论文中文题名: |
西安市洪涝灾害风险评估及区域等级划分
|
姓名: |
王雨秋
|
学号: |
21220226101
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
安全与应急管理
|
第一导师姓名: |
张超
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
李磊
|
论文提交日期: |
2024-06-16
|
论文答辩日期: |
2024-06-02
|
论文外文题名: |
Flood disaster risk assessment and regional classification in Xi’an City
|
论文中文关键词: |
洪涝灾害 ; 模糊综合评价 ; 多源数据 ; 西安市 ; 地理信息系统
|
论文外文关键词: |
Flood disaster ; Fuzzy comprehensive evaluation ; Multi-source data ; Xi’an City ; GIS
|
论文中文摘要: |
︿
洪涝灾害作为城市面临的最主要自然灾害之一,给城市安全带来了巨大风险。灾情数据,作为评估洪涝灾害风险等级的重要依据,在灾害预警、风险评估以及灾后恢复等多个环节中扮演着举足轻重的角色。但当前研究中多将灾情数据用于评估结果验证,而忽略了灾情数据与灾害风险之间相互依存相互影响的动态关系。因此,本文以西安市为研究对象,将灾情数据作为关键要素融入到风险评估指标体系中,以期对西安市洪涝灾害风险进行更为精准和细致的评估与区划。
本文针对西安市洪涝灾害特点,选取合适指标构建了风险评估体系,运用模糊综合评价法和主客观组合赋权法建立了风险评估模型,并绘制了风险区划地图。通过文献综述法和词频分析,从自然和社会两个维度出发,构建了一个涵盖危险性、洪涝灾情、脆弱性等五个方面的风险评估体系;采用RS、GIS等技术手段实现数据的可视化表达,借助主客观赋权相结合的方法计算出指标权重,基于模糊综合评价法的理论构建了风险评估模型;应用模糊综合叠加工具,绘制了基于区(县)域尺度下西安市洪涝灾害影响因子及综合风险等级区划。
研究结果表明,西安市洪涝灾害风险等级以中风险区为主,整体呈现“中间低,东西高”的分布特点。基于栅格尺度下,高风险区主要分布在蓝田县北部,这主要是由于该区域具有较高的危险性和脆弱性且易发生洪涝灾害而防灾减灾能力较弱;相较之下,中心区域洪涝灾害风险普遍偏低,这是由于该区域经济发展水平高,防灾减灾能力强且危险性相对较低。基于区(县)域尺度下,鄠邑区、蓝田县和阎良区属于洪涝灾害高风险区,周至县、临潼区、长安区为较高风险,高陵区、未央区、雁塔区为中风险区,灞桥区、碑林区、莲湖区、新城区为低风险区。在极端暴雨条件下,高、较高风险区极有可能发生洪涝灾害,应作为西安市洪涝灾害的重点防范区域。
﹀
|
论文外文摘要: |
︿
Flood disasters, as one of the most significant natural calamities faced by cities, pose huge risks to urban safety. As an important basis for assessing the risk level of flood disasters, disaster data plays an important role in many links such as disaster warning, risk assessment and post-disaster recovery. However, current research mostly uses disaster data to verify assessment results, while ignoring the dynamic relationship of mutual dependence and mutual influence between disaster data and disaster risks. Therefore, this paper takes Xi’an as the research object and integrates disaster data as a key element into the risk assessment index system, so as to carry out a more accurate and detailed assessment and zoning of flood disaster risk in Xi’an .
According to the characteristics of flood disaster in Xi’an , this paper selects appropriate indicators to construct a risk assessment system, uses fuzzy comprehensive evaluation method and subjective and objective combined weighting method to establish a risk assessment model, and draws a risk zoning map. Through literature review and word frequency analysis, a risk assessment system covering five aspects, including danger, flood damage, and vulnerability, was constructed from the two dimensions of nature and society. RS, GIS and other technical means are used to realize the visualization of data, the indicator weights are calculated by combining subjective and objective weighting methods, and a risk assessment model is constructed based on the theory of fuzzy comprehensive evaluation method. The fuzzy comprehensive overlay tool was used to draw the influencing factors and comprehensive risk level zoning of flood disasters in Xi’an based on the county scale.
The results show that the flood disaster risk level in Xi’an is mainly in medium-risk areas, and the overall distribution characteristics are "low in the middle and high on the east and west". Based on the grid scale, the high-risk area is mainly distributed in the northern part of Lantian County. This is mainly because the area is highly dangerous and vulnerable and prone to floods and waterlogging, but has weak disaster prevention and mitigation capabilities. In contrast, the flood risk in the central region is generally low, which is due to the high level of economic development, strong disaster prevention and mitigation capabilities and relatively low risk in the region. Based on the county scale, Huyi District, Lantian County and Yanliang District are high-risk areas for flood disasters, Zhouzhi County, Lintong District and Chang'an District are relatively high-risk areas, Gaoling District, Weiyang District and Yanta District are medium-risk areas, and Baqiao District, Beilin District, Lianhu District and Xincheng District are low-risk areas. Under extreme rainstorm conditions, high- and relatively high-risk areas are very likely to experience flood disasters and should be regarded as key areas for flood prevention in Xi’an.
﹀
|
参考文献: |
︿
[1] Jones Rebecca Louise, Guha Sapir Debarati, Tubeuf Sandy .Human and economic impacts of natural disasters: can we trust the global data?[J]. Scientific Data, 2022, 9(01): 572-572. [2] 王喆, 孔维磊, 方丹辉, 等. 基于贝叶斯网络的城镇洪涝应急情景推演研究[J]. 中国安全科学学报, 2021, 31(06): 182-188. [3] 蒯晓童, 陈德清, 陈子丹. MODISL1B数据在水利中的应用[J]. 地理空间信息, 2006, (02): 41-43. [4] Shakeel Mahmood, Atta-Ur Rahman, Rajib Shaw. Spatial appraisal of flood risk assess-ment and evaluation using integrated hydro-probabilistic approach in Panjkora River Basin, Pakistan.[J]. Environmental Monitoring and Assessment, 2019, 191(09): 573. [5] 王栋, 潘少明, 吴吉春, 等. 洪水风险分析的研究进展与展望[J]. 自然灾害学报, 2006, (01): 103-109. [6] 周成虎, 万庆, 黄诗峰, 等. 基于GIS的洪水灾害风险区划研究[J]. 地理学报, 2000, (01): 15-24. [7] 张倩玉, 许有鹏, 雷超桂, 等. 东南沿海水库下游地区基于动态模拟的洪涝风险评估[J]. 湖泊科学, 2016, 28(04): 868-874. [8] 李碧琦, 罗海婉, 陈文杰, 等. 基于数值模拟的深圳民治片区暴雨内涝风险评估[J]. 南水北调与水利科技, 2019, 17(05): 20-28+63. [9] Wolfgang Kron. Keynote lecture: Flood risk= hazard×exposure×vulnerability[J]. Flood Defence, 2002: 82-97. [10] 殷杰, 尹占娥, 王军, 等. 基于GIS的城市社区暴雨内涝灾害风险评估[J]. 地理与地理信息科学, 2009, 25(06): 92-95. [11] 尹占娥, 许世远, 殷杰, 等. 基于小尺度的城市暴雨内涝灾害情景模拟与风险评估[J]. 地理学报, 2010, 65(05): 553-562. [12] Chaochao Li, Cheng Xiaotao, Li Na, et al. A framework for flood risk analysis and benefit assessment of flood control measures in urban areas[J]. International Journal of Environmental Research and Public Health, 2016, 13(08): 787. [13] 张会, 张继权, 韩俊山. 基于GIS技术的洪涝灾害风险评估与区划研究——以辽河中下游地区为例[J]. 自然灾害学报, 2005(06): 141-146. [14] 张继权, 冈田宪夫, 多多纳裕一. 综合自然灾害风险管理——全面整合的模式与中国的战略选择[J]. 自然灾害学报, 2006, (01): 29-37. [15] 黄大鹏. 淮河洪泽湖以上流域洪涝灾害风险评估研究[D]. 北京: 中国科学院地理科学与资源研究所, 2009. [16] 李远平, 杨太保, 包训成. 大别山北坡典型区域暴雨洪涝风险评价研究——以安徽省六安市为例[J]. 长江流域资源与环境, 2014, 23(04): 582-587. [17] 杜康宁, 梁忠民, 王军, 等. 城市洪涝灾害风险区划研究[J]. 水电能源科学, 2018, 36(01): 61-64. [18] Ruiling Sun, Zaiwu Gong, Weiwei Guo, et al. Flood disaster risk assessment of and count-ermeasures toward Yangtze River Delta by considering index interaction[J]. Natural Hazards, 2022, 112(01): 1-26. [19] 刘新立, 史培军. 区域水灾风险评估模型研究的理论与实践[J]. 自然灾害学报, 2001(02): 66-72. [20] Lihong Wang, Shenghui Cui, Yuanzheng Li, et al. A review of the flood management: from flood control to flood resilience[J]. Heliyon, 2022, 8(11): e11763-e11763. [21] Hai-Min Lyu, Shui-Long Shen, Annan Zhou, et al. Perspectives for flood risk assessment and management for mega-city metro system[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2019: 84: 31-44. [22] 程卫帅, 陈进, 刘丹. 洪灾风险评估方法研究综述[J]. 长江科学院院报, 2010, 27(09): 17-24. [23] De Moel Hans, Aerts Jeroen C.J.H., Koomen Eric. Development of flood exposure in the Netherlands during the 20th and 21st century[J]. Global Environmental Change, 2011, 21(02): 620-627. [24] 刘毅, 杨宇. 历史时期中国重大自然灾害时空分异特征[J]. 地理学报, 2012, 67(03): 291-300. [25] 杜鹃, 汪明, 史培军. 基于历史事件的暴雨洪涝灾害损失概率风险评估——以湖南省为例[J]. 应用基础与工程科学学报, 2014, (05): 916-927. [26] 方建, 李梦婕, 王静爱, 等. 全球暴雨洪水灾害风险评估与制图[J]. 自然灾害学报, 2015, 24(01): 1-8. [27] 杨佩国, 靳京, 赵东升, 等. 基于历史暴雨洪涝灾情数据的城市脆弱性定量研究——以北京市为例[J]. 地理科学, 2016, 36(05): 733-741. [28] Chinh Luu, Jason von Meding, Mohammad Mojtahedi. Analyzing Vietnam's national disaster loss database for flood risk assessment using multiple linear regression-TOPSIS[J]. International Journal of Disaster Risk Reduction,2019, 40: 101153-101153. [29] 李莉, 程玉菲, 宋增芳. 基于分流域的甘肃省历史洪涝灾情评价研究[J]. 水利规划与设计, 2021, (01): 51-55. [30] 邱粲, 刘焕彬, 万程程, 等. 1984—2019年山东省暴雨洪涝灾害时空变化特征及其成因分析[J]. 灾害学, 2022, 37(04): 57-63. [31] 王德运, 冀承泽, 张露丹, 等. 城市洪涝风险的多方法组合评估与应用[J]. 灾害学, 2024, 39(01): 96-103. [32] Zhaoli Wang, Chengguang Lai, Chen Xiaohong, et al. Flood hazard risk assessment model based on random forest[J]. Journal of Hydrology, 2015, 527: 1130-1141. [33] Xinyi Dou, Jinxi Song, Liping Wang, et al. Flood risk assessment and mapping based on a modified multi-parameter flood hazard index model in the Guanzhong Urban Area, China[J]. Stochastic Environmental Research and Risk Assessment, 2018, 32(04): 1131-1146. [34] 程朋根, 黄毅, 郭福生, 等. 基于多源数据的城市洪涝灾害风险评估[J]. 灾害学, 2022, 37(03): 69-76. [35] 于磊, 黄瑞晶, 李宝, 等. 基于层次分析法的北京城市副中心内涝风险评估[J]. 北京师范大学学报(自然科学版), 2022, 58(01): 62-69. [36] 曲丽英. 闽江流域洪涝风险区划快速评估研究[J]. 中国农村水利水电, 2023(10): 30-37+46. [37] 张会, 李铖, 程炯, 等. 基于“H-E-V”框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(02): 175-190. [38] 黄国如, 罗海婉, 卢鑫祥, 等. 城市洪涝灾害风险分析与区划方法综述[J]. 水资源保护, 2020, 36(06): 1-6+17. [39] Jiajun Zeng, Huang Guoru. Set pair analysis for karst waterlogging risk assessment based on AHP and entropy weight[J]. Hydrology Research, 2018, 49(04): 1143-1155. [40] Dushmanta Dutta, Herath Srikantha, Musiake Katumi. A mathematical model for flood loss estimation [J]. Journal of Hydrology, 2003, 277(1-2): 24-49. [41] Qiang Zou, Jianzhong Zhou, Chao Zhou, et al. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(02): 525-546. [42] 程先富, 戴梦琴, 郝丹丹, 等. 基于情景分析的区域洪涝灾害风险评价——以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(08): 1418-1424. [43] 宋利祥, 徐宗学. 城市暴雨内涝水文水动力耦合模型研究进展[J]. 北京师范大学学报(自然科学版), 2019, 55(05): 581-587. [44] Jonkman S N, Bočkarjova M, Kok M, et al. Integrated hydrodynamic and economic modelling of flood damage in the Netherlands[J]. Ecological Economics, 2008, 66(01): 77-90. [45] 苏伯尼, 黄弘, 张楠. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 2015, 055(06): 684-690. [46] Tao Cheng, Zongxue Xu, Siyang Hong, et al. Flood risk zoning by using 2D hydrodynam-icc modeling: A case study in Jinan City[J]. Mathematical Problems in Engineering, 2017, 2017: 1-8. [47] López-Valencia P A. Vulnerability assessment in urban areas exposed to flood risk: methodology to explore green infrastructure benefits in a simulation scenario involving the Cañaveralejo River in Cali, Colombia[J]. Natural Hazards, 2019, 99(01): 217-245. [48] 黄国如, 罗海婉, 陈文杰, 等. 广州东濠涌流域城市洪涝灾害情景模拟与风险评估[J]. 水科学进展, 2019, 30(05): 643-652. [49] Mihu-Pintilie Alin, Cîmpianu Ioan Cătălin, Stoleriu Constantin Cristian, et al. Using High-Density LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard Maps: A HEC-RAS Multi-Scenario Approach[J]. Water, 2019, 11(09): 1832-1832. [50] 王天泽, 王远航, 马帅, 等. 基于MIKE FLOOD耦合模型的洪水淹没风险分析: 以北京市某科学城为例[J]. 水利水电技术(中英文), 2022, 53(07): 1-17. [51] 郭元, 李玉玲, 王慧亮, 等. 气象水文模型耦合的郑州城区内涝预警研究[J]. 水文, 2022, 42(04): 61-67. [52] Yihu Wang, Cheng Gao, Jin Xu, et al. Assessing the mechanism for flood control: a case of plain river network cities under extreme rainfalls[J]. Environmental Science and Pollution Research, 2023, 30(13): 38076-38098. [53] Haq Mateeul, Akhtar Memon, Muhammad Sher, et al. Techniques of Remote Sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan[J]. The Egyptian Journal of Remote Sensing and Space Sciences, 2012, 15(02): 135-141. [54] 程先富, 戴梦琴, 郝丹丹. 区域洪涝灾害风险评价研究进展[J]. 安徽师范大学学报(自然科学版), 2015, 38(01): 74-79. [55] Joy Sanyal, X.X. Lu. GIS-based flood hazard mapping at different administrative scales: A case study in Gangetic West Bengal, India[J]. Singapore Journal of Tropical Geography, 2006, 27(02): 207-220. [56] 蒋雯京, 程春梅, 张艳蓓, 等. 基于GIS/AHP集成的浙江省洪涝灾害风险评估[J]. 测绘通报, 2019(02): 125-130. [57] 吴舒祺, 赵文吉, 王志恒, 等. 基于GIS的洪涝灾害风险评估及区划——以浙江省为例[J]. 中国农村水利水电, 2020, (06): 51-57. [58] 郑德凤, 高敏, 李钰, 等. 基于GIS的大连市暴雨洪涝灾害综合风险评估[J]. 河海大学学报(自然科学版), 2022, 50(03): 1-8+22. [59] 徐永清, 陈莉, 刘艳华, 等. 基于不同空间尺度资料的自然灾害风险评估对比分析——以暴雨洪涝灾害为例[J]. 灾害学, 2022, 37(03): 61-68. [60] 熊凡, 李沛鸿, 袁逸敏, 等. 基于GIS和组合赋权的城市洪涝灾害风险评估[J]. 人民长江, 2023, 54(08): 60-66. [61] 何萍, 刘佳灵. 云南楚雄彝族自治州洪涝风险评估[J]. 云南大学学报(自然科学版), 2023, 45(05): 1056-1064. [62] 李洁, 雷震, 辛文鹏. 基于格网尺度的中小型城市洪涝灾害风险评估[J/OL]. 华北水利水电大学学报(自然科学版): 1-8[2024-03-19]. http://kns.cnki.net/kcms/detail/41. 1432.TV.20240116.0945.002.html. [63] 徐宗学, 陈浩, 任梅芳, 等. 中国城市洪涝致灾机理与风险评估研究进展[J]. 水科学进展, 2020, 31(05): 713-724. [64] Luca Milanesi, Pilotti Marco, Ranzi Roberto. A conceptual model of people's vulnerability to floods[J]. Water Resources Research, 2015, 51(01): 182-197. [65] Ljubomir Gigović, Pamučar Dragan, Bajić Zoran, et al. Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas[J]. Water, 2017, 9(06): 360. [66] Alan-M MacEachren, Brewer Cynthia-A, Pickle Linda-W. Visualizing georeferenced data: representing reliability of health statistics[J]. Environment and Planning A, 1998, 30(09): 1547-1561. [67] Cynthia-A Brewer, Pickle Linda. Evaluation of methods for classifying epidemiological data on choropleth maps in series[J]. Annals of the Association of American Geographers, 2002, 92(04): 662-681. [68] 成陆, 付梅臣, 王力. 基于RS和GIS的县域洪涝灾害风险评估[J]. 南水北调与水利科技, 2019, 17(06): 37-44. [69] 徐玉霞. 基于GIS的陕西省洪涝灾害风险评估及区划[J]. 灾害学, 2017, 32(02): 103-108. [70] Kishore-Chandra Swain, Singha Chiranjit, Nayak Laxmikanta. Flood Susceptibility Mapping through the GIS-AHP Technique Using the Cloud[J]. ISPRS International Journal of Geo-Information, 2020, 9(12): 720-720. [71] 张耀文, 李海君, 李浩, 等. 京津冀地区县域单元洪涝灾害风险评价[J]. 水电能源科学, 2020, 38(10): 44-47. [72] 徐玉霞, 许小明, 马楠. 县域尺度下的陕西省洪涝灾害风险评估及区划[J]. 干旱区地理, 2018, 41(02): 306-313. [73] Robert-G Cromley. A comparison of optimal classification strategies for choroplethic displays of spatially aggregated data[J]. International Journal of Geographical Information Systems, 1996, 10(04): 405-424. [74] Dieu Tien Bui, Hoang Nhat-Duc. A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (Bay GmmKda V1. 1) for spatial prediction of floods[J]. Geoscientific Model Development, 2017, 10(09): 3391-3409. [75] Amit-Kumar Saha, Agrawal Sonam. Mapping and assessment of flood risk in Prayagraj district, India: a GIS and remote sensing study[J]. Nanotechnology for Environmental Engineering, 2020, 5(02): 106-120. [76] Kiyong Park, Lee Man-Hyung. The development and application of the urban flood risk assessment model for reflecting upon urban planning elements[J]. Water, 2019, 11(05): 920. [77] Susan-L Cutter, Emrich Christopher-T, Gall Melanie, et al. Flash flood risk and the paradox of urban development[J]. Natural Hazards Review, 2017, 19(01): 05017005-05017005. [78] 史培军. 对“区域灾害系统”本质的新认识[J]. 地理教育, 2011, (05): 1-1. [79] 史培军. 再论灾害研究的理论与实践[J]. 自然灾害学报, 1996, 5(04): 8-19. [80] 史培军. 三论灾害研究的理论与实践[J]. 自然灾害学报, 2002, 11(03): 1-9. [81] 史培军. 四论灾害系统研究的理论与实践[J]. 自然灾害学报, 2005, 14(06): 1-7. [82] 史培军. 五论灾害系统研究的理论与实践[J]. 自然灾害学报, 2009, 18(05): 1-9. [83] Binbin Han, Zhengfeng Ming, Yuhu Zhao, et al. Comprehensive risk assessment of transmission lines affected by multi-meteorological disasters based on fuzzy analytic hierarchy process[J]. International Journal of Electrical Power and Energy Systems, 2021: 133 [84] 潘耀忠, 史培军. 区域自然灾害系统基本单元研究-Ⅰ: 理论部分[J]. 自然灾害学报, 1997(04): 3-11. [85] Kaiya Wu, Juliang Jin. Attribute recognition method of regional ecological security evaluation based on combined weight on principle of relative entropy[J]. Scientia Geographica Sinica, 2008, 28(06): 754-758. [86] 罗海婉, 黄国如. 洪涝灾害风险评估单元选取方法研究[J]. 水电能源科学, 2021, 39(03): 24-27. [87] Bishop J. Multi-platform user interface construction: a challenge for software engineering-in-the-small[C]//Proceedings of the 28th International Conference on Software Engineering. 2006: 751-760. [88] 隋刚, 郝兵元, 彭林. 利用高程标准差表达地形起伏程度的数据分析[J]. 太原理工大学学报, 2010, 41(04): 381-384+401. [89] 张小明. 提高应急处突能力的方法和路径[J]. 中国减灾, 2021(05): 42-47. [90] 兰月新. 智慧应急科学管理——兼评《应急管理-整合与重塑》[J]. 中国管理信息化, 2018, 21(07): 183-185. [91] 钟开斌. 突发公共事件中的应急财力保障与多元责任分担[J]. 改革, 2008, 000(07): 144-150.
﹀
|
中图分类号: |
X921
|
开放日期: |
2025-06-19
|