题名: |
锌离子电池负极复合涂层设计及循环性能研究
|
作者: |
胡禹轩
|
学号: |
21211225053
|
保密级别: |
保密(3年后开放)
|
语种: |
chi
|
学科代码: |
085600
|
学科: |
工学 - 材料与化工
|
学生类型: |
硕士
|
学位: |
工程硕士
|
学位年度: |
2024
|
学校: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料工程
|
研究方向: |
储能材料与器件
|
导师姓名: |
杜慧玲
|
导师单位: |
西安科技大学
|
提交日期: |
2024-06-17
|
答辩日期: |
2024-06-03
|
外文题名: |
Composite Coating Design and Cycling Performance Investigate of Anode for Zinc Ion Batteries
|
关键词: |
水系锌离子电池 ; 复合涂层设计 ; 界面结构 ; 枝晶生长 ; 循环寿命
|
外文关键词: |
Aqueous zinc ion battery ; Composite coatings design ; Interfacial structure ; Dendrite growth ; Cycle life
|
摘要: |
︿
水系锌离子电池具有成本低和安全性高等优点,近年来备受研究人员关注。然而,水系锌电的负极核心问题在于其循环稳定性较差,这限制了其在大规模应用中的可行性。这是因为锌负极在循环过程中由于副反应的发生破坏了表面结构,这些副反应包括枝晶生长、析氢反应以及表面腐蚀等。因此,本文通过在锌负极表面涂覆聚合物保护层的策略,来抑制枝晶生长等副反应,以期提高锌负极界面的电化学稳定性。研究内容如下:
聚氧化乙烯(PEO)作为广泛使用的薄膜材料被用作聚合物保护层。为了提高PEO的离子电导率,CeO2被添加到PEO中。PEO保护层隔离了电解液和金属锌,有效抑制了析氢反应的发生。同时,CeO2的加入降低了PEO的结晶度,促进了PEO的链段运动,进一步提高了PEO的离子导电率,从动力学上抑制了枝晶的生长。因此,使用CeO2@PEO胶涂覆的锌负极组装的对称电池在3 mA·cm-2的电流密度下可以循环1990 h,远高于空白电池(200 h)。与V2O5组装的全电池在5 A·g-1的电流密度下循环1000 圈后放电容量为103 mA h·g-1。
聚甲基丙烯酸甲酯(PMMA)作为一种具有良好机械性能和结构稳定性的材料,被选为聚合物保护层,以进一步优化锌负极的循环性能。同时,DFT理论表明SiO2与PMMA的复合效果较好。此外,通过对锌离子在界面中的输运进行分析,超薄涂层通过减少锌离子传输路径,显著的降低了电池阻抗,并进一步提高锌离子的迁移速率。因此,具有SiO2@PMMA超薄保护层的对称电池在3 mA·cm-2的电流密度下具有2200 h的循环寿命,并且在剥离/沉积过程中保持良好的稳定性。此外,全电池在5 A·g-1的电流密度下循环1000 圈后放电容量为121 mA h·g-1。
聚乙烯醇(PVA)作为一种可以与锌负极产生良好黏附性的聚合物被选为锌负极保护层。通过与聚丙烯酸(PAA)复合从而形成具有双网络结构的聚合物复合保护层。PVA可以通过羟基调节锌离子的沉积过程,而PAA柔性网络与PVA网络复合后可形成双网络结构,增强复合保护层的性能。此外,通过DFT理论对PVA@PAA复合结构进行分析,PAA能够提高PVA的反应活性,从而促进锌离子在复合涂层中的传输速率。因此,所构建的PVA@PAA双网络超薄界面保护层有助于实现均匀的锌离子沉积,从而实现稳定的锌负极。对称电池展现出长达2400 h的超长循环寿命。全电池在5 A·g-1的电流密度下稳定循环1000 圈后放电容量为111.3 mA h·g-1。通过使用改性聚合物保护层对锌负极进行涂覆,实现稳定的锌负极,优化了电池的循环稳定性。改性聚合物的填料能够降低聚合物的结晶度,从而提高其机械性能和离子电导率,进而实现良好的保护效果。
﹀
|
外文摘要: |
︿
Aqueous zinc ion batteries have attracted much attention from researchers in recent years due to their low cost and high safety. However, the core problem with the anode of aqueous zinc ion batteries is its poor cycling stability, which limits its feasibility for large-scale applications. This is because the surface structure of the zinc anode is damaged during the cycling process due to the occurrence of side reactions, which include dendrite growth, hydrogen evolution reaction, and surface corrosion. Therefore, in this paper, a polymer protective layer is coated on the surface of zinc anode to inhibit the side reactions, including dendrite growth, with a view to improving the electrochemical stability of the zinc-anode interface. The main results of those study are as follows:
Polyethylene oxide (PEO) is used as a widespread film material as a polymer protective layer. In order to improve the ionic conductivity of PEO, CeO2 was introduced into PEO. The PEO protective layer isolated the electrolyte and metallic zinc, effectively inhibiting the occurrence of hydrogen evolution reaction. Meanwhile, the addition of CeO2 reduced the crystallinity of PEO, promoted the chain segment movement of PEO, further improved the ionic conductivity of PEO, and kinetically inhibited the growth of dendrites. As a result, the symmetric battery assembled with CeO2@PEO electrode was cycled for 1990 h at a current density of 3 mA·cm-2, which was much higher than that of the blank battery (200 h). The full battery assembled with V2O5 had a discharge capacity of 103 mA h·g-1 after 1000 cycles at a current density of 5 A·g-1.
Polymethyl methacrylate (PMMA), a material with good mechanical properties and structural stability, was selected as the polymer protection layer to further optimize the cycling performance of the zinc anode. Meanwhile, the DFT theory showed that the composite effect of SiO2 and PMMA was better. In addition, by analyzing the transport of zinc ions in the interface, the ultrathin coating significantly reduces the battery impedance and further improves the migration rate of zinc ions by reducing the zinc ion transport path. Thus, the symmetric battery with SiO2@PMMA protective layer has a cycle life of 2200 h at a current density of 3 mA·cm-2 and maintains good stability during the plating/stripping process. Furthermore, the discharge capacity of the full battery was 121 mA h·g-1 after 1000 cycles at a current density of 5 A·g-1.
Polyvinyl alcohol (PVA) was selected as a polymer that can produce good adhesion with zinc anode as a protective layer for zinc anode. The polymer composite layer with ultrathin and dual network structure was formed by compositing with polyacrylic acid (PAA), which could regulate the plating process of zinc ions through hydroxyl groups, and the flexible network of PAA could be composited with the network of PVA to form a dual-network structure, which could enhance the performance of composite protective layer. In addition, the PVA@PAA composite structure was analyzed by DFT theory, and PAA could increase the reactivity of PVA, thus promoting the transport rate of zinc ions in the composite coating. Therefore, the constructed PVA@PAA dual-network ultrathin interfacial protective layer contributes to the uniform deposition of zinc ions, resulting in a stable zinc anode. The symmetrical battery exhibits an ultra-long cycle life of up to 2400 h. The discharge capacity of the full battery was 111.3 mA h·g-1 after 1000 cycles at a current density of 5 A·g-1. Through the use of a modified polymer protective layer to coat the zinc anode, a stable zinc anode is achieved, optimizing the cycle stability of the battery during cycling. The filler of the modified polymer reduces the crystallinity of the polymer, which improves its mechanical properties and ionic conductivity, thus achieving good protection.
﹀
|
参考文献: |
︿
[1] MA Y, LI L, WANG L, et al. A Mixed Modified Layer Formed In Situ to Protect and Guide Lithium Plating/Stripping Behavior [J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31411-31418. [2] LIANG Y, ZHAO C Z, YUAN H, et al. A review of rechargeable batteries for portable electronic devices [J]. InfoMat, 2019, 1(1): 6-32. [3] MA Y, WANG L, FU S, et al. In situ formation of a Li–Sn alloy protected layer for inducing lateral growth of dendrites [J]. Journal of Materials Chemistry A, 2020, 8(44): 23574-23579. [4] YANG Z, ZHANG Q, XIE C, et al. Electrochemical interface reconstruction to eliminate surface heterogeneity for dendrite-free zinc anodes [J]. Energy Storage Materials, 2022, 47: 319-326. [5] ZHOU X, CAO P, WEI A, et al. Driving the Interfacial Ion-Transfer Kinetics by Mesoporous TiO2 Spheres for High-Performance Aqueous Zn-Ion Batteries [J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8181-8190. [6] 常立民, 林丽, 聂平. 水系锌离子电池:金属锌负极研究进展 [J]. 吉林师范大学学报, 2021, 42(03): 8-15. [7] 邓致远, 李明珠, 方国赵, 等. 水系锌离子电池研究进展 [J]. 硅酸盐学报, 2024, 52(02): 405-427. [8] ZHAO J, SONIGARA K K, LI J, et al. A Smart Flexible Zinc Battery with Cooling Recovery Ability [J]. Angewandte Chemie International Edition, 2017, 56(27): 7871-7875. [9] ZHAO Z, ZHAO J, HU Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase [J]. Energy & Environmental Science, 2019, 12(6): 1938-1949. [10] ZHANG Z, SHEN Y, ZHAO Z, et al. Organic additives in alkaline electrolyte to improve cycling life of aqueous Zn–Ni batteries [J]. Journal of Power Sources, 2022, 542: 231815. [11] PICCOLINO M. The bicentennial of the Voltaic battery (1800–2000): the artificial electric organ [J]. Trends in Neurosciences, 2000, 23(4): 147-151. [12] 丁玉寅, 祝鹏浩, 陆继鑫, 等. 高性能水系锌离子电池锌负极材料研究进展 [J]. 化工科技, 2022, 30(02): 64-70. [13] 韩东, 马陶, 孙田将, 等. 水系锌离子电池锌负极保护策略 [J]. 无机化学学报, 2022, 38(02): 185-197. [14] LU W, ZHANG C, ZHANG H, et al. Anode for Zinc-Based Batteries: Challenges, Strategies, and Prospects [J]. ACS Energy Letters, 2021, 6(8): 2765-2785. [15] XU C, LI B, DU H, et al. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery [J]. Angewandte Chemie International Edition, 2011, 51(4): 933-935. [16] ZUO S, XU X, JI S, et al. Cathodes for Aqueous Zn‐Ion Batteries: Materials, Mechanisms, and Kinetics [J]. Chemistry – A European Journal, 2020, 27(3): 830-860. [17] DU H, YI Z, LI H, et al. Separator Design Strategies to Advance Rechargeable Aqueous Zinc Ion Batteries [J]. Chemistry – A European Journal, 2024, 30(10): e202303461. [18] WANG Q, WANG H, WU J, et al. Advanced electrolyte design for stable lithium metal anode: From liquid to solid [J]. Nano Energy, 2021, 80: 105516. [19] LU P, FAN Z, GUO C, et al. Recent Progresses of Aqueous Zinc‐Ion Batteries and Their Prospects in the Field of Smart City [J]. Advanced Sustainable Systems, 2024: 2300545. [20] LV B, ZONG Q, YU Y, et al. Assembly of Metal–Organic Chemical Conversion Layers as Ion Sieves along with Exposing Zn(002) Planes for Stable Zn Metal Anode [J]. Advanced Functional Materials, 2024: 2316535. [21] NIE W, CHENG H, SUN Q, et al. Design Strategies toward High‐Performance Zn Metal Anode [J]. Small Methods, 2023: 2201572. [22] YI Z, CHEN G, HOU F, et al. Strategies for the Stabilization of Zn Metal Anodes for Zn‐Ion Batteries [J]. Advanced Energy Materials, 2020, 11(1): 2003065. [23] ZHANG X, ZHANG L, JIA X, et al. Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures [J]. Nano-Micro Letters, 2024, 16(1). [24] YANG H. Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives [J]. Journal of Power Sources, 2004, 128(1): 97-101. [25] ZENG X, HAO J, WANG Z, et al. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes [J]. Energy Storage Materials, 2019, 20: 410-437. [26] DU W, ANG E H, YANG Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries [J]. Energy & Environmental Science, 2020, 13(10): 3330-3360. [27] 何银亭, 詹秀环, 田博士, 等. 聚丙烯酸/聚乙烯醇互穿网络水凝胶制备及其对结晶紫的控制释放性能的研究 [J]. 化工技术与开发, 2010, 39(11): 13-16. [28] MING J, GUO J, XIA C, et al. Zinc-ion batteries: Materials, mechanisms, and applications [J]. Materials Science and Engineering: R: Reports, 2019, 135: 58-84. [29] LI C, XIE X, LIANG S, et al. Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries [J]. Energy & Environmental Materials, 2020, 3(2): 146-159. [30] LI T C, FANG D, ZHANG J, et al. Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes [J]. Journal of Materials Chemistry A, 2021, 9(10): 6013-6028. [31] QIN R, WANG Y, YAO L, et al. Progress in interface structure and modification of zinc anode for aqueous batteries [J]. Nano Energy, 2022, 98: 107333. [32] SHI W, SONG Z, WANG J, et al. Phytic acid conversion film interfacial engineering for stabilizing zinc metal anode [J]. Chemical Engineering Journal, 2022, 446: 137295. [33] WANG T, LI C, XIE X, et al. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives [J]. ACS Nano, 2020, 14(12): 16321-16347. [34] YANG Q, LI Q, LIU Z, et al. Dendrites in Zn‐Based Batteries [J]. Advanced Materials, 2020, 32(48): 2001854. [35] CAO J, ZHANG D, ZHANG X, et al. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J]. Energy & Environmental Science, 2022, 15(2): 499-528. [36] ZHANG X, LI J, LIU D, et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer [J]. Energy & Environmental Science, 2021, 14(5): 3120-3129. [37] XU J, WANG M, ALAM M A, et al. Fabricating a Gel Electrolyte Based on Lignin-Coated Nanosilica to Enhance the Reversibility of Zinc Anodes for Rechargeable Aqueous Zn/MnO2 Batteries [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(6): 2063-2071. [38] WANG C, ZHU G, LIU P, et al. Monolithic Nanoporous Zn Anode for Rechargeable Alkaline Batteries [J]. ACS Nano, 2020, 14(2): 2404-2411. [39] BOZZINI B, MELE C, VENEZIANO A, et al. Morphological Evolution of Zn-Sponge Electrodes Monitored by In Situ X-ray Computed Microtomography [J]. ACS Applied Energy Materials, 2020, 3(5): 4931-4940. [40] SUN P, MA L, ZHOU W, et al. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite‐Free Zn Ion Batteries Achieved by a Low‐Cost Glucose Additive [J]. Angewandte Chemie International Edition, 2021, 60(33): 18247-18255. [41] DU Y, LI Y, XU B B, et al. Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review [J]. Small, 2021, 18(43): 2104640. [42] HAO J, LI B, LI X, et al. An In‐Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn‐Ion Batteries [J]. Advanced Materials, 2020, 32(34): 2003021. [43] PARK S H, BYEON S Y, PARK J-H, et al. Insight into the Critical Role of Surface Hydrophilicity for Dendrite-Free Zinc Metal Anodes [J]. ACS Energy Letters, 2021, 6(9): 3078-3085. [44] WANG H, LUO C, QIAN Y, et al. Upcycling of phosphogypsum waste for efficient zinc-ion batteries [J]. Journal of Energy Chemistry, 2023, 81: 157-166. [45] LI J, REN J, LI C, et al. High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery [J]. Nano Research, 2022, 15(8): 7190-7198. [46] ZHU M, WANG H, WANG H, et al. A Fluorinated Solid‐state‐electrolyte Interface Layer Guiding Fast Zinc‐ion Oriented Deposition in Aqueous Zinc‐ion Batteries [J]. Angewandte Chemie International Edition, 2023, 63(4): e202316904. [47] MI H, TIAN P, YUAN C, et al. Inorganic-polymer hydrogel electrolyte enabling aqueous Zn-ions batteries [J]. Materials Letters, 2023, 330: 133354. [48] WANG R, YAO M, HUANG S, et al. An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries [J]. Science China Materials, 2022, 65(8): 2189-2196. [49] YUAN C, ZHONG X, TIAN P, et al. Antifreezing Zwitterionic-Based Hydrogel Electrolyte for Aqueous Zn Ion Batteries [J]. ACS Applied Energy Materials, 2022, 5(6): 7530-7537. [50] CHEN X, LI W, HU S, et al. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes [J]. Nano Energy, 2022, 98: 107269. 107269. [51] MA L, CHEN S, LI X, et al. Liquid‐Free All‐Solid‐State Zinc Batteries and Encapsulation‐Free Flexible Batteries Enabled by In Situ Constructed Polymer Electrolyte [J]. Angewandte Chemie International Edition, 2020, 59(52): 23836-23844. [52] LIU Q, XIA C, HE C, et al. Dual‐Network Structured Hydrogel Electrolytes Engaged Solid‐State Rechargeable Zn‐Air/Iodide Hybrid Batteries [J]. Angewandte Chemie International Edition, 2022, 61(44): e202210567. [53] CAO H, HUANG X, LIU Y, et al. An efficient electrolyte additive of tetramethylammonium sulfate hydrate for Dendritic-Free zinc anode for aqueous Zinc-ion batteries [J]. Journal of Colloid and Interface Science, 2022, 627: 367-374. [54] WU C, SUN C, REN K, et al. 2-methyl imidazole electrolyte additive enabling ultra-stable Zn anode [J]. Chemical Engineering Journal, 2023, 452: 139465. [55] SOKHANDAN F, HOMAYOONFAL M, HAJHEIDARI M. Sodium alginate coating: A strategy to fabricate a membrane surface resistant against sodium alginate fouling [J]. Chemical Engineering Research and Design, 2021, 176: 202-217. [56] ZHANG P, GENG H, GAO Z, et al. Integration of Cation–π Interactions with Polyphenols for Super‐Hydrophilic Coatings [J]. Advanced Materials Interfaces, 2022, 9(28): 2200779. [57] CHEN P, YUAN X, XIA Y, et al. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc‐Based Batteries [J]. Advanced Science, 2021, 8(11): 2100309. [58] JIAO Y, LI F, JIN X, et al. Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make High‐Performance Zn‐Ion Batteries [J]. Advanced Functional Materials, 2021, 31(49): 2107652. [59] WU Z, LI M, TIAN Y, et al. Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode [J]. Nano-Micro Letters, 2022, 14(1): 110. [60] JIN H, DAI S, ZHU Z, et al. Crystal Water Boosted Zn2+ Transfer Kinetics in Artificial Solid Electrolyte Interphase for High-Rate and Durable Zn Anodes [J]. ACS Applied Energy Materials, 2022, 5(9): 10581-10590. [61] LIU X, YANG F, XU W, et al. Zeolitic Imidazolate Frameworks as Zn2+ Modulation Layers to Enable Dendrite‐Free Zn Anodes [J]. Advanced Science, 2020, 7(21): 2002173. [62] PARKER J F, CHERVIN C N, PALA I R, et al. Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion [J]. Science, 2017, 356(6336): 415-418. [63] 金鸣哲, 王晨, 王谈, 等. 水系锌离子电池电解液添加剂的研究进展 [J]. 上海大学学报, 2023, 29(05): 900-914. [64] ZHANG Q, LUAN J, HUANG X, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode [J]. Nature Communications, 2020, 11(1): 3961. [65] 蓝彬栩, 张文卫, 罗平, 等. 水系锌离子电池负极材料的研究进展 [J]. 材料导报, 2020, 34(13): 13068-13075. [66] 李笑迎. 聚甲基丙烯酸甲酯超薄界面层抑制锂枝晶机理的研究 [D]. 上海市: 东华大学, 2022. [67] 刘海. 锌离子电池负极锌枝晶抑制的研究进展 [J]. 辽宁化工, 2023, 52(01): 138-140. [68] 周旸, 陈枫, 谌东中. 无机纳米填料改性聚氨酯研究及其应用进展[J]. 高分子通报, 2015, (12): 15-21. [69] JIA H, ZOU C, WU J, et al. Atomic structure and electronic properties of Zr adsorption on CeO2 (111) surface by the first-principles method [J]. Physica B: Condensed Matter, 2020, 585: 412060. [70] 刘涛, 赖中元, 李小成, 等. 二氧化钛涂层改性锌负极及其在水系锌离子电池中的应用 [J]. 有色金属科学与工程, 2023, 14(01): 51-56. [71] FU C, WANG Y, LU C, et al. Modulation of hydrogel electrolyte enabling stable zinc metal anode [J]. Energy Storage Materials, 2022, 51: 588-598. [72] YANG J L, LI J, ZHAO J W, et al. Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer [J]. Advanced Materials, 2022, 34(27): 2202382. [73] 陆海英. 水系锌离子电池负极界面保护层设计及其电化学性能的研究 [D]. 广东: 华南理工大学, 2022. [74] GUAN K, TAO L, YANG R, et al. Anti‐Corrosion for Reversible Zinc Anode via a Hydrophobic Interface in Aqueous Zinc Batteries [J]. Advanced Energy Materials, 2022, 12(9): 2103557. [75] LIU K, PEI A, LEE H R, et al. Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer [J]. Journal of the American Chemical Society, 2017, 139(13): 4815-4820. [76] LIU J, SONG W, WANG Y, et al. A polyamino acid with zincophilic chains enabling high-performance Zn anodes [J]. Journal of Materials Chemistry A, 2022, 10(39): 20779-20786. [77] ZENG Y, ZHANG X, QIN R, et al. Dendrite‐Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn‐Ion Batteries [J]. Advanced Materials, 2019, 31(36): 1903675. [78] ZENG X, LIU J, MAO J, et al. Toward a Reversible Mn4+/Mn2+ Redox Reaction and Dendrite‐Free Zn Anode in Near‐Neutral Aqueous Zn/MnO2 Batteries via Salt Anion Chemistry [J]. Advanced Energy Materials, 2020, 10(32): 1904163. [79] 马晨辉. 水系锌离子电池锌负极界面稳定性调控 [D]. 吉林省: 吉林大学, 2023. [80] 潘荣辉, 郭小松. 植酸锌人工构筑层在水系锌离子电池锌负极保护中的应用 [J]. 青岛科技大学学报, 2024, 45(02): 72-79. [81] LING W, YANG Q, MO F, et al. An ultrahigh rate dendrite-free Zn metal deposition/striping enabled by silver nanowire aerogel with optimal atomic affinity with Zn [J]. Energy Storage Materials, 2022, 51: 453-464. [82] YUAN Y, YANG J, LIU Z, et al. A Proton‐Barrier Separator Induced via Hofmeister Effect for High‐Performance Electrolytic MnO2–Zn Batteries [J]. Advanced Energy Materials, 2022, 12(16): 2103705. [83] YIN J, LIU H, LI P, et al. Integrated electrolyte regulation strategy: Trace trifunctional tranexamic acid additive for highly reversible Zn metal anode and stable aqueous zinc ion battery [J]. Energy Storage Materials, 2023, 59: 102800. [84] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Physical Review, 1964, 136(3B): B864-B871. [85] 唐波, 樊贺飞, 刘乾锋, 等. 水系锌离子电池无枝晶锌金属负极研究进展 [J]. 电源技术, 2022, 46(03): 221-225. [86] POLU A R, RHEE H-W. Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12 –LiTDI solid polymer electrolyte [J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 347-353. [87] PENG M, YANG W, LI L, et al. Fast assembly of MXene hydrogels by interfacial electrostatic interaction for supercapacitors [J]. Chemical Communications, 2021, 57(82): 10731-10734. [88] PARK J, JEONG Y, KANG H, et al. A Dual‐Functional Electrolyte Additive for High‐Performance Potassium Metal Batteries [J]. Advanced Functional Materials, 2023, 33(48): 2304069. [89] 唐晓宁, 夏澍, 罗秋洋, 等. 甘氨酸电解液添加剂对水系锌离子电池电化学性能的影响 [J]. 无机化学学报, 2023, 39(08): 1501-1509. [90] NIU B, LI Z, CAI S, et al. Robust Zn anode enabled by a hydrophilic adhesive coating for long-life zinc-ion hybrid supercapacitors [J]. Chemical Engineering Journal, 2022, 442: 136217. [91] MU G, MU D, WU B, et al. Microsphere‐Like SiO2/MXene Hybrid Material Enabling High Performance Anode for Lithium Ion Batteries [J]. Small, 2019, 16(3): 1905430. [92] MIAO L, WANG R, DI S, et al. Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes [J]. ACS Nano, 2022, 16(6): 9667-9678. [93] MEI J, LIAO T, AYOKO G A, et al. Two-Dimensional Bismuth Oxide Heterostructured Nanosheets for Lithium- and Sodium-Ion Storages [J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28205-28212. [94] 王春源, 黄杜斌, 宋波涛, 等. 硅藻土涂层改性锌负极及其在锌离子电池中的应用 [J]. 硅酸盐通报, 2020, 39(06): 1909-1915. [95] XIE S, LI Y, DONG L. Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface [J]. Journal of Energy Chemistry, 2023, 76: 32-40. [96] XU J, LV W, YANG W, et al. In Situ Construction of Protective Films on Zn Metal Anodes via Natural Protein Additives Enabling High-Performance Zinc Ion Batteries [J]. ACS Nano, 2022, 16(7): 11392-11404. [97] XU X, ZHANG Y, SUN H, et al. Progress and Perspective: MXene and MXene‐Based Nanomaterials for High‐Performance Energy Storage Devices [J]. Advanced Electronic Materials, 2021, 7(7): 2000967. [98] WEI S, QI Z-H, XIA Y, et al. Monolayer Thiol Engineered Covalent Interface toward Stable Zinc Metal Anode [J]. ACS Nano, 2022, 16(12): 21152-21162. [99] XU X-Q, JIANG F-N, YANG S-J, et al. Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries [J]. Journal of Energy Chemistry, 2022, 69: 205-210. [100] WANG Z, MENG X, WU Z, et al. Development of flexible zinc–air battery with nanocomposite electrodes and a novel separator [J]. Journal of Energy Chemistry, 2017, 26(1): 129-138. [101] LI Z, DU H, LU J, et al. Self-assembly of antimony sulfide nanowires on three-dimensional reduced GO with superior electrochemical lithium storage performances [J]. Chemical Physics Letters, 2021, 771: 138529. [102] 王广宾, 翟朋辉, 柳勇, 等. 氢氧化镧涂层改性锌负极及其在水系锌离子电池中的应用 [J]. 电子元件与材料, 2023, 42(10): 1168-1173. [103] WANG Y-Y, TIAN C-Y, ZHANG D-T, et al. Design of Inorganic–Organic Hydrophobic Coating on Zn Anode Realizes Highly Reversible and Dendrite‐Free Zn‐Ion Batteries [J]. Energy Technology, 2023, 11(3): 2201216. [104] WANG Y, LIN X, WANG L, et al. Tailoring the Crystal‐Chemical States of Water Molecules in Sepiolite for Superior Coating Layers of Zn Metal Anodes [J]. Advanced Functional Materials, 2023, 33(13): 2211088. [105] WANG X, HUANG S, GUO K, et al. Directed and Continuous Interfacial Channels for Optimized Ion Transport in Solid‐State Electrolytes [J]. Advanced Functional Materials, 2022, 32(49): 2206976. [106] WANG S-B, RAN Q, YAO R-Q, et al. Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries [J]. Nature Communications, 2020, 11(1): 1634. [107] WANG S, YANG Z, CHEN B, et al. A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface [J]. Energy Storage Materials, 2022, 47: 491-499. [108] WAN X, XIE Q, SONG H, et al. Borax-crosslinked hydrogel electrolyte membranes for quasi-solid state aqueous energy storage devices [J]. Journal of Membrane Science, 2022, 655: 120606. [109] UDDIN M-J, ALABOINA P K, ZHANG L, et al. A low-cost, environment-friendly lignin-polyvinyl alcohol nanofiber separator using a water-based method for safer and faster lithium-ion batteries [J]. Materials Science and Engineering: B, 2017, 223: 84-90. [110] TAO Z, ZHU Y, ZHOU Z, et al. Constructing Hydrophobic Interface with Close‐Packed Coordination Supramolecular Network for Long‐Cycling and Dendrite‐Free Zn‐Metal Batteries [J]. Small, 2022, 18(22): 2107971. [111] TAO S, ZHANG C, ZHANG J, et al. A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes [J]. Chemical Engineering Journal, 2022, 446: 136607. [112] TAO H, HOU Z, ZHANG L, et al. Manipulating alloying reaction to achieve the stable and dendrite-free zinc metal anodes [J]. Chemical Engineering Journal, 2022, 450: 138048. [113] 张祥昕. 四甲基氯化铵添加剂增强金属锌负极性能 [J]. 上海第二工业大学学报, 2023, 40(04): 281-289. [114] SZŐKE Á F, SZABó G, SIMó Z, et al. Chitosan coatings ionically cross-linked with ammonium paratungstate as anticorrosive coatings for zinc [J]. European Polymer Journal, 2019, 118: 205-212. [115] SHENG J, ZHANG Q, SUN C, et al. Crosslinked Nanofiber‐Reinforced Solid‐State Electrolytes with Polysulfide Fixation Effect Towards High Safety Flexible Lithium–Sulfur Batteries [J]. Advanced Functional Materials, 2022, 32(40): 2203272. [116] SHENG F, YI J, SHEN S, et al. Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors [J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44868-44877. [117] QIN Y, LIU P, ZHANG Q, et al. Advanced Filter Membrane Separator for Aqueous Zinc‐Ion Batteries [J]. Small, 2020, 16(39): 2003106. [118] LIU Y, LIN D, YUEN P Y, et al. An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes [J]. Advanced Materials, 2016, 29(10): 1605531. [119] QIAN J, LI Y, ZHANG M, et al. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield [J]. Nano Energy, 2019, 60: 866-874. [120] LIU Q, WANG Y, HONG X, et al. Elastomer–Alginate Interface for High‐Power and High‐Energy Zn Metal Anodes [J]. Advanced Energy Materials, 2022, 12(20): 2200318. [121] LI Z, ZHENG X, YE S, et al. The Interaction in Electrolyte Additives Accelerates Ion Transport to Achieve High‐Energy Non‐Aqueous Lithium Metal Batteries [J]. Small, 2023, 19(39): 2301005. [122] ARRESE-IGOR M, MARTINEZ-IBAñEZ M, PAVLENKO E, et al. Toward High-Voltage Solid-State Li-Metal Batteries with Double-Layer Polymer Electrolytes [J]. ACS Energy Letters, 2022, 7(4): 1473-1480. [123] TIAN Y, AN Y, FENG J. Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries [J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10004-10011. [124] LUO Z, GAO Y, LAI H, et al. Asymmetric side-chain substitution enables a 3D network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells [J]. Energy & Environmental Science, 2022, 15(11): 4601-4611. [125] LU H, ZENG F, MA Y, et al. Triphenyl borate as an effective film-modification additive for regulating the solid electrolyte interphase formed on graphite and silicon based anode [J]. Materials Today Communications, 2023, 35: 105619. [126] LIU Y, LIU S, XIE X, et al. A functionalized separator enables dendrite‐free Zn anode via metal‐polydopamine coordination chemistry [J]. InfoMat, 2022, 5(3): e12374.
﹀
|
中图分类号: |
TB383
|
开放日期: |
2027-06-18
|