- 无标题文档
查看论文信息

论文中文题名:

 基于无人机遥感的滑坡风险评估研究——以宁夏彭阳县红河镇为例    

姓名:

 石硕杰    

学号:

 19209071006    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081803    

学科名称:

 工学 - 地质资源与地质工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 地质灾害防治    

第一导师姓名:

 毛正君    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Research on landslide risk assessment based on UAV remote sensing – A case of Honghe Town, Pengyang County, Ningxia    

论文中文关键词:

 无人机遥感 ; 风险评估 ; 滑坡 ; 承灾体 ; 宁夏彭阳县红河镇    

论文外文关键词:

 UAV remote sensing ; Risk assessment ; Landslide ; Landslide elements at risk ; Honghe Town ; Pengyang County ; Ningxia    

论文中文摘要:

本文以宁夏彭阳县红河镇为例,通过无人机遥感技术获取了研究区的正射影像并生成相应的数据图层,识别滑坡和提取承灾体信息,实现了研究区滑坡易发性、危险性和风险评估。本文取得主要成果如下:

(1)使用大疆精灵4 RTK和纵横大鹏CW-30构建了无人机航摄系统并制定了面向宁南黄土丘陵区的无人机遥感空间信息采集方案,生成了红河镇0.13m的无人机遥感正射影像(DOM),面积为164km2,为后续黄土滑坡识别及发育特征分析、滑坡承灾体信息提取及区域滑坡风险评估研究提供了数据支撑。

(2)基于黄土滑坡识别标志和现场验证,确定了180个滑坡,红河镇的滑坡具有独特的形态、色调、水系、纹理、表面特征的无人机遥感识别标志。红河镇的黄土滑坡整体上呈南多北少具群发性;以半圆型和不规则型的滑坡较多;滑坡长度在30-300m上居多,长宽具有一定的相关性,长宽比值在0-1之间的滑坡数量较多;间歇性的水流对冲沟的作用为红河镇黄土丘陵边坡的滑坡发育创造了条件;滑向以北向、西北向居多;滑坡后缘一般清晰可辨多发于对滑式滑坡;滑动面总体上较为平直,处于阴坡的滑坡滑动面更容易生长树木;滑体地貌形态多样,有双沟同源现象,还可见滑坡阶地、鼓丘等地貌。

(3)分析其滑坡承灾体影像特征后,设定实验区并采用多尺度分割和单一尺度分割两种面向对象的滑坡承灾体信息提取方法,比较了基于两种尺度分割的滑坡承灾体信息提取精度和时间效率,通过方案优化实现了研究区滑坡承灾体信息提取,最终确定研究区单一分割尺度优化方案为采用100(形状因子0.2,紧致度0.5)和259(形状因子0.1,紧致度0.5)两个单一分割尺度快速提取滑坡承灾体信息。

(4)采用无人机遥感获取的土地利用类型数据、道路数据、河流数据、VDVI数据、承灾体数据、滑坡数据与非无人机遥感数据源获取的数据进行了红河镇镇域的滑坡风险评估,其中土地利用类型数据、道路数据、河流数据、VDVI数据、滑坡数据参与了滑坡易发性评价,最终预测结果的ROC值为0.814;土地利用类型数据、道路数据、承灾体数据、滑坡数据参与了易损性评价和风险评估。红河镇的中高风险区主要以点状或片状集中在红河河谷阶地以及南部塬区。实践结果表明,基于无人机遥感获取的数据能够参与滑坡风险评估。

论文外文摘要:

Taking Honghe Town, Pengyang County, Ningxia as an example, this paper obtains the orthophoto image of the study area through UAV remote sensing technology, generates the corresponding data layer, identifies the landslide and extracts the information of the landslide elements at risk, and realizes the landslide susceptibility, hazard and risk assessment in the study area. The main achievements of this paper are as follows:

(1) Using DJI Phantom 4 RTK and JOUAV CW-30, the UAV aerial photography system is constructed, and the UAV remote sensing spatial information acquisition scheme for the loess hilly area of Southern Ningxia is formulated. The 0.13m UAV remote sensing Orthophoto Image (DOM) of Honghe town has been generated, covering an area of 164km2, which provides data support for subsequent loess landslide identification and development feature analysis, landslide elements at risk information extraction and regional landslide risk assessment.

(2) Based on the identification marks of loess landslides and field verification, 180 landslides are determined. The landslides in Honghe town are UAV remote sensing identification marks with unique shape, color, water system, texture and surface characteristics. On the whole, the Loess Landslide in Honghe town is more in the South and less in the north; There are more semi-circular and irregular landslides; The length of landslide is mostly 30-300m, and the length and width have a certain correlation. There are many landslides with the length width ratio between 0-1; The effect of intermittent water flow against the ditch creates conditions for the development of landslide on the loess hilly slope in Honghe town; Most of them slide to the north and northwest; The trailing edge of landslide is generally clear and recognizable, and it mostly occurs in opposite sliding landslide; The sliding surface is generally straight, and the sliding surface of the landslide on the shady slope is easier to grow trees; The landforms of the sliding body are diverse, with the phenomenon of double ditch homology. Landslide terraces, drum mounds and other landforms can also be seen.

(3) After analyzing the image characteristics of landslide elements at risk, the experimental area is set, and two object-oriented landslide elements at risk information extraction methods of multi-scale segmentation and single-scale segmentation are adopted. The accuracy and time efficiency of landslide elements at risk information extraction based on the two scale segmentation are compared, and the landslide elements at risk information extraction in the study area is realized through scheme optimization, Finally, the optimization scheme of single segmentation scale in the study area is determined to quickly extract the information of landslide landslide elements at risk by using two single segmentation scales: 100 (shape factor 0.2, compactness 0.5) and 259 (shape factor 0.1, compactness 0.5).

(4) The landuse data, road data, river data, VDVI data, landslide elements at risk data, landslide data obtained by UAV remote sensing and the data obtained by non UAV remote sensing data sources are used to evaluate the landslide risk in Honghe town. Among them, the landuse data, road data, river data, VDVI data and landslide data participate in the landslide susceptibility assessment, and the ROC value of the final prediction result is 0.814; Landuse data, road data, landslide elements at risk data and landslide data participated in vulnerability and risk assessment. The medium and high risk zone in Honghe town are mainly concentrated in the terraces of Honghe River valley and the southern tableland in the form of dots or slices. The practice results show that the data obtained by UAV remote sensing can participate in landslide risk assessment.

参考文献:

[1] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505-513.

[2] 郑团结, 王小平, 唐剑. 无人机数字摄影测量系统的设计和应用[J]. 计算机测量与控制, 2006, 14(5): 613-615.

[3] Dunbabin M, Marques L. Robots for environmental monitoring: Significant advancements and applications[J]. IEEE Robotics & Automation Magazine, 2012, 19(1): 24-39.

[4] Berquist, S, Spence-Morrow, G, Gonzalez-Macqueen, et al. A new aerial photogrammetric survey method for recording inaccessible rock art[J]. Digital Applications in Archaeology and Cultural Heritage. 2018, 8: 46-56.

[5] Wang D, Shao Q, Yue H. Surveying wild animals from satellites, manned aircraft and unmanned aerial systems (UASs): a review[J]. Remote Sensing, 2019, 11(11): 1308.

[6] Hughey L F, Hein A M, Strandburg-Peshkin A, et al. Challenges and solutions for studying collective animal behaviour in the wild[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373(1746): 20170005.

[7] Ramakrishnan D, Bharti R. Hyperspectral remote sensing and geological applications[J]. Current science, 2015, 108(5): 879-891.

[8] 郭晨, 许强, 董秀军, 等. 无人机在重大地质灾害应急调查中的应用[J]. 测绘通报, 2020, (10): 6-11.

[9] 赵星涛, 胡奎, 卢晓攀, 等. 无人机低空航摄的矿山地质灾害精细探测方法[J]. 测绘科学, 2014, 39(6): 49-52.

[10] 侯恩科, 首召贵, 徐友宁, 等. 无人机遥感技术在采煤地面塌陷监测中的应用[J]. 煤田地质与勘探, 2017, 45(6): 102-110.

[11] 何朝阳. 滑坡实时监测预警系统关键技术及其应用研究[D]. 成都: 成都理工大学, 2020.

[12] 雷添杰, 李长春, 何孝莹. 无人机航空遥感系统在灾害应急救援中的应用[J]. 自然灾害学报, 2011, 20(1): 178-183.

[13] 刘飞, 朱庆, 丁雨淋, 等. 滑坡-堰塞湖灾情无人机应急测绘、分析与险情模拟[J]. 山地学报, 2021, 39(4): 600-610.

[14] Fell R, Ho K K S, Lacasse S, et al. A framework for landslide risk assessment and management[M]// Fell R, Ho K K S, Lacasse S, et al. Landslide risk management. Boca Raton: CRC Press, 2005: 3-25.

[15] Mao Z, Shi S, Li H, et al. Landslide susceptibility assessment using triangular fuzzy number-analytic hierarchy processing (TFN-AHP), contributing weight (CW) and random forest weighted frequency ratio (RF weighted FR) at the Pengyang county, Northwest China[J]. Environmental Earth Sciences, 2022, 81(3): 86.

[16] 梅安新, 彭望琭, 秦其明, 等. 遥感导论[M]. 北京: 高等教育出版社, 2001.

[17] 岳树信, 孟庆亮, 李秀堃. 摄影测量[M]. 北京: 煤炭工业出版社, 1980.

[18] 吕厚谊. 无人机发展与无人机技术[J]. 世界科技研究与发展, 1998, (6): 113-116.

[19] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: A review[J]. ISPRS Journal of photogrammetry and remote sensing, 2014, 92: 79-97.

[20] 王帅永, 唐川, 何敬, 等. 无人机在强震区地质灾害精细调查中的应用研究[J]. 工程地质学报, 2016, 24(4): 713-719.

[21] 彭大雷, 许强, 董秀军, 等. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.

[22] 黄海峰, 林海玉, 吕奕铭, 等. 基于小型无人机遥感的单体地质灾害应急调查方法与实践[J]. 工程地质学报, 2017, 25(2): 447-454.

[23] 王凤艳, 赵明宇, 王明常, 等. 无人机摄影测量在矿山地质环境调查中的应用[J]. 吉林大学学报(地球科学版), 2020, 50(3): 866-874.

[24] Song K, Wang F, Dai Z, et al. Geological characteristics of landslides triggered by the 2016 Kumamoto earthquake in Mt. Aso volcano, Japan[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 167-176.

[25] 邓飞, 窦爱霞, 吴玮莹, 等. 基于无人机遥感的四川九寨沟地震极灾区灾情快速调查[J]. 灾害学, 2018, 33(3): 210-215.

[26] 李爱农, 张正健, 雷光斌, 等. 四川芦山“4·20”强烈地震核心区灾损遥感快速调查与评估[J]. 自然灾害学报, 2013, 22(6): 8-18.

[27] Hu X, Hu K, Zhang X, et al. Quantitative assessment of the impact of earthquake induced geohazards on natural landscapes in Jiuzhaigou Valley[J]. Journal of Mountain Science, 2019, 16(2): 441-452.

[28] Yu M, Huang Y, Zhou J, et al. Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion[J]. Environmental earth sciences, 2017, 76(15): 520.

[29] 万刚, 余旭初, 布树辉, 等. 无人机测绘技术及应用[M]. 北京: 测绘出版社, 2015.

[30] 许建华, 张雪华, 王晓青, 等. 无人机倾斜摄影技术在地震烈度评估中的应用——以九寨沟7.0级地震为例[J]. 中国地震, 2017, 33(4): 655-662.

[31] Agueera-Vega F, Carvajal-Ramirez F, Martinez-Carricondo P, et al. Reconstruction of extreme topography from UAV structure from motion photogrammetry[J]. Measurement, 2018, 121: 127-138.

[32] 郭帅, 胡胜, 马舒悦, 等. 基于高分辨地形的秦岭山地滑坡特征参数提取分析[J]. 西北大学学报(自然科学版), 2019, 49(3): 456-462.

[33] 张欢, 巨能攀, 陆渊, 等. 基于无人机的滑坡地形快速重建与稳定性分析[J]. 水文地质工程地质, 2021, 48(6): 171-179.

[34] 彭棋. 滑坡演进过程三维动态可视化关键技术[D]. 成都: 西南交通大学, 2020.

[35] Peternel T, Kumelj Š, Oštir K, et al. Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements[J]. Landslides, 2017, 14: 395-406.

[36] Turner D, Lucieer A, De Jong S M. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV)[J]. Remote Sensing, 2015, 7(2): 1736-1757.

[37] Kowalski A, Wajs J, Kasza D. Monitoring of anthropogenic landslide activity with combined UAV and Lidar-derived DEMs-a case study of the Czerwony Wawoz landslide (Sw Poland, Western Sudetes)[J]. Acta Geodynamica et Geromaterialia, 2018, 15(2): 117-130.

[38] Cignetti M, Godone D, Wrzesniak A, et al. Structure from motion multisource application for landslide characterization and monitoring: the Champlas du Col case study, Sestriere, North-Western Italy[J]. Sensors, 2019, 19(10): 2364.

[39] Buša J, Rusnák M, Kušnirák D, et al. Urban landslide monitoring by combined use of multiple methodologies-a case study on Sv. Anton town, Slovakia[J]. Physical Geography, 2020, 41(2): 169-194.

[40] 殷坤龙. 滑坡灾害预测预报[M]. 武汉: 中国地质大学出版社, 2004.

[41] Fell R, Corominas J, Bonnard C, et al. Guidelines for landslide susceptibility, hazard, and risk zoning for land use planning[J]. Engineering Geology, 2008, 102(3-4): 99-111.

[42] 吴树仁, 石菊松, 王涛, 等. 滑坡风险评估理论与技术[M]. 北京: 科学出版社. 2012.

[43] 王文俊, 向喜琼, 黄润秋, 等. 区域崩塌滑坡的易发性评价——以四川省珙县为例[J].中国地质灾害与防治学报, 2003, 14(2): 33-36.

[44] 高克昌, 崔鹏, 赵纯勇, 等. 基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例[J]. 岩石力学与工程学报, 2006, 32(5): 991-996.

[45] 陈冠, 孟兴民, 郭鹏, 等. 白龙江流域基于GIS与信息量模型的滑坡危险性等级区划[J]. 兰州大学学报(自然科学版), 2011, 47(6): 1-6.

[46] 王萌, 乔建平. 贡献权重模型在区域滑坡危险性评价中的应用[J].中国地质灾害与防治学报, 2010, 21(1): 1-6.

[47] Xu S, Zhang M, Ma Y, et al. Multiclassification Method of Landslide Risk Assessment in Consideration of Disaster Levels: A Case Study of Xianyang City, Shaanxi Province[J]. ISPRS International Journal of Geo-Information, 2021, 10(10): 646.

[48] Ba Q, Chen Y, Deng S, et al. A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment[J]. Earth Science Informatics, 2018, 11(3): 373-388.

[49] 黄发明, 陈佳武, 范宣梅, 等. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模[J/OL]. 地球科学: 1-25 [2022-06-23]. http://kns.cnki.net/kcms/detail/42.1874.P.20211101.2007.018. html

[50] 苏美臣, 魏晓燕, 周峻松, 等. 金沙江流域滑坡易发性空间预报分析[J]. 测绘通报, 2021, (4): 13-16.

[51] 边江豪, 李秀珍, 徐瑞池, 等. 基于贡献率权重模型的川藏铁路沿线大型滑坡危险性区划[J].中国地质灾害与防治学报, 2021, 32(2): 84-93.

[52] Ali M Z, Chu H J, Chen Y C, et al. Machine learning in earthquake-and typhoon-triggered landslide susceptibility mapping and critical factor identification[J]. Environmental Earth Sciences, 2021, 80(6): 233.

[53] Teixeira M, Bateira C, Marques F, et al. Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal[J]. Landslides, 2015, 12(3): 455-468.

[54] Abdulwahid W M, Pradhan B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR)[J]. Landslides, 2017, 14(3): 1057-1076.

[55] Rodriguez-Caballero E, Rodriguez-Lozano B, Segura-Tejada R, et al. Landslides on dry badlands: UAV images to identify the drivers controlling their unexpected occurrence on vegetated hillslopes[J]. Journal of Arid Environments, 2021, 187: 104434.

[56] Gantimurova S, Parshin A, Erofeev V. GIS-Based Landslide Susceptibility Mapping of the Circum-Baikal Railway in Russia Using UAV Data[J]. Remote Sensing, 2021, 13(18): 3629.

[57] 张黎, 倪万魁. 宁夏彭阳县地质灾害[M]. 银川: 宁夏人民出版社, 2010.

[58] 彭阳县地方志编纂委员会编. 彭阳县志 上[M]. 兰州:甘肃文化出版社, 2011.03.

[59] 国家测绘局. CH/Z3004-2010低空数字航空摄影测量外业规范[S]. 北京: 国家测绘局, 2010

[60] Eker R, Aydın A, Hübl J. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study[J]. Environmental monitoring and assessment, 2018, 190(1): 28.

[61] 许冲, 戴福初, 徐锡伟. 汶川地震滑坡灾害研究综述[J]. 地质论评, 2010, 56(6): 860-874.

[62] 田尤, 杨为民, 刘廷, 等. 空间高分辨率数字正射影像黄土区地质灾害解译特征与应用: 以甘肃天水麦积区幅为例[J]. 现代地质, 2016, 30(5): 1160-1169.

[63] 韦红波, 李锐, 杨勤科. 我国植被水土保持功能研究进展[J]. 植物生态学报, 2002, 26(4): 489-496.

[64] Baatz M, Schape A. Object-Oriented and Multi-Scale Image Analysis in Semantic Networks[C]// Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing, 16-20 August 1999, ITC, Enschede.

[65] 陈天博, 胡卓玮, 魏铼, 等. 无人机遥感数据处理与滑坡信息提取[J]. 地球信息科学学报, 2017, 19(5): 692-701.

[66] 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152-157.

[67] Woebbecke D M, Meyer G E, Von Bargen K, et al. Color indices for weed identification under various soil, residue, and lighting conditions[J]. Transactions of the ASAE, 1995, 38(1): 259-269.

[68] 何少林, 徐京华, 张帅毅. 面向对象的多尺度无人机影像土地利用信息提取[J]. 国土资源遥感, 2013, 25(2): 107-112.

[69] Xie W, Nie W, Saffari P, et al. Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China[J]. Natural Hazards, 2021, 109(1): 931-948.

[70] Chen W, Peng J, Hong H, et al. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China[J]. Science of the total environment, 2018, 626: 1121-1135.

[71] 吴润泽, 胡旭东, 梅红波, 等.基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例[J].地球科学, 2021, 46(1): 321-330.

[72] Long J, Liu Y, Li C, et al. A novel model for regional susceptibility mapping of rainfall-reservoir induced landslides in Jurassic slide-prone strata of western Hubei Province, Three Gorges Reservoir area[J]. Stochastic Environmental Research and Risk Assessment, 2020, 35(7) 1403-1426.

[73] Mallick J, Singh R K, AlAwadh M A, et al. GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia[J]. Environmental Earth Sciences, 2018, 77(7): 276.

[74] Abdulwahid W M, Pradhan B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR)[J]. Landslides, 2017, 14(3): 1057-1076.

[75] 张春山, 李国俊, 张业成, 等. 黄河上游地区崩塌滑坡泥石流地质灾害风险评价[J]. 地质力学学报, 2006, 12(2): 211-218.

[76] 王佳佳. 三峡库区万州区滑坡灾害风险评估研究[D]. 武汉: 中国地质大学, 2015.

[77] Varnes D J. Landslide hazard zonation: a review of principles and practice[M]. Paris: Transportation Research Board, 1984.

[78] 董颖. 地质灾害风险评估理论与实践[M]. 北京: 地质出版社, 2009.

中图分类号:

 P642.22    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式