- 无标题文档
查看论文信息

论文中文题名:

 基于数字孪生的大倾角采场支架位态演化与载荷传递规律实验研究    

姓名:

 吴少港    

学号:

 20203226050    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 解盘石    

第一导师单位:

 西安科技大学    

第二导师姓名:

 余建东    

论文提交日期:

 2023-06-26    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Experimental study on the evolution of characteristic support position and load transfer law in steeply dipping coal seam based on digital twin technology    

论文中文关键词:

 大倾角采场 ; 数字孪生 ; 液压支架物理模型 ; 位态与载荷演化 ; 稳定性控制    

论文外文关键词:

 steeply dipping seam ; digital twins ; displacement and load evolution ; stability control ; physical model of the hydraulic support    

论文中文摘要:

液压支架是工作面开采过程中极为重要的支护设备,融合数字孪生技术的支架自适应控制研究将对我国煤矿开采智能化尤其是大倾角工作面智能化有着重要的支撑作用。特别是,设计与实现物理模拟实验环境下的液压支架模型数字孪生,深入研究大倾角采场支架位态演化与载荷传递规律,对实现大倾角煤层长壁开采装备智能化控制具有重要的理论意义。

以大倾角长壁大采高工作面为研究对象,采用数字孪生技术、现场实测、三维物理相似模拟实验和数值模拟实验的研究方法,对大倾角采场支架位态演化与载荷传递规律进行了分析,主要研究结论如下:

(1)首次以大倾角大采高工作面的液压支架为原型设计液压支架,使用SolidWorks将设计图转换成三维模型;根据三维模型加工支架零件,并对零件进行组装和调试,最后对液压支架进行了测试,以确保其性能符合设计要求。模型支架不仅具备原型支架的基本功能,同时具有卸压、侧护、侧调、抬底等功能。

(2)使用建模和图形渲染技术,完成了液压支架的高精度建模;通过支架运动中各个部件的运动规律解析,选择并布置了激光位移传感器和高精度倾角、位移、和载荷传感器;建立了下位机与数字孪生系统上位机之间的数据通道,实现虚拟模型与物理实体的位态与载荷同步;通过上述方法,实现了对支架的位态虚拟实时显示,以及支架载荷热力图实时展示的功能,并保留了串口继电器的控制接口。

(3)进行了不同倾角条件下支架位态演化与载荷传递规律大比例三维物理相似模拟实验,随着工作面倾角增大,结果表明:一是支架所需的初撑力变小,顶板破坏程度增强;顶板松软时,进行升架操作在一定程度上可以避免支架失稳。二是在正压作用下,不同倾角下顶梁受载均衡;在后推作用下,掩护梁倾斜上部区域的载荷逐渐增大,倾斜下部区域的载荷逐渐减小;在侧推作用下载荷呈现周期性变化,且每个周期的载荷均较前一个周期有所增加。三是数值模拟分析表明,倾斜下方支架受载小于上方支架,所有立柱底部受载大于中上部,为了降低立柱对底板或底座的冲击作用,需提高底座的防陷能力。

最后,根据研究结果提出了大倾角大采高工作面液压支架的改进与优化措施,现场试验表明,上述措施有效解决了大倾角条件下支架陷底、下滑和倾倒等问题,取得了良好的应用效果。

论文外文摘要:

Support is a very important support equipment in the process of working face mining, and the research on the adaptive control of support integrating digital twin technology will have an important supporting role for the intelligent coal mining in China, especially for the intelligent working face with steeply dipping coal seam. In particular, the design and implementation of the digital twin of the hydraulic support model under the physical simulation experiment environment, and the in-depth study of the evolution of the support position and load transfer law in the lsteeply dipping coal seam, are of great theoretical significance for the intelligent control of the longwall mining equipment in the steeply dipping coal seam.

Taking the long wall large mining face with steeply dipping coal seam as the research object, the research methods of digital twin technology, field actual measurement, 3D physical similarity simulation experiment and numerical simulation experiment were used to analyze the evolution of support position and load transfer law in the steeply dipping coal seam, and the main research conclusions are as follows:

For the first time, the support has been designed as a prototype specifically tailored for steeply dipping and high mining faces. The design drawing has been converted into a precise 3D model using SolidWorks. The manufacturer then processes the support parts based on the 3D model, ensuring accuracy during manufacturing, followed by meticulous assembly and debugging of the components. Subsequently, the support undergoes rigorous testing to ensure its performance meets the design requirements. Notably, the model support encompasses not only the basic functions of the prototype support but also incorporates additional functionalities such as pressure relief, side protection, side adjustment, and bottom lifting.

The support underwent high-precision modeling using advanced modeling and graphic rendering techniques. By analyzing the motion patterns of each component within the support's movement, laser displacement sensors, as well as high-precision inclination, displacement, and load sensors were carefully selected and strategically arranged. To ensure seamless integration between the virtual model and the physical entity, a data channel was established between the lower computer and the upper computer of the digital twin system. This allowed for real-time synchronization of position and load information. As a result, the support's position could be visually displayed in real-time, and the load distribution could be represented through a dynamic heat map. Additionally, the control interface of the serial relay was retained for efficient management.

The findings indicate that with an increase in the inclination angle of the working face, several observations can be made. Firstly, the support requires a smaller initial bracing force, while the extent of roof damage is intensified. Notably, when the roof is soft, the implementation of lifting operations can partially mitigate support instability. Secondly, under positive pressure, the load on the roof beam is evenly distributed across different inclination angles. Conversely, under back thrust, the load on the upper region of the inclined cover beam gradually increases, while the load on the lower region decreases. In the case of lateral thrust, the load exhibits periodic fluctuations, with each cycle experiencing an incremental load compared to the preceding cycle. Lastly, numerical simulation analysis reveals that the tilted lower support experiences a smaller load than the upper support. Furthermore, all column bottoms endure higher loads than the middle and upper sections. To minimize the impact of columns on the bottom plate or base, it is essential to enhance the anti-sagging capacity of the base.

Finally, according to the results of the study, the improvement and optimisation measures of the hydraulic support for steeply dipping seam and large mining height working face were proposed, and the test showed that the above measures effectively solved the problems of support bottoming, sliding and tipping under the condition of large dipping angle, and achieved good application results.

参考文献:

[1] 伍永平,刘孔智,贠东风,等.大倾角煤层安全高效开采技术研究进展[J].煤炭学报,2014,39(08):1611-1618.

[2] 伍永平,贠东风,解盘石,等.大倾角煤层长壁综采:进展、实践、科学问题[J].煤炭学报,2020,45(01):24-34.

[3] Kulakov V.N..Stress state in the face region of a steep coal bed [J]. Journal of Mining Science, 1995(09):161-168.

[4] Bodi J.Safety and technological aspects of man less exploitation technology for steep coal seams[C].27th international conference of safety in mines research insti-tutes,1997:955-965.

[5] Singh, T.N., Gehi, L.D..State behavior during mining of steeply dipping thick seams-A case study[C].Proceedings of the International Symposium on Thick Seam Mining,1993: 311-315.

[6] Daniel Gleeson.WCM’s Woodhouse Colliery met coal project heads for site work[EB/OL]. [2021-1-7]. https://im-mining.com/2021/01/07/wcms-woodhouse- colliery -met-coal- project-heads-site-work/

[7] 伍永平,贠东风,张淼丰.大倾角煤层综采基本问题研究[J].煤炭学报,2000,25( 5) : 465-468.

[8] 程文东,王军,贠东风,等.大倾角特厚煤层综采放顶煤技术研究[R].兰州:靖远煤业集团公司王家山煤矿,2003.

[9] 刘斌,伍永平,贠东风,等.大倾角特厚易燃煤层群综放开采技术研究[R].兰州:华亭煤业集团公司东峡煤矿,2006.

[10] 李方立,伍永平,陈建杰,等.大倾角煤层走向长壁大采高综采技术研究[R].乌鲁木齐: 新疆焦煤集团,2013.

[11] 贠东风,谷斌,伍永平,等.大倾角煤层长壁综采支架典型应用实例及改进研究[J].煤炭科学技术,2017,45(01):60-67+72.

[12] 王继波.铁山南矿:轻型单体液压支柱破解临时支护难题[J].当代矿工,2014(02):11.

[13] 夏凌娟,高娟.2019年全球十大矿业公司业绩回顾[J].中国管理信息化,2021,24(08):53-57.

[14] HOLLANDS R, DENBY B, BROOKS G. SAFE-VR-A virtual reality safety training system[J]. Proceedings of APCOM'99, 1999.

[15] DREBENSTEDT C, GRAFE R. Stereoscopic 3D-display for mine planning and geo-logical modeling, 2001[C].2001.

[16] 郭明明.地下矿山开采工程虚拟现实仿真与应用研究[D].中南大学,2009.

[17] SCHMIDT M, SCHÄFER R. An integrated simulation system for traffic induced air pol-lution[J]. Environmental Modelling & Software, 1998,13(3):295-303.

[18] 胡彦超,陈清奎,魏鑫鑫,等.基于虚拟现实技术的机械虚拟智能车间实训系统[J].制造技术与机床,2020,04:17-19.

[19] 郑羽,洪亮,郑甘陵.一种实现协同装配过程的虚拟现实系统[J].科技导报,2020,38(22): 59-64.

[20] GAMLIN A, BREEDON P, MEDJDOUB B. Immersive Virtual Reality Deployment in a LeanManufacturing Environment[C]. International Conference on Interactive Technolo-gies & Games.IEEE Computer Society. Nottingham, ENGLAND.2014.

[21] 刘静,陈建平.我国三维成矿预测的研究现状及发展趋势[J].地质学刊,2017(03):441-447.

[22] 刘征,郑贵洲.矿山三维GIS研究进展[J].地质科技情报,2006(04):109-112.

[23] 王子健,MKANIME MATHEUS,程五一,等.矿山顶板冒落危险性预测可视化模型研究[J].金属矿山,2018(04):159-162.

[24] 樊留群,丁凯,刘广杰.智能制造中的数字孪生技术[J].制造技术与机床,2019,07:61-66.

[25] 陶飞,张萌,程江峰,等.数字孪生车间——一种未来车间运行新模式[J].计算机集成制造系统,2017,23(01):1-9.

[26] Rosen R,Von Wichert G,Lo G , et al. About The Importance of Autonomy and Digital Twins for the Future of Manufacturing[J]. IF AC PapersOnLine, 2015, 48(3):567-572.

[27] Grieves, Michael W . Product lifecycle management: the new paradigm for enterprises[J. International Journal of Product Development, 2005, 2(1/2):71.

[28] Wen J R,Mu-Qing Wu , Jing-Fang S U . Cyber-physical System[J]. ACTA AUTO-MATICA SINICA, 2012, 38(4):507-517.

[29] 高星海.从基于模型的定义(MBD)到基于模型的企业(MBE)-模型驱动的架构:面向智能制造的新起点[J].智能制造,2017,000(005):P.25-28.

[30] Tuegel E. The airframe digital twin: some challenges to realization[C]// Aiaa/asme/asc e/ahs/asc Structures, Structural Dynamics and Materials Conference,Aiaa/asme/ahs Ad aptive Structures Conference, Aiaa. 2013.

[31] Kraft E M . The Air Force Digital Thread/Digital Twin - Life Cycle Integration and Use of Computational and Experimental Knowledge[C]// 54th AIAA Aerospace Sciences Meeting. 2016.

[32] Rosen R, Von Wichert G, Lo G,et al. About The Importance of Autonomy and Digital Twins for the Future of Manufacturing[J]. IF AC-PapersOnLine, 2015, 48(3):567-572. .

[33] Schluse M, Rossmann J . From simulation to experimentable digital twins: Simula-tion-based development and operation of complex technical systems[C]// IEEE Interna-tional Symposium on Systems Engineering. IEEE, 2016.

[34] 陶飞,刘蔚然,刘检华,等.数字孪生及其应用探索[J].计算机集成制造系统, 2018, 24(01):1-18.

[35] ELLGASS W, HOLT N, Saldana-Lemus H, et al. A digital twin concept for manufactur-ing systems[C].ASME International Mechanical Engineering Congress and Exposition. Pittsburgh, PA, USA. 2018.

[36] NEGRI E, FUMAGALLI L, MACCHI M. A Review of the Roles of Digital Twin in CPS-BasedProduction Systems[J]. Procedia Manufacturing, 2017,11: 939-948.

[37] KUTS V, MODONI G E, TERKAJ W, et al. Exploiting factory telemetry to support Vir-tual Realitysimulation in robotics cell[C]. International Conference on Augmented Reality. Ugento, ITALY. 2017.

[38] ZHUANG CB , LIU JH, XIONG H. Digital twin-based smart production management and controlframework for the complex product assembly shop-floor[J]. International Journal of AdvancedManufacturing Technology, 2018,96: 1-4.

[39] Hodgkinson J H , Elmouttie M . Cousins, Siblings and Twins: A Review of the Geological Model's Place in the Digital Mine[J]. Resources, 2020, 9(3):24.

[40] 经海翔,黄友锐,徐善永,等.基于数字孪生和概率神经网络的矿用通风机预测性故障诊断研究[J].工矿自动化,2021,47(11):8.

[41] 伍永平,贠东风,解盘石,等.大倾角煤层长壁综采:进展、实践、科学问题[J].煤炭学报,2020,45(01):24-34.

[42] 赖朝安,李振南,孙延明,等.Pro/E二次开发的关键技术[J].机械设计与制造工程,2001,30(1):3.

[43] 魏庆媛.三维CAD技术在机械设计中的应用[J].黑龙江科学,2022(013-010).

[44] 曹海龙,杨晓波.三维激光扫描技术在建筑物内部建模中的应用[J].2022(4).

[45] 黄斌.基于图像的超分辨率三维几何建模技术[J].重庆理工大学学报:自然科学版,2013.

[46] 黄明吉,李斌,董秀萍.基于三维骨架细化的金属橡胶三维建模方法研究[J].材料导报,2022,36(1):5.

[47] 廖秋林,曾钱帮,刘彤,等.基于ANSYS平台复杂地质体FLAC^3D模型的自动生成[J]. 岩石力学与工程学报,2005,24(6):4.

[48] 祁航,彭晓东,马晓珊,等.一种基于物理模型成像仿真的视觉定位方法及系统,CN114419259A[P].2022.

[49] 任政勇,王祥,汤井田,等.融合复杂地质信息的地球物理模型建模技术[J].地球物理学报,2022(010):065.

[50] 姚科田,邵之江,陈曦,等.基于数据驱动技术和工艺机理模型的PTA生产过程软测量建模方法[J].计算机与应用化学,2010(10):4.

[51] 程炳贺,赵征.基于数据驱动建模的多机场系统离场流分析[J].航空计算技术,2022,52(3):67-69.

[52] Smeets S J , Hesselink A T , Speel E J M , et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen.[J]. Inter-national Journal of Cancer, 2010, 121(11):2465-2472.

[53] 李保国,张澄安,徐建秋.基于SVD的雷达嵌入式通信波形设计方法[J].航空学报,2022,43(7):325401-325401.

[54] 贾巧雯,马昊玉,厉严,等.一种嵌入式Linux系统上的新型完整性度量架构[J]. 计算机研究与发展,2022(010):059.

[55] Torres-Ferreyros C M , Festini-Wendorff M A , Shiguihara-Juarez P N . Developing a videogame using unreal engine based on a four stages methodology[C]// Andescon. IEEE, 2016.Mittring M . Finding next gen: CryEngine 2.2007.

[56] GestwickiPaul. Godot engine and checklist-based specifications[J]. Journal of Computing Sciences in Colleges, 2021.

[57] Isabella G,Caitlin R , Liu C , et al. Sensory Evaluation of Blenderized Watermelon Juice With and Without the Rind by Children[J]. Current Developments in Nutrition, 2022(Supplement_1):Supplement_1.

[58] 刁礼帅.浅谈三维软件Maya建模[J].信息通信,2015(2):2.

[59] Unity架构-Unity手册[EB/OL].[2023.2.22].https://docs.unity.cn/cn/2021.3/Manual/unity-architecture.html.

[60] 解盘石,吴少港,罗生虎,等.大倾角大采高开采支架动载失稳机理及控制[J].煤炭科学技术,2023,51(02):58-71.2022-1746.

中图分类号:

 TD323    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式