- 无标题文档
查看论文信息

论文中文题名:

 石墨烯改性分散及钛基复合材料制备与性能研究    

姓名:

 薛航    

学号:

 19211025012    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 石墨烯/钛基复合材料    

第一导师姓名:

 朱明    

第一导师单位:

 西安科技大学    

第二导师姓名:

 张于胜    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Preparation and Properties of Titanium Matrix Composites Based on Modification and Dispersion by Graphene    

论文中文关键词:

 钛基复合材料 ; 石墨烯改性分散 ; 粉末冶金 ; 显微组织 ; 力学性能    

论文外文关键词:

 Titanium matrix composites ; Graphene modification ; Powder metallurgy ; microstructure ; Mechanical properties    

论文中文摘要:

  石墨烯等纳米碳材料由于具有优异的力学性能被广泛用作金属基复合材料的理想增强体之一。然而,石墨烯与金属钛基体密度差异大且石墨烯片层之间较强的范德华力使其极易在基体中发生团聚,严重制约石墨烯/金属基复合材料的应用与发展。基于此,本文利用陶瓷颗粒(Al2O3)、有机溶剂(D400)对氧化石墨烯(GONs)改性,提升石墨烯在TC4基体中的分散能力,同时达到改性剂和石墨烯共同对复合材料的力学性能起到强化的目的。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、热重分析仪(TGA)、X射线光电子能谱仪(XPS)表征两种改性方法所制备复合材料的粉末形貌、物相组成、微观组织、断口形貌等。此外,测试了复合材料的拉伸性能、硬度。论文主要获得以下结论:

  研究了不同沉淀温度对rGONs@Al2O3纳米粉末形貌、元素化学态的影响。结果表明:rGONs@Al2O3纳米粉末由21.6wt%的rGONs和78.4wt%Al2O3组成;在制备过程中,氧化石墨烯被还原成还原氧化石墨烯,氧化铝颗粒的数量随着沉淀温度的升高而减少,纳米粉末的最佳制备温度为60℃。

  研究了rGONs@Al2O3纳米粉末含量对钛基复合材料组织和性能的影响规律。结果表明:GONs@Al2O3/TC4复合材料中有氧化铝颗粒析出,晶粒得到了明显的细化;复合材料的强度随着rGONs@Al2O3纳米粉末含量的增加而提升,0.5rGONs@Al2O3/TC4复合材料的屈服强度为950.5MPa、抗拉强度为1022.5MPa,与纯TC4基体相比,分别提升了20.3%和17%。

  对比分析了GONs/TC4、D400/TC4、GOMs/TC4复合材料的组织演变及力学性能。结果表明:氧化石墨烯和聚醚胺形成的TiC形态存在差异,前者的TiC呈片状,后者的TiC呈微米级颗粒。0.3GOMs/TC4复合材料的屈服强度和抗拉强度分别为963.45MPa和1062.37MPa,延伸率为7.8%,实现了氧化石墨烯和聚醚胺共同强化TC4基体。GOMs/TC4复合材断口形貌中可以观察到大量的TiC颗粒,随着GOMs含量的增加,解理台阶变得更加明显。

  通过对比两种改性方法在钛基复合材料中的应用优劣性,可以看出改性是提高石墨烯在钛基体中的分散能力有效手段之一,同时可以实现改性剂和石墨烯共同强化钛合金基体。但是,相比陶瓷颗粒改性,有机溶剂改性石墨烯在高性能钛基复合材料制备和加工过程中具有更优的潜力。

论文外文摘要:

  Carbon nanomaterials such as graphene are widely used as one of the ideal reinforcements for metal matrix composites due to their excellent mechanical properties. However, the large density difference between graphene and metal titanium matrix and the strong van der Waals force between graphene sheets make it easy to agglomerate in the matrix, which seriously restricts the application and development of graphene/metal matrix composites. Based on the above questions, this study uses ceramic particles (Al2O3) and organic solvent (D400) to modify graphene oxide (GONs) to improve the dispersion ability of graphene in TC4 matrix, and at the same time achieve the joint effect of modifier and graphene on graphene oxide. The powder morphology, phase composition, microstructure, fracture morphology, etc. of composites prepared by the two modified methods were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), thermogravimetric analyzer (TGA) and X-ray photoelectron spectroscopy (XPS). In addition, the tensile properties and hardness of the composites were tested. The main conclusions of the paper are as follows:

  The effects of different precipitation temperatures on the morphology and chemical state of the nanopowders were investigated. The results show that the rGONs@Al2O3 nanopowders are composed of 21.6wt% rGONs and 78.4wt% Al2O3; during the preparation process, the graphene oxides were reduced to reduced graphene oxides, the number of alumina particles decreased with the increase of the precipitation temperature, and the optimum preparation temperature of the nanopowder is 60 ℃.

  The effect of rGONs@Al2O3 nanopowders content on the microstructure and properties of titanium matrix composites were studied. Alumina particles were precipitated in the rGONs@Al2O3/TC4 composite, and the grains were obviously refined. The mechanical properties test results show that the yield strength and tensile strength of the 0.5rGONs@Al2O3/TC4 composite are 950.5 MPa and 1022.5 MPa , which are 20.3% and 17% higher than those of the pure TC4 matrix, respectively. The fracture mechanism of composites changed from original ductile fracture to mixed fracture.

  The microstructure evolution and mechanical properties of GONs/TC4, D400/TC4 and GOMs/TC4 composites were compared and analyzed. The study found that there are some differences in the morphology of TiC formed by graphene oxide and polyetheramine, the former TiC is in the form of flakes, and the latter is in the form of micron-sized particles. The yield strength and tensile strength of the 0.3GOMs/TC4 composite are 963.45 MPa and 1062.37 MPa, respectively, and the elongation is 7.8%, realizing the co-strengthening of the TC4 matrix by graphene oxide and polyetheramine. A large number of TiC particles can be observed in the fracture morphology of GOMs/TC4 composites, and with the increase of GOMs content, the cleavage steps become more obvious.

  The advantages and disadvantages of the two modification methods in the application of titanium matrix composites were compared, it can be seen that modification is one of the effective ways to improve the dispersion ability of graphene in the titanium matrix, and at the same time, the modifier and graphene can jointly strengthen the titanium alloy matrix. However, compared with ceramic particle modification, organic solvent modified graphene has better potential in the preparation and processing of high-performance titanium-based composites.

参考文献:

[1]Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components[J]. Metals, 2020, 10(6): 705.

[2]Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering: A, 1996, 213(1-2): 103-114.

[3]Cui Z, Wang L, Zhong M, et al. Electrochemical behavior and surface characteristics of pure titanium during corrosion in simulated desulfurized flue gas condensates[J]. Journal of The Electrochemical Society, 2018, 165(9): C542.

[4]Khorasani A M, Goldberg M, Doeven E H, et al. Titanium in biomedical applications—properties and fabrication: a review[J]. Journal of Biomaterials and Tissue Engineering, 2015, 5(8): 593-619.

[5]倪嘉, 柴皓, 史昆, 等. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.

[6]许国栋, 王桂生. 钛金属和钛产业的发展[J]. 稀有金属, 2009(6):10.

[7]Ding L, Hu R, Gu Y, et al. Effect of Fe Content on the As-Cast Microstructures of Ti–6Al–4V–xFe Alloys[J]. Metals, 2020, 10(8): 989.

[8]Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science[J]. Acta Materialia, 2013, 61(3): 782-817.

[9]Nag S, Banerjee R, Fraser H L. Intra-granular alpha precipitation in Ti–Nb–Zr–Ta biomedical alloys[J]. Journal of Materials Science, 2009, 44(3): 808-815.

[10]Xu S, Qiu J, Zhang H, et al. Friction behavior of Ti-30Fe composites strengthened by TiC particles[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(4): 988-998.

[11]Yang J, Xiao S, Chen Y, et al. Microstructure evolution during forging deformation of (TiB+ TiC+ Y2O3)/α-Ti composite: DRX and globularization behavior[J]. Journal of Alloys and Compounds, 2020, 827: 154170.

[12]Shi S, Cho S, Goto T, et al. The effects of sintering temperature on mechanical and electrical properties of Al2O3/Ti composites[J]. Materials Today Communications, 2020, 25: 101522.

[13]黄陆军, 耿林. 非连续增强钛基复合材料研究进展[J]. 航空材料学报, 2014, 34(4): 126-138.

[14]Cao H, Liang Y. The microstructures and mechanical properties of graphene-reinforced titanium matrix composites[J]. Journal of Alloys and Compounds, 2020, 812: 152057.

[15]Dong L L, Xiao B, Liu Y, et al. Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides[J]. Ceramics International, 2018, 44(15): 17835-17844.

[16]Dong L L, Lu J W, Fu Y Q, et al. Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: Properties, interfacial structures and strengthening mechanisms[J]. Carbon, 2020, 164: 272-286.

[17]Shinohara H, Tiwari A. Graphene: an introduction to the fundamentals and industrial applications[M]. John Wiley & Sons, 2015.

[18]Mbayachi V B, Ndayiragije E, Sammani T, et al. Graphene synthesis, characterization and its applications: A review[J]. Results in Chemistry, 2021, 3(10):100163.

[19]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[20]韩同伟, 贺鹏飞, 骆英,等. 石墨烯力学性能研究进展[J]. 力学进展,2011, 41(3): 279-293.

[21]徐秀娟, 秦金贵, 李振. 石墨烯研究进展[J]. 化学进展, 2009, 21(12): 2559.

[22]Miranzo P, Belmonte M, Osendi M I. From bulk to cellular structures: A review on ceramic/graphene filler composites[J]. Journal of the European Ceramic Society, 2017, 37(12): 3649-3672.

[23]Liu L, Xiong Z, Hu D, et al. Production of high quality single-or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane[J]. Chemical Communications, 2013, 49(72): 7890-7892.

[24]邓尧, 黄肖容, 邬晓龄. 氧化石墨烯复合材料的研究进展[J]. 材料导报, 2012, 26(15): 84-87.

[25]Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J]. Langmuir, 2010, 26(5): 3208-3213.

[26]黄满华, 唐志红, 杨俊和. 氧化石墨烯结构的研究进展[J]. 新型炭材料, 2019, 34(4): 307-314.

[27]覃信茂, 谢卓成, 谢泉. 石墨烯改性研究进展[J]. 电子元件与材料, 2014, 33(3): 1-4.

[28]Wan W B, Li L L, Zhao Z B, et al. Ultrafast fabrication of covalently cross‐linked multifunctional graphene oxide monoliths[J]. Advanced Functional Materials, 2014, 24(31): 4915-4921.

[29]Liao W H, Yang S Y, Wang J Y, et al. Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ polymerization[J]. ACS applied materials & interfaces, 2013, 5(3): 869-877.

[30]Yang H, Shan C, Li F, et al. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid[J]. Chemical Communications, 2009 (26): 3880-3882.

[31]唐秀之. 氧化石墨烯表面功能化修饰[D]. 北京:北京化工大学, 2012.

[32]Luo H, Sui Y, Qi J, et al. Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles[J]. Journal of Alloys and Compounds, 2017, 729: 293-302.

[33]Hao X, Wang X, Zhou S, et al. Microstructure and properties of silver matrix composites reinforced with Ag-doped graphene[J]. Materials Chemistry and Physics, 2018, 215: 327-331.

[34]Shuai C, Wang B, Bin S, et al. Interfacial strengthening by reduced graphene oxide coated with MgO in biodegradable Mg composites[J]. Materials and Design, 2020, 191: 108612.

[35]Zhang W L, Choi H J, Leong Y K. Facile fabrication of graphene oxide-wrapped alumina particles and their electrorheological characteristics[J]. Materials Chemistry and Physics, 2014, 145(1-2): 151-155.

[36]Fan Y, Jiang W, Kawasaki A. Highly conductive few‐layer graphene/Al2O3 nanocomposites with tunable charge carrier type[J]. Advanced Functional Materials, 2012, 22(18): 3882-3889.

[37]Jastrzębska A M, Karcz J, Letmanowski R, et al. Synthesis of the RGO/Al2O3 core-shell nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements[J]. Applied Surface Science, 2016, 362: 577-594.

[38]Li Z, Wang R, Wu S, et al. In situ observation of metal ion interactions with graphene oxide layers: From the growth of metal hydroxide to metal oxide formation[J]. Carbon, 2021, 184: 721-727.

[39]Cao H, Liang Y. The microstructures and mechanical properties of graphene-reinforced titanium matrix composites[J]. Journal of Alloys and Compounds, 2020, 812: 152057.

[40]Dong L L, Fu Y Q, Liu Y, et al. Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties[J]. Carbon, 2021, 173: 41-53.

[41]Khan M, Din R U, Wadood A, et al. Effect of graphene nanoplatelets on the physical and mechanical properties of Al6061 in fabricated and T6 thermal conditions[J]. Journal of Alloys and Compounds, 2019, 790: 1076-1091.

[42]Meng L, Hu X, Wang X, et al. Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction[J]. Materials Science and Engineering: A, 2018, 733: 414-418.

[43]Dong L L, Xiao B, Jin L H, et al. Mechanisms of simultaneously enhanced strength and ductility of titanium matrix composites reinforced with nanosheets of graphene oxides[J]. Ceramics International, 2019, 45(15): 19370-19379.

[44]Tian N, Dong L L, Huo W L, et al. Microstructure and tribological properties of titanium matrix nanocomposites through powder metallurgy using graphene oxide nanosheets enhanced copper powders and spark plasma sintering[J], Journal of Alloy and Compounds, 2021, 867:159093.

[45]Zhou Y, Dong L L, Yang Q H, et al. Controlled Interfacial Reactions and Superior Mechanical Properties of High Energy Ball Milled/Spark Plasma Sintered Ti–6Al–4V–Graphene Composite[J]. Advanced Engineering Materials, 2021, 23(6): 2001411.

[46]Lu J W, Dong L L, Liu Y, et al. Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure[J]. Composites Part A: Applied Science and Manufacturing, 2020, 136: 105971.

[47]Yu J S, Zhao Y Q, Huang S, et al. Enhanced mechanical and tribological properties of graphene nanoplates reinforced TC21 composites using spark plasma sintering[J]. Journal of Alloys and Compounds, 2021, 873: 159764.

[48]Mu X N, Zhang H M, Cai H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science and Engineering: A, 2017, 68(27)7: 164-174.

[49]Mu X N, Zhang H M, Chen P W, et al. Achieving high performance in graphite nano-flakes reinforced titanium matrix composites through a novel reaction interface design[J]. Carbon, 2021, 175: 334-351.

[50]凌自成, 闫翠霞, 史庆南, 等. 石墨烯增强金属基复合材料的制备方法研究进展[J]. 材料导报, 2015, 29(7): 143-149.

[51]刘海波, 王成辉, 周茜, 等. 石墨烯在金属基复合材料中的应用研究与进展[J]. 热加工工艺, 2020, 49(24): 8-14.

[52]Mu X N, Cai H N, Zhang H M, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites[J]. Carbon, 2018, 137: 146-155.

[53]Dong L L, Zhang W, Fu Y Q, et al. Reduced graphene oxide nanosheets decorated with copper and silver nanoparticles for achieving superior strength and ductility in titanium composites[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 43197-43208.

[54]Zhang B, Zhang F, Saba F, et al. Graphene-TiC hybrid reinforced titanium matrix composites with 3D network architecture: Fabrication, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 859: 157777.

[55]Song Y, Chen Y, Liu W W, et al. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers[J]. Materials & Design, 2016, 109: 256-263.

[56]Zhang F M, Wang J, Liu T, et al. Enhanced mechanical properties of few-layer graphene reinforced titanium alloy matrix nanocomposites with a network architecture[J]. Materials & Design, 2020, 186: 108330.

[57]Yan S J, Dai S L, Zhang X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes[J]. Materials Science and Engineering: A, 2014, 612: 440-444.

[58]Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports, 2013, 74(10): 281-350.

[59]George R, Kashyap K T, Rahul R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J]. Scripta Materialia, 2005, 53(10): 1159-1163.

[60]Li X, Yan S, Chen X, et al. Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD, ball-milling, and spark plasma sintering[J]. Journal of Alloys and Compounds, 2020, 834: 155182.

[61]唐婷, 何栋. 石墨烯增强金属基复合材料制备及其性能[J]. 合成材料老化与应用, 2020, 49(3): 62-64.

[62]Cho J Y, Jang J I, Lee W K, et al. Fabrication of high-quality or highly porous graphene sheets from exfoliated graphene oxide via reactions in alkaline solutions[J]. Carbon, 2018, 138: 219-226.

[63]Fan X, Peng W, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation[J]. Advanced Materials, 2008, 20(23): 4490-449.

[64]Dong L L, Chen W, Deng N, et al. A novel fabrication of graphene by chemical reaction with a green reductant[J]. Chemical Engineering Journal, 2016, 306: 754-762.

[65]Niu J J, Wang J N. Activated carbon nanotubes-supported catalyst in fuel cells[J]. Electrochimica Acta, 2008, 53(27): 8058-8063.

[66]Yang Z, Wan Y, Xiong G, et al. Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids for enhanced microwave absorption properties[J]. Materials Research Bulletin, 2015, 61: 292-297.

[67]Kim K T, Cha S I, Gemming T, et al. The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites[J]. Small, 2008, 4(11): 1936-1940.

[68]Goncalves G, Marques P A A P, Granadeiro C M, et al. Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth[J]. Chemistry of Materials, 2009, 21(20): 4796-4802.

[69]Tien H W, Huang Y L, Yang S Y, et al. The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films[J]. Carbon, 2011, 49(5): 1550-1560.

[70]Chiu C T, Teng Y J, Dai B H, et al. Novel high-entropy ceramic/carbon composite materials for the decomposition of organic pollutants[J]. Materials Chemistry and Physics, 2022, 275: 125274.

[71]Fu K, Zhang X, Shi C, et al. An approach for fabricating Ni@ graphene reinforced nickel matrix composites with enhanced mechanical properties[J]. Materials Science and Engineering: A, 2018, 715: 108-116.

[72]Guan R, Wang Y, Zheng S, et al. Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets[J]. Materials Science and Engineering: A, 2019, 754: 437-446.

[73]Casati R, Vedani M. Metal matrix composites reinforced by nano-particles—a review[J]. Metals, 2014, 4(1): 65-83.

[74]Dong L L, Zhang W, Fu Y Q, et al. Synergetic enhancement of strength and ductility for titanium-based composites reinforced with nickel metallized multi-walled carbon nanotubes[J]. Carbon, 2021, 184: 583-595.

[75]De Barros M I, Rats D, Vandenbulcke L, et al. Influence of internal diffusion barriers on carbon diffusion in pure titanium and Ti-6Al-4V during diamond deposition[J]. Diamond and related materials, 1999, 8(6): 1022-1032.

[76]Munir K S, Zheng Y, Zhang D, et al. Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering[J]. Materials Science and Engineering: A, 2017, 688: 505-523.

[77]Hansen N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8): 801-806.

[78]吕维洁. 原位自生钛基复合材料研究综述[J]. 中国材料进展, 2010 (4): 41-48.

[79]吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34(4): 139-146.

[80]Castellan E, Ischia G, Molinari A, et al. A novel in situ method for producing a dispersion of a ceramic phase into copper that remains stable at 0.9 TM[J]. Metallurgical and Materials Transactions A, 2013, 44(10): 4734-4742.

[81]K. Sudarshan, Terauds, A.R. Anilchandra, R. Raj. Polymer-derived in-situ metal matrix composites created by direct injection of a liquid polymer into molten magnesium, A Metallurgical and Materials Transactions A, 2014, 45 (2) 551-554.

[82]Lu X, Pan Y, Li W, et al. High-performance Ti composites reinforced with in-situ TiC derived from pyrolysis of polycarbosilane[J]. Materials Science and Engineering A, 2020, 795:139924.

[83]Chen Y, Zhang X, Liu E, et al. Fabrication of in-situ grown graphene reinforced Cu matrix composites[J]. Scientific Reports, 2016, 6(1): 1-9.

[84]Huang L J, Geng L, Li A B, et al. In situ TiBw/Ti–6Al–4V composites with novel reinforcement architecture fabricated by reaction hot pressing[J]. Scripta Materialia, 2009, 60(11): 996-999.

[85]Jeyasimman D, Sivasankaran S, Sivaprasad K, et al. An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying[J]. Materials & Design, 2014, 57: 394-404.

[86]Sun B. Fabrication of high-strength Titan Ti Powder Materials by Oxygen Solid Solution Strengthening[J]. Journal of Smart Processing, 2012, 1(6): 283-287.

[87]Duz V, Matviychuk M, Klevtsov A, et al. Industrial application of titanium hydride powder[J]. Metal Powder Report, 2017, 72(1): 30-38.

中图分类号:

 TF124    

开放日期:

 2022-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式