 48(02): 730-749. [7] 傅雪海, 齐琦, 程鸣, 等. 煤储层渗透率测试、模拟与预测研究进展[J]. 煤炭学报, 2022, 47(06): 2369-2385. [8] 王恩营, 刘明举, 魏建平. 构造煤成因-结构-构造分类新方案[J]. 煤炭学报, 2009, 34(05): 656-660. [9] 程远平, 雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报, 2021, 46(01): 180-198. [10] 王凯, 郭阳阳, 王刚, 等. 真三轴路径下含瓦斯复合煤岩体渗流及力学破坏特性[J]. 煤炭学报, 2023, 48(01): 226-237. [11] 孙光中, 荆永滨, 张瑞林, 等. 轴向应力循环加卸载作用下含瓦斯煤渗透性研究[J]. 岩石力学与工程学报, 2016, 35(05): 928-938. [12] 李春元, 雷国荣, 何团, 等. 深部开采原生煤岩组合体围压卸荷致裂特征及破裂模式[J].煤炭学报, 2023, 48(02): 678-692. [13] 高明忠, 王明耀, 谢晶, 等. 深部煤岩原位扰动力学行为研究[J]. 煤炭学报, 2020, 45(08): 2691-2703. [14] Cheng Y P, Pan Z J. Reservoir properties of Chinese tectonic coal: A review[J]. Fuel, 2020, 260: 116350-116360. [15] 祝捷, 王琪, 唐俊, 等. 加卸载条件下煤样应变与渗透性的演化特征[J]. 煤炭学报, 2021, 46(04): 1203-1210. [16] Zhao B, Wen G C, Sun H T, et al. Similarity criteria and coal-like material in coal and gas outburst physical simulation[J]. International Journal of Coal Science and Technology, 2018, 05(02): 167-178. [17] Bayram F. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions[J]. Cold regions science and technology, 2012, 83(02): 98-102. [18] 肖鹏, 陈有亮, 杜曦, 等. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究[J].岩土工程学报, 2023, 45(04): 805-815. [19] 姚宇平, 周世宁. 含瓦斯煤的力学性质[J]. 中国矿业学院学报, 1988(01): 4-10. [20] 李小双, 尹光志, 赵洪宝, 等. 含瓦斯突出煤三轴压缩下力学性质试验研究[J]. 岩石力学与工程学报, 2010, 29 (S1): 3350-3358. [21] 王磊, 陈礼鹏, 刘怀谦, 等. 不同初始瓦斯压力下煤体动力学特性及其劣化特征[J]. 岩土力学, 2023, 44(01): 144-158. [22] 张军伟, 姜德义, 赵云峰, 等. 分阶段卸荷过程中构造煤的力学特征及能量演化分析[J].煤炭学报, 2015, 40(12): 2820-2828. [23] 高魁, 刘泽功, 刘健, 等. 构造软煤的物理力学特性及其对煤与瓦斯突出的影响[J]. 中国安全科学学报, 2013, 23(02): 129-133. [24] 卢守青, 张永亮, 撒占友, 等. 软硬组合煤体塑性破坏与突出能量失稳判据[J]. 采矿与安全工程学报, 2019, 36(03): 583-592. [25] 冯康武. 构造煤分层对煤单轴压缩力学特性影响的颗粒流模拟[J]. 中国安全生产科学技术, 2020, 16(06): 68-72. [26] Unteregger D, Fuchs B, Hofstetter G. A damage plasticity model for different types of intact rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80(12): 402-411. [27] Zhao T B, Guo W Y, Lu C P, et al. Failure characteristics of combined coal-rock with different interfacial angles[J]. Geomechanics and Engineering, 2016, 11(03): 345-359. [28] Dai C Q, Wang L H, Zhao Z H, et al. Compression-shear strength criterion of coal-rock combination model considering interface effect[J]. Tunnelling and underground space technology, 2015. 47(02):193-199. [29] Zhao Z, Lv X, Wang W, et al. Damage evolution of bi-body model composed of weakly cemented soft rock and coal considering different interface effect[J]. SpringerPlus, 2016, 05(01):292-311. [30] 赵洪宝, 吉东亮, 刘绍强, 等. 冲击荷载下复合岩体动力响应力学特性及本构模型研究[J]. 岩石力学与工程学报, 2023, 42(01): 88-99. [31] 左建平, 陈岩, 宋洪强. 深部煤岩组合体破坏行为与非线性模型研究进展[J]. 中南大学学报(自然科学版), 2021, 52(08): 2510-2521. [32] 左建平, 宋洪强. 煤岩组合体的能量演化规律及差能失稳模型[J]. 煤炭学报, 2022, 47(08): 3037-3051. [33] Liu J, Wang E Y, Song D Z, et al. Effect of rock strength on failure mode and mechanical behavior of composite samples[J]. Arabian Journal of Geosciences, 2014,08(07): 4527-4539. [34] 李地元, 李夕兵, 李春林, 等. 单轴压缩下含预制孔洞板状花岗岩试样力学响应的试验和数值研究[J]. 岩石力学与工程学报, 2011, 30(06): 1198-1206. [35] 肖桃李, 李新平, 郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学, 2012, 33(11): 3251-3256. [36] Li D X, Wang E Y, Kong X G, et al. Mechanical behaviors and acoustic emission fractal characteristics of coal specimens with a pre-existing flaw of various inclinations under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 116(01): 38-51. [37] 朱红光, 谢和平, 易成, 等. 岩石材料微裂隙演化的CT识别[J]. 岩石力学与工程学报, 2011, 30(06): 1230-1238. [38] 王宇, 李晓, 阙介民, 等. 基于CT图像灰度水平的孔隙率计算及应用[J]. 水利学报, 2015, 46(03): 357-365. [39] 李果, 张茹, 徐晓炼, 等. 三轴压缩煤岩三维裂隙CT图像重构及体分形维研究[J]. 岩土力学, 2015, 36(06): 1633-1642. [40] 钟江城, 王子辉, 王路军, 等. 基于CT三维重构的深部煤体损伤演化规律[J]. 煤炭学报, 2019, 44(05): 1482-1494. [41] 王登科, 张航, 魏建平, 等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报, 2021, 46(11): 3550-3564. [42] 王登科, 吴岩, 魏建平, 等. 基于灰度共生矩阵和工业CT扫描的受载含瓦斯煤裂隙动态演化特征[J]. 工程科学学报, 2023, 45(01): 31-43. [43] Luong M P. Infrared observation of failure processes in plain concrete[J]. Durability of Building Materials and Component, 1987, 04(02): 870-878. [44] Luong M P. Infrared thermographic scanning of fatigue in metals[J]. Nuclear Engineering and Design, 1995, 158(03): 63-376. [45] Luong M P. Infrared thermographic observations of rock failure[J]. Comprehensive Rock Engineering Principles, 1993, 26(04): 715-730. [46] Wang C L, Lu Z J, Liu L, et al. Predicting points of the infrared precursor for limestone failure under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 34-43. [47] 董玉芬, 杜洪贵, 任伟杰, 等. 煤岩的红外信息随应力变化的实验研究[J]. 辽宁工程技术大学学报(自然科学版), 2001, 20(04): 495-496. [48] Cao K W, Ma L Q, Zhang D S, et al. An experimental study of infrared radiation characteristics of sandstone in dilatancy process[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 136: 1-10. [49] 杜园园, 孙海, 马立强, 等. 煤损伤演化过程中的红外辐射响应特征研究[J]. 煤炭科学技术, 2022, 50(09): 67-74. [50] Ma L Q, Sun H, Zhang Y, et al. Characteristics of infrared radiation of coal specimens under uniaxial loading[J]. Rock Mechanics and Rock Engineering, 2016, 49(04): 1567-1572. [51] Zhao Y, Jiang Y. Acoustic emission and thermal infrared precursors as sociated with bump-prone coal failure[J]. International Journal of Coal Geology, 2010,83(01): 11-20. [52] 张艳博, 刘善军. 含孔岩石加载过程的热辐射温度场变化特征[J]. 岩土力学, 2011, 32(04):1013-1017+1024. [53] 杨桢, 齐庆杰, 叶丹丹, 等. 复合煤岩受载破裂内部红外辐射温度变化规律[J]. 煤炭学报, 2016, 41(03): 618-624. [54] 姜永鑫, 李忠辉, 曹康, 等. 不同加载速率下煤岩声发射与红外辐射特征研究[J]. 煤炭科学技术, 2021, 49(07): 79-84. [55] Dong W G. Acoustic Emission (AE) Propagation Attenuation Theory and Rule in Non-Perfect Elastic Coal and Rock[J]. Applied Mechanics and Materials, 2013, 477(07): 620-623. [56] Li J G, Liu H. Application Conditions on Acoustic Emission (AE) Technique Monitoring Coal and Rock Dynamic Disasters in Mines[J]. Advanced Materials Research, 2012, 413(22): 235-240. [57] Liu X H, Liu C X, Zhuang S, et al. Laboratory Studies on Acoustic Emission Characteristics to Coal Dynamic Response under Variable Accelerative Load[J]. Applied Mechanics and Materials, 2014, 580: 623-627, [58] Lin Q B, Cao P, Wen G P, et al. Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139, 1-14. [59] Du K, Li X, Tao M, et al. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 1-15. [60] Zhao K, Yang D X, Gong C, et al. Evaluation of internal microcrack evolution in red sandstone based on time-frequency domain characteristics of acoustic emission signals[J]. Construction and Building Materials, 2020, 260: 1-17. [61] 李振雷, 李娜, 杨菲, 等. 基于声发射特征提取和机器学习的煤破坏状态预测[J]. 工程科学学报, 2023, 45(01): 19-30. [62] 李振雷, 李娜, 杨菲, 等. 声发射梅尔倒谱系数在砂岩破裂分析的应用[J]. 煤炭学报, 2023, 48(02): 714-729. [63] 李树刚, 王瑞哲, 林海飞, 等. 超声波功率对煤体损伤特性及能量演化规律的试验研究[J]. 煤炭科学技术, 2023,51(01): 283-294. [64] 朱南南, 张浪, 舒龙勇, 等. 煤与瓦斯突出的微震前兆特性试验研究与预警案例分析[J]. 岩石力学与工程学报, 2018, 37(06): 1419-1429. [65] 赵洪宝, 尹光志. 含瓦斯煤声发射特性试验及损伤方程研究[J]. 岩土力学, 2011, 32(03): 667-671. [66] 王常彬, 曹安业, 井广成, 等. 单轴受载下岩体破裂演化特征的声发射CT成像[J]. 岩石力学与工程学报, 2016, 35(10): 2044-2053. [67] Somerton W H, Sylemezolu I M, Dudley R C. Effect of stress on permeability of coal[J]. International Journal of Rock Mechanics and Mining Sciences, 1975, 12(05): 129-145. [68] Durucan S, Edwards J S. The effects of stress and fracturing on permeability of coal[J]. Mining Science and Technology, 1986, 03(03): 205-216. [69] Gentzis T, Deisman N, Chalaturnyk R J. Geomechanical properties and permeability of coals from the Foothills and Mountain regions of western Canada[J]. International Journal of Coal Geology, 2007, 69(03): 153-164. [70] Ma D, Miao X X, Chen Z Q, et al. Experimental Investigation of Seepage Properties of Fractured Rocks Under Different Confining Pressures[J]. Rock Mechanics and Rock Engineering, 2013, 46(05): 2183-2183. [71] Wang H, Xu W. Relationship Between Permeability and Strain of Sandstone During the Process of Deformation and Failure[J]. Geotechnical and Geological Engineering, 2013, 31: 347-353. [72] Wang H, Xu W, Shao J, et al. The gas permeability properties of low-permeability rock in the process of triaxial compression test[J]. Materials Letters, 2014, 116(13): 386-388. [73] Rui Z, Jiang Z, Qiang S, et al. The relationship between the deformation mechanism and permeability on brittle rock[J]. Natural Hazards, 2013, 66(02): 1179-1187. [74] Li Y, Tang D Z, Xu H, et al. Experimental research on coal permeability: The roles of effective stress and gas slippage[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 481-488. [75] Zou J P, Chen W Z, Yang D S, et al. The impact of effective stress and gas slippage on coal permeability under cyclic loading[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 236-248. [76] 孟召平, 卢易新. 高煤阶煤样水力压裂前后应力-渗透率试验研究[J]. 煤炭科学技术, 2023, 51(01): 353-360. [77] 魏建平, 吴松刚, 王登科, 等. 温度和轴向变形耦合作用下受载含瓦斯煤渗流规律研究[J]. 采矿与安全工程学报, 2015, 32(01): 168-174. [78] 贾荔丹, 李波波, 李建华, 等. 采气-采煤阶段煤岩渗透率演化机制研究[J]. 岩石力学与工程学报, 2022, 41(01): 132-146. [79] 蒋长宝, 余塘, 魏文辉, 等. 加卸载应力作用下煤岩渗透率演化模型研究[J]. 岩土力学, 2022, 43(S1): 13-22. [80] 刘厅, 赵洋, 林柏泉. 双重卸压效应下煤体力学行为响应及对渗透率的影响规律[J]. 煤炭学报, 2022, 47(07): 2656-2667. [81] 王向宇, 周宏伟, 钟江城, 等. 三轴循环加卸载下深部煤体损伤的能量演化和渗透特性研究[J]. 岩石力学与工程学报, 2018, 37(12): 2676-2684. [82] 张磊, 阚梓豪, 薛俊华, 等. 循环加卸载作用下完整和裂隙煤体渗透性演变规律研究[J].岩石力学与工程学报, 2021, 40(12): 2487-2499. [83] 尹光志, 蒋长宝, 王维忠, 等. 不同卸围压速度对含瓦斯煤岩力学和瓦斯渗流特性影响试验研究[J]. 岩石力学与工程学报, 2011, 30(01): 68-77. [84] 尹光志, 刘玉冰, 李铭辉, 等. 真三轴加卸载应力路径对原煤力学特性及渗透率影响[J]. 煤炭学报, 2018, 43(01): 131-136. [85] 尹光志, 马波, 刘超, 等. 真三轴应力条件下加卸荷速率对砂岩力学特性与能量特征的影响[J]. 煤炭学报, 2019, 44(02): 454-462. [86] 白鑫, 王登科, 田富超, 等. 三轴应力加卸载作用下损伤煤岩渗透率模型研究[J]. 岩石力学与工程学报, 2021, 40(08): 1536-1546. [87] 张培森, 许大强, 张睿, 等.不同围压及循环载荷下砂岩的渗流、力学特性试验研究[J].岩石力学与工程学报, 2022, 41(12): 2432-2450. [88] 祝捷, 唐俊, 王琪, 等. 含瓦斯煤渗透率演化模型和实验分析[J]. 煤炭学报, 2019, 44(06): 1764-1770. [89] 胡耀青, 赵阳升, 魏锦平. 三维应力作用下煤体瓦斯渗透规律实验研究[J]. 西安矿业学院学报, 1996(04): 20-23. [90] 张朝鹏, 高明忠, 张泽天, 等. 不同瓦斯压力原煤全应力应变过程中渗透特性研究[J]. 煤炭学报, 2015, 40(04): 836-842. [91] Zhi W Y, Lei Z, Ding Y H, et al. Experimental study on the response characteristics of coal permeability to pore pressure under loading and unloading conditions[J]. Journal of Geophysics and Engineering, 2017, 14(05): 1020-1031. [92] 尧春洪, 李波波, 高政, 等. 孔隙压力升降条件下煤岩双孔隙渗透率模型研究[J]. 煤炭科学技术, 2022, 50(11): 116-121. [93] 尹光志, 李小双, 赵洪宝, 等. 瓦斯压力对突出煤瓦斯渗流影响试验研究[J]. 岩石力学与工程学报, 2009, 28(04): 697-702. [94] 魏建平, 王登科, 位乐. 两种典型受载含瓦斯煤样渗透特性的对比[J]. 煤炭学报, 2013, 38 (S1): 93-99. [95] 魏建平, 秦恒洁, 王登科, 等. 含瓦斯煤渗透率动态演化模型[J]. 煤炭学报, 2015, 40(07): 1555-1561. [96] 李波波, 王斌, 杨康, 等. 煤岩孔裂隙结构分形特征及渗透率模型研究[J]. 煤炭科学技术, 2021, 49(02): 226-231. [97] 郝忠, 蹇开林, 彭守建, 等. 煤与瓦斯突出过程中瓦斯流动规律的理论模型及数值解法[J]. 煤炭学报, 2020, 45 (S2): 833-840. [98] 余伟健, 潘豹, 李可, 沈文兵. 岩-煤-岩组合体力学特性及裂隙演化规律[J]. 煤炭学报, 2022, 47(03): 1155-1167. [99] 常悦, 张雅萍, 栗继祖, 等. 煤岩组合体力学特性与瓦斯渗流规律试验研究[J]. 煤矿安全, 2017, 48(06): 28-31. [100] Li D Y, Han Z Y, Zhu Q Q, et al. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 162-170. [101] 孟召平, 章朋, 田永东, 等. 围压下煤储层应力-应变、渗透性与声发射试验分析[J]. 煤炭学报, 2020, 45(07): 2544-2551. [102] 杨滨滨, 袁世冲, 郑德志, 等. 近距离煤层重复采动覆岩裂隙时空演化特征研究[J]. 采矿与安全工程学报, 2022, 39(02): 255-263. [103] 张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学, 2021, 42(10): 2659-2671. [104] 唐一举, 郝天轩, 李帆, 等. 考虑应变速率效应的煤岩能量演化和红外辐射特征分析研究[J]. 岩石力学与工程学报, 2022, 41(06): 1126-1135. [105] 唐一举, 郝天轩, 刘静, 等. 瓦斯与应力作用下煤体红外辐射响应研究[J]. 岩石力学与工程学报, 2023, 42(03): 594-605. [106] 程富起, 李忠辉, 魏洋, 等. 基于单轴压缩红外辐射的煤岩损伤演化特征[J].工矿自动化, 2018, 44(05): 64-70. [107] Zhang K, Sang S X, Ma M Y, et al. Permeability Response Characteristics of Primary Undeformed Coal and Tectonically Deformed Coal under Loading-Unloading Conditions in Huainan Coalfield, China[J]. ACS omega, 2022, 7(42): 37485-37498. [108] Wang C L, Zhao Y, Ning L, et al. Permeability evolution of coal subjected to triaxial compression based on in-situ nuclear magnetic resonance[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 159: 1-8. [109] Zhai J T, Wang J L, Lu G W, et al. Permeability characteristics of remolded tectonically deformed coal and its influence factors[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 22-31. [110] 王相龙, 潘结南, 王凯, 等. 微米CT扫描尺度下构造煤微裂隙结构特征及其对渗透性的控制[J]. 煤炭学报, 2023, 48(03): 1325-1334. [111] 张磊, 田苗苗, 卢硕, 等. 不同含水率煤体液氮致裂渗透率变化规律及应力敏感性分析[J].岩土力学, 2022, 43(S1): 1-10.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2023-06-27
|