- 无标题文档
查看论文信息

论文中文题名:

 瓦斯抽采钻孔水射流破煤特征及扩孔修复增透机制研究    

姓名:

 刘佳伟    

学号:

 21220089053    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤与瓦斯安全共采    

第一导师姓名:

 徐刚    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on the Characteristics of Water Jet Coal Breaking in Gas Extraction Borehole and the Mechanism of Reaming Repair and Permeability    

论文中文关键词:

 水射流 ; 瓦斯抽采钻孔变形失稳 ; 修复增透 ; 射流压力 ; 渗透率    

论文外文关键词:

 Water jet ; Deformation instability of gas extraction borehole ; Repair and permeability improved ; Jetpile pressure ; Permeability    

论文中文摘要:

煤层瓦斯既是矿井灾害的主要来源,又是优质的清洁能源。钻孔瓦斯抽采是矿井瓦斯治理和煤层气资源开发的主要方式,目前煤层瓦斯抽采钻孔处于“重生不养”阶段,开展钻孔修复技术的研究迫在眉睫。本文基于水射流破岩和射流技术的基本理论,综合理论分析、实验室试验、数值模拟和现场实践等手段深入研究了钻孔水射流修复技术。

在Hoke-Brown强度准则和断裂力学理论的基础上分析了钻孔失稳力学机理,研究了钻孔坍塌堵塞效应对瓦斯抽采的影响,提出了瓦斯抽采钻孔水射流高效修复方法;然后应用水射流破煤理论建立了水射流破煤过程的数学模型,分析了钻孔修复过程中的自驱动力,阐明了钻孔水射流修复增透的作用机理;基于相似原理搭建了钻孔水射流修复物理相似模拟试验平台,研究了修复过程中钻孔孔周和孔底煤体应变时空演化规律;建立了单股水射流冲击煤体的数值模拟模型,研究了水射流荷载作用下煤体的损伤破裂规律;最后应用自主研发的井下移动式瓦斯抽采钻孔水射流修复增透装备开展了瓦斯抽采钻孔水射流修复增透作业实践。结果表明:(1)当射流动压大于煤体破坏强度时,水射流对煤体产生破坏作用,而当射流动压小于煤体破坏强度时,破煤过程终止;水射流的破煤作用一方面扩大钻孔塑性区范围,增加了钻孔的有效瓦斯抽采区域,另一方面使孔周煤体增透率得到了提升,从而增加了煤体的渗透率。(2)水射流不仅对钻孔有着解堵作用,更对孔周煤体有着扩孔增透和射流冲击煤体增透的双重增透机制。(3)在钻孔修复过程中,水射流的扩孔现象是多个射流冲击破碎坑持续性积累的结果;越靠近射流的煤体单元,其损伤越明显;随着煤体与射流的距离增加,煤体损伤程度减小。水射流对钻孔的修复现象是射流长时间冲击煤体累积作用导致的,在现场破煤扩孔作业实践环节中,水射流需要多次冲击钻孔才能实现扩孔目的。(4)通过分析水射流扩孔修复措施钻孔前后的瓦斯抽采数据得出,水射流扩孔修复措施可将瓦斯抽采浓度提升4.4倍,瓦斯抽采纯量提升10倍。该措施显著提高了低透气性煤层瓦斯抽采钻孔在抽采过程中的瓦斯浓度和瓦斯抽采流量。瓦斯抽采钻孔水射流修复增透技术既提升了瓦斯抽采效果又减少了瓦斯抽采达标时间,可有效缓解矿井采掘接替紧张的局面。

论文外文摘要:

Coal seam gas is not only the main source of mine disasters, but also a high-quality clean energy. Borehole gas extraction is the main way of mine gas control and coalbed methane resource development. At present, coal seam gas extraction boreholes are in the stage of " rebirth without maintenance, " and it is urgent to carry out research on borehole repair technology. This paper is based on the basic theory of water jet rock breaking and jet technology. Comprehensive theoretical analysis, laboratory test, numerical simulation and field practice, the drilling water jet repair technology is studied in depth.

On the basis of Hoke-Brown strength criterion and fracture mechanics theory, the mechanical mechanism of borehole instability is analyzed, the influence of borehole collapse and blockage effect on gas extraction is studied, and the efficient repair method of water jet in gas extraction borehole is proposed. Then, the mathematical model of water jet coal breaking process is established by using the theory of water jet coal breaking. The self driving force in the process of borehole repair is analyzed, and the mechanism of borehole water jet repair and permeability enhancement is expounded. Based on the similarity principle, a physical similarity simulation test platform for borehole water jet repair was built. The temporal and spatial evolution law of coal strain around the borehole and at the bottom of the borehole during the repair process was studied. The numerical simulation model of single water jet impacting coal body is established, and the damage and fracture law of coal body under water jet load is studied. Finally, the application of independent research and development of underground mobile gas drainage borehole water jet repair antireflection equipment to carry out the gas drainage borehole water jet repair antireflection operation practice. The results show that : ( 1 ) When the jet flow pressure is greater than the failure strength of the coal body, the water jet has a destructive effect on the coal body, and when the jet flow pressure is less than the failure strength of the coal body, the coal breaking process is terminated. On the one hand, the coal breaking effect of water jet expands the plastic zone of borehole and increases the effective gas extraction area of borehole. On the other hand, the permeability increasing rate of coal body around borehole is improved, thus increasing the permeability of coal body. ( 2 ) The water jet not only has a plugging effect on the borehole, but also has a double antireflection mechanism of reaming and jet impact on the coal body around the hole. ( 3 ) In the process of drilling repair, the reaming phenomenon of water jet is the result of continuous accumulation of multiple jet impact crushing pits. The closer the coal unit to the jet, the more obvious the damage is. With the increase of the distance between the coal and the jet, the damage degree of the coal decreases. The repair phenomenon of water jet to borehole is caused by the cumulative effect of jet impacting coal body for a long time. In the practice of coal breaking and reaming operation on site, water jet needs to impact borehole many times to achieve the purpose of reaming. ( 4 ) By analyzing the gas extraction data before and after the drilling of the water jet reaming repair measures, it is concluded that the water jet reaming repair measures can increase the gas extraction concentration by 4.4 times and the gas extraction purity by 10 times. This measure significantly improves the gas concentration and gas extraction flow during the extraction process of gas extraction boreholes in low permeability coal seams. The water jet repair and permeability improvement technology of gas extraction borehole not only improves the gas extraction effect but also reduces the time of gas extraction reaching the standard, which can effectively alleviate the tension of mine mining replacement.

参考文献:

[1] 邓开茂, 林明道. 高压水射流清洗空气预热器[J]. 四川电力技术, 1998(04): 39-40.

[2] 苏现波, 刘晓, 马保安, 等. 瓦斯抽采钻孔修复增透技术与装备[J]. 煤炭科学技术, 2014,42(06): 58-60.

[3] 刘晓, 蔺海晓, 张双斌, 等. 瓦斯抽采钻孔修复机理与应用研究[J]. 中国煤炭, 2014,40(01): 102-105.

[4] 范超, 李贤忠, 苏现波. “三软”煤体抽采钻孔水力修复增透技术研究[J]. 煤炭技术, 2015,34(01): 209-212.

[5] 刘勇, 代硕, 魏建平, 等. 自进式旋转钻头钻孔修复运动方程及关键参数研究[J]. 河南理工大学学报(自然科学版), 2023,42(03): 1-9.

[6] 程虹铭, 韩颖, 乔元栋, 等. 低渗煤层顺层钻孔塌堵孔修复增透技术研究[J]. 煤炭科学技术, 2017,45(11): 144-148.

[7] 刘延保, 巴全斌, 申凯, 等. 瓦斯抽采钻孔水射流协同修护技术研究与应用[J]. 矿业安全与环保, 2020,47(02): 56-60.

[8] 邓广哲. 硬煤裂隙能量补偿原理与应用[J]. 岩石力学与工程学报, 2000,19(04): 440-443.

[9] 邓广哲, 王有熙. 煤层定向水压致裂机理研究[J]. 西安科技大学学报, 2014,34(06): 664-669.

[10] 徐东, 邓广哲, 刘华, 等. 压裂煤岩分区破坏能量耗散机理与应用[J]. 采矿与安全工程学报, 2021,38(02): 404-410.

[11] Jingna X, Jun X, Guanhua N, et al. Effects of pulse wave on the variation of coal pore structure in pulsating hydraulic fracturing process of coal seam[J]. Fuel, 2020,264: 116906.

[12] Guanhua N, Kai D, Shang L, et al. Gas desorption characteristics effected by the pulsating hydraulic fracturing in coal[J]. Fuel, 2019,236: 190-200.

[13] 徐刚, 金洪伟, 李树刚, 等. 不同坚固性系数f值煤渗透率分布特征及其井下水力压裂适用性分析[J]. 西安科技大学学报, 2019,39(03): 443-451.

[14] 徐刚, 马瑞峰, 田俊伟. 煤层水力压裂增透范围理论分析与试验研究[J]. 煤炭工程, 2014,46(06): 88-90.

[15] 王宁, 李树刚, 邓增社. 脉动水力压裂煤层微观结构变化及其工程实践[J]. 煤矿安全, 2019,50(08): 18-22.

[16] 李树刚, 马瑞峰, 许满贵, 等. 煤层水力压裂增透影响半径试验研究[J]. 矿业安全与环保, 2014,41(03): 9-11.

[17] 陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000,19(S1): 868-872.

[18] 申鹏磊, 吕帅锋, 李贵山, 等. 深部煤层气水平井水力压裂技术—以沁水盆地长治北地区为例[J]. 煤炭学报, 2021,46(08): 2488-2500.

[19] 卢义玉, 李瑞, 鲜学福, 等. 地面定向井+水力割缝卸压方法高效开发深部煤层气探讨[J]. 煤炭学报, 2021,46(03): 876-884.

[20] 李栋, 卢义玉, 荣耀, 等. 基于定向水力压裂增透的大断面瓦斯隧道快速揭煤技术[J]. 岩土力学, 2019,40(01): 363-369.

[21] 卢义玉, 葛兆龙, 李晓红, 等. 脉冲射流割缝技术在石门揭煤中的应用研究[J]. 中国矿业大学学报, 2010,39(01): 55-58.

[22] 高亚斌, 林柏泉, 杨威, 等. 高突煤层穿层钻孔“钻-冲-割”耦合卸压技术及应用[J]. 采矿与安全工程学报, 2017,34(01): 177-184.

[23] 王刚, 范酒源, 汪文瑞, 等. 水力割缝辅助定向压裂煤体的割缝间距模型研究[J]. 采矿与安全工程学报, 2020,37(03): 622-631.

[24] 刘生龙, 朱传杰, 林柏泉, 等. 水力割缝空间分布模式对煤层卸压增透的作用规律[J]. 采矿与安全工程学报, 2020,37(05): 983-990.

[25] Ge Z, Cao S, Lu Y, et al. Fracture mechanism and damage characteristics of coal subjected to a water jet under different triaxial stress conditions[J]. Journal of Petroleum Science and Engineering, 2022,208: 109157.

[26] Huang F, Mi J, Li D, et al. Comparative investigation of the damage of coal subjected to pure water jets, ice abrasive water jets and conventional abrasive water jets[J]. Powder Technology, 2021,394: 909-925.

[27] 田方宝, 林缅. 水射流辅助破岩机理研究(2)—水滴撞击[J]. 力学与实践, 2007(02): 34-39.

[28] 刘勇, 崔家玮, 魏建平, 等. 自激振荡脉冲超临界二氧化碳射流发生机制[J]. 煤炭学报, 2022,47(07): 2643-2655.

[29] 郑学召, 王宝元, 郭军, 等. 磨料水射流切割井下密闭墙实验研究[C]. //第31届全国高校安全科学与工程学术年会暨第13届全国安全工程领域专业学位研究生教育研讨会. 中国辽宁葫芦岛, 2019: 208-218.

[30] Singh M M, Hartman H L. Hypothesis for the mechanism of rock failure under impact: OnePetro, 1961.

[31] 彭可文. 围压下自振空化射流空化发生能力与冲蚀性能研究[D]. 北京:中国石油大学, 2018.

[32] 史怀忠, 李根生, 张浩, 等. 塔河油田深井脉冲空化射流钻井试验研究[J]. 石油钻探技术, 2013,41(03): 85-88.

[33] 张毅, 李根生, 熊伟, 等. 高压水射流深穿透射孔增产机理研究[J]. 石油大学学报(自然科学版), 2004(02): 38-41.

[34] 常宗旭. 水射流非均质破岩理论及其应用[D]. 太原:太原理工大学, 2006.

[35] 白新华, 张子敏, 张玉贵, 等. 水力掏槽破煤落煤效率因素层次分析[J]. 水力采煤与管道运输, 2008(04): 1-4.

[36] Schapery R A. Springer-Verlag wien. New york, 1968.

[37] Heuer R E, Hendron A J. Geomechanical model study of the behavior of underground openings in rock subjected to static loads. Report 2, Tests on unlined openings in intact rock[J]. 1971.

[38] Hendron A J, Engeling P D, Aiyer A K, et al. Geomechanical model study of the behavior of underground openings in rock subjected to static loads. Report 3, Tests on lined openings in jointed and intact rock[J]. 1972.

[39] 钱鸣高. 采场围岩控制理论与实践[J]. 矿山压力与顶板管理, 1999(Z1): 12-15.

[40] 卢义玉, 黄杉, 葛兆龙, 等. 我国煤矿水射流卸压增透技术进展与战略思考[J]. 煤炭学报, 2022,47(09): 3189-3211.

[41] 李树刚, 石平五, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理, 1999(Z1): 44-46.

[42] 林海飞, 李树刚, 成连华, 等. 覆岩采动裂隙带动态演化模型的实验分析[J]. 采矿与安全工程学报, 2011,28(02): 298-303.

[43] 刘谦, 黄建滨, 倪冠华, 等. 不同煤级煤液相侵入效应低场核磁共振实验研究[J]. 煤炭学报, 2020,45(03): 1108-1115.

[44] 王耀锋, 何学秋, 王恩元, 等. 水力化煤层增透技术研究进展及发展趋势[J]. 煤炭学报, 2014,39(10): 1945-1955.

[45] 刘东, 许江, 尹光志, 等. 多场耦合煤层气开采物理模拟试验系统的研制和应用[J]. 岩石力学与工程学报, 2014,33(S2): 3505-3514.

[46] 康向涛. 煤层水力压裂裂缝扩展规律及瓦斯抽采钻孔优化研究[D]. 重庆:重庆大学, 2014.

[47] 侯振坤. 龙马溪组页岩水力压裂试验及裂缝延伸机理研究[D]. 重庆:重庆大学, 2018.

[48] 陶云奇, 刘东, 许江, 等. 大尺寸复杂应力水力压裂裂缝扩展模拟试验研究[J]. 采矿与安全工程学报, 2019,36(02): 405-412.

[49] 樊世星. 液态CO_2压裂煤岩增透及裂缝形成机制研究[J]. 岩石力学与工程学报, 2021,40(08): 1728.

[50] 冯丹. 煤层瓦斯水力冲/压一体化强化抽采物理模拟试验方法研究[D]. 重庆:重庆大学, 2017.

[51] 李奇贤, 许江, 彭守建, 等. 多压力系统气藏合采物理模拟研究进展评述[J]. 煤炭科学技术, 2022.

[52] 许江, 程亮, 彭守建, 等. 巷道结构对突出流体冲击特性的影响性试验研究[J]. 煤炭学报, 2023,48(01): 238-250.

[53] 许江, 魏仁忠, 程亮, 等. 煤与瓦斯突出流体多物理参数动态响应试验研究[J]. 煤炭科学技术, 2022,50(01): 159-168.

[54] 张天军. 富含瓦斯煤岩体采掘失稳非线性力学机理研究[D]. 西安:西安科技大学, 2009.

[55] 包若羽. 松软煤层抽采钻孔密封段失稳机理及新型加固密封技术研究[D]. 西安:西安科技大学, 2019.

[56] 郭红玉, 苏现波, 夏大平, 等. 煤储层渗透率与地质强度指标的关系研究及意义[J]. 煤炭学报, 2010,35(08): 1319-1322.

[57] Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion-2002 edition[J]. Proceedings of NARMS-Tac, 2002,1(1): 267-273.

[58] 韩颖, 张飞燕, 杨志龙. 煤层钻孔孔壁稳定性分析[J]. 中国安全科学学报, 2014,24(06): 80-85.

[59] 韩颖, 张飞燕, 刘晓, 等. 基于Hoek-Brown准则的煤层钻孔失稳破坏类型数值模拟研究[J]. 煤炭学报, 2020,45(S1): 308-318.

[60] 李世愚, 和泰名, 尹祥础. 岩石断裂力学[M]. 北京:科学出版社,岩石断裂力学, 2015.

[61] 刘春. 松软煤层瓦斯抽采钻孔塌孔失效特性及控制技术基础[D]. 北京:中国矿业大学, 2014.

[62] Bogusławski L, Popiel C O. Flow structure of the free round turbulent jet in the initial region[J]. Journal of Fluid Mechanics, 1979,90(03): 531-539.

[63] 王瑞和. 高压水射流破岩机理研究[M]. 东营: 中国石油大学出版社, 2010: 81-82.

[64] 吉沢幸雄, 川島俊夫, 柳井田勝哉. 噴流特性によるノズル性能の判定について[J]. 日本鉱業会誌, 1965,81(930): 913-918.

[65] 吉沢幸雄, 川島俊夫, 柳井田勝哉. 高圧におけるノズルの水噴流特性について[J]. 日本鉱業会誌, 1967,83(950): 806-812.

[66] 李晓红, 卢义玉, 向文英. 水射流理论及在矿业工程中的应用[M]. 重庆: 重庆大学出版社, 2007: 13-27.

[67] 葛兆龙, 梅绪东, 贾亚杰, 等. 高压水射流割缝钻孔抽采影响半径研究[J]. 采矿与安全工程学报, 2014,31(04): 657-664.

[68] 卢义玉, 夏彬伟, 葛兆龙, 等. 水力化煤层增透理论及技术[M]. 北京: 科学出版社, 2016: 53-54.

[69] 梁运培. 高压水射流钻孔破煤机理研究[D]. 青岛: 山东科技大学, 2007.

[70] 黄飞, 卢义玉, 刘小川, 等. 高压水射流冲击作用下横观各向同性岩石破碎机制[J]. 岩石力学与工程学报, 2014,33(07): 1329-1335.

[71] 穆朝民, 吴阳阳. 高压水射流冲击下煤体破碎强度的确定[J]. 应用力学学报, 2013,30(03): 451-456.

[72] 尹光志, 鲁俊, 张东明, 等. 真三轴应力条件下钻孔围岩塑性区及增透半径研究[J]. 岩土力学, 2019,40(S1): 1-10.

[73] 姚向荣, 程功林, 石必明. 深部围岩遇弱结构瓦斯抽采钻孔失稳分析与成孔方法[J]. 煤炭学报, 2010,35(12): 2073-2081.

[74] 谢和平, 高峰, 周宏伟, 等. 煤与瓦斯共采中煤层增透率理论与模型研究[J]. 煤炭学报, 2013,38(07): 1101-1108.

[75] 张庆贺, 袁亮, 王汉鹏, 等. 煤与瓦斯突出物理模拟相似准则建立与分析[J]. 煤炭学报, 2016,41(11): 2773-2779.

[76] 袁亮, 薛阳, 王汉鹏, 等. 煤与瓦斯突出物理模拟试验研究新进展[J]. 隧道与地下工程灾害防治, 2020,2(01): 1-10.

[77] 卢义玉, 彭子烨, 夏彬伟, 等. 深部煤岩工程多功能物理模拟实验系统—煤与瓦斯突出模拟实验[J]. 煤炭学报, 2020,45(S1): 272-283.

[78] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures[C]//14th International symposium, Vol 2; Warhead mechanisms, terminal ballistics, 1993; Quebec; Canada, Arlington, Quebec, ADPA, 1993.

[79] Wang C, Song R, Wang G, et al. Modifications of the HJC (Holmquist–Johnson–Cook) model for an improved numerical simulation of roller compacted concrete (RCC) structures subjected to impact loadings[J]. Materials, 2020,13(06): 1361.

[80] Tian X, Tao T, Lou Q, et al. Modification and application of limestone HJC constitutive model under the impact load[J]. Lithosphere, 2022,2021(Special 7): 6443087.

[81] Lou C D, Zhang R, Ren L, et al. Determination and numerical simulation for HJC constitutive model parameters of Jinping marble[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 861(3): 032074.

[82] Hallquist J O. LS-DYNA theory manual[EB/OL]. [2022-4-16]. https://www.lstc.com/dynamat/pdfs/mat_ 111_theory.pdf.

[83] 谢理想, 赵光明, 孟祥瑞. 软岩及混凝土材料损伤型黏弹性动态本构模型研究[J]. 岩石力学与工程学报, 2013,32(04): 857-864.

[84] 方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法[J]. 工程力学, 2014,31(03): 197-204.

[85] 马雄伟, 王兆丰, 杨腾龙, 等. 淹没射流破碎含瓦斯煤效率主控因素敏感性分析[J]. 煤矿安全, 2021,52(11): 147-153.

[86] Xiaohui L, Songyong L, Huifu J. Numerical research on rock breaking performance of water jet based on SPH[J]. Powder Technology, 2015,286: 181-192.

中图分类号:

 TD712    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式