- 无标题文档
查看论文信息

论文中文题名:

 不同含量CO2对CH4燃爆火焰形态 及特征参数的影响研究    

姓名:

 常助川    

学号:

 18220089040    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体与粉尘燃爆控制    

第一导师姓名:

 程方明    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Influence of Different Concentrations of CO2 on the Flame Shape and Characteristic Parameters of CH4 Explosion Flame    

论文中文关键词:

 甲烷爆炸 ; 浮力 ; 火焰形状 ; 层流燃烧特性 ; 火焰驻停    

论文外文关键词:

 Methane explosion ; buoyancy ; flame shape ; combustion characteristics ; flame dwell    

论文中文摘要:

      惰化防爆作为可燃气体燃爆防控的常用的措施之一,有效降低爆炸破坏力的同时也降低了安全防控的经济成本。然而,当被惰化的可燃气体被点爆后,较低的扩展速度使得火焰受到的浮力作用显著,浮力存在及显著程度将影响火焰的形状及传播特性,使得可燃气体的惰化受到一定影响,因此,为了对惰化情况下浮力对球形火焰的影响,本文对不同含量CO2的甲烷球形膨胀火焰浮力及胞状化特性展开了研究,可为工业生产过程中的惰化防爆技术提供指导。

      本文基于20L球形实验系统对不同惰化程度下的甲烷燃爆火焰特性进行爆炸实验,同时利用高速纹影仪对火焰进行捕捉,分析球形火焰在爆炸初期火焰在浮力影响下的变化,以及爆炸后期胞状火焰特性和压力变化,最后利用Fluent软件对甲烷惰化情况下燃爆过程进行重现,以弥补实验无法获得的数据。研究结果表明:惰化程度影响火焰的浮力显著程度,而浮力作用的不同使初燃阶段火焰呈现正球形,椭球形及“w”形。添加CO2可增加容器内整体密度,使火焰已燃区和未燃区内的密度差增大,浮力增强,表现为向上扩展速度大于水平与向下扩展速度且浮力率变大;同时,添加CO2使发展阶段胞状火焰形成时间被延迟。若CO2含量较大,火焰的拉伸率明显减小,马克斯坦长度为正值,其火焰更稳定,导致胞状火焰的形成被有效抑制。在火焰发展阶段,因壁面反射压力与火焰自身膨胀的“对抗作用”,火焰将出现“涟漪”现象,惰化后容器内爆炸压力在短期内分布不均,“涟漪”在容器上部更明显。通过分析爆炸压力数据发现爆炸超压上升速率与胞状火焰有直接关系,其表现为超压上升速率越大时,蜂窝状的胞格最密集。

       对数值模拟的爆炸超压,火焰形状及火焰扩展半径与实验结果进行对比,发现模拟与实验有较好的一致性。通过分析实验和模拟典型火焰的流线,可以发现火焰的形状主要受到涡流的诱导,其中涡的形成时间对火焰的形状有直接关系,涡流形成越早,火焰变形越早且越显著。而火焰面内部最初点火区速度一直最大是导致火焰出现“w”形的直接原因。添加少量的CO2使得燃爆火焰不稳定性增强,更易转捩分形而形成胞状火焰。

论文外文摘要:

Inerting technology is one of the commonly used measures for the prevention and control of combustible gas combustion and explosion, which effectively reduces the destructive power of explosions and the economic cost. However, when the combustible gas inerted is ignited, the lower expansion speed makes the buoyancy effect of the flame significant, which will affect the shape and propagation characteristics of the flame. The inerting effect will be affected to a certain extent. Therefore, to investigate the effect of buoyancy on the spherical flame in the case of inerting, this paper carried out a study on the instability and cellularization characteristics of methane spherical expansion flame, which can provide guidance for the inerting explosion-proof technology in the industrial production process.

    Based on the 20L spherical experimental system, the experiment of methane combustion and explosion under different inerting degrees was conducted. At the same time, flame is captured by schlieren, and the shapes of flames under buoyancy at the beginning of the explosion and cellular process of flame in the later stages of the explosion are analyzed. Then, numerical reproduce the explosion process to make up for the data that cannot be obtained in the experiment. The buoyancy effect caused the flame to appear in the shape of spheroid, ellipsoid and “w” in the initial combustion stage. Adding CO2 can increase the overall density in the container, which increases the density difference between the burned area and the unburned area of ​​the flame, the buoyancy effect was increased. The upward expansion speed is greater than the horizontal and downward expansion speeds and the buoyancy rate becomes larger; at the same time, add CO2 delays the formation of cellular flame in the development stage. The stretching rate of the flame is significantly reduced when CO2 much more added, and the Markstein length is positive, the flame is more stable and the formation of cellular flame is effectively suppressed. During the flame expansion process, due to the “antagonism” between the wall emission pressure and the flame expansion, the flame will appear “rippling”. After inerting, the explosion pressure in the container will be unevenly distributed in a short time, which makes the “rippling” will be more obvious on the upper part of the container. By analyzing the explosion pressure data, it is found that the explosion overpressure rising rate is directly related to the cellular flame. The higher the overpressure rising rate, the densest honeycomb cells.

     The numerical simulation of explosion overpressure, flame shape and flame expansion radius are compared with the experimental results, and it is found that the simulation is in good agreement with the experiment. By analyzing the experiment and simulating the streamline of a typical flame, it can be found that the shape of the flame is mainly affected by the vortex. The formation time of the vortex is directly related to the shape of the flame. The earlier the vortex is formed, the earlier and more significant the flame deformation. The maximum velocity in the initial ignition zone inside the flame surface is the direct cause of the “w” shape of the flame. Adding a small amount of CO2 enhances the instability of burning and explosion flames, and it is easier to transform fractals to form cellular flames.

参考文献:

[1] LI G Q, DU Y, WANG S M, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe [J]. J Hazard Mater, 2017, 339:131–14.

[2] 中国新闻网, 辽宁大连发生燃气管道爆炸事故已致2人死亡9人受伤, 2021.1.25. https://news.sina.cn/2021-01-25/detail-ikftssap0633642.d.html?vt=4

[3] 中国新闻网, 于晓, 北京顺义一食品厂燃气爆炸致4死10伤 处理结果公布, 2020.10.22. http://www.chinanews.com/sh/2020/10-22/9319497.shtml

[4] 郝军. 义马事故的4个启示请深思[J]. 劳动保护, 2020, 8:30–31.

[5] 中华人民共和国应急管理部,监管三司,江苏连云港“12•9”重大爆炸事故调查结果公布https://www.mem.gov.cn/xw/zhsgxx/201809/t20180922_ 242520.shtml

[6] 毕明树. 开敞空间可燃气云爆炸的压力场研究[D]. 大连理工大学, 2001.

[7] 胡千庭. 山西煤矿近20年瓦斯事故统计及致因分析, 中国职业安全健康协会2020年学术年会[C].

[8] Deng J, Cheng F M, Song Y, et al. Experimental and simulation studies on the influence of carbon monoxide on explosion characteristics of methane. J Loss Prevent Proc, 2015, 36: 45–53.

[9] 蒋平, 郭印诚, 张会强, 等. 浮力对矩形射流扩散火焰影响的大涡模拟[J]. 工程热物理学报, 2006, 27(2): 175–178.

[10] Zhao M, Fan A. Buoyancy effects on hydrogen diffusion flames confined in a small tube [J]. Int J Hydrogen Energ, 2020, 45(38).

[11] Lisochkin Y A, Poznyak V I. Inerting of Methane-Air Mixtures by Compositions Based on Carbon Dioxide and Nitrogen with Addition of Halocarbons [J]. Combust Explo Shock, 2005, 41(5): 504–509.

[12] Rubtsov N. M, Seplyarskii B. S., Troshin K. Ya., et al. Features of the propagation of laminar spherical flames initiated by a spark discharge in mixtures of methane, pentane, and hydrogen with air at atmospheric pressure [J]. Russian Journal Phy Chem, 2011, 85(10): 1707–1716.

[13] Luo Z M, Liu L T, Cheng F M, et al. Effects of a carbon monoxide-dominant gas mixture on the explosion and flame propagation behaviors of methane in air [J]. J Loss Prevent Proc, 2019, 58: 8–16.

[14] 罗振敏, 解超, 王九柱, 等. CH4和CO2对液化石油气(LPG)惰化抑爆效能对比分析[J]. 化工进展, 2019, 38(06): 2574–2580.

[15] 罗振敏, 杨勇, 程方明, 等. N2和CO2惰化丙烯爆炸极限参数实验研究[J].化工学报, 2020, 71(04):1922–1928.

[16] 邓军, 程超, 吴晓春. 煤矿可燃性气体爆炸氧浓度的实验研究[J]. 煤矿安全, 2007, (6): 5–7.

[17] 何昆. 初始温度对氮气抑爆性能影响的实验研究[J]. 消防科学与技术, 2014, 33(11): 1247–1250.

[18] 任韶然, 李海奎, 李磊兵, 等. 惰性及特种可燃气体对甲烷爆炸特性的影响实验及分析[J]. 天然气工业, 2013, 33(10): 110–115.

[19] 程方明, 邓军. 一氧化碳影响二氧化碳惰化甲烷爆炸的实验研究[J].西安科技大学学报, 2016, 36(03): 315–319.

[20] Yan C C, Bi M S, Li Y C, et al. Effects of nitrogen and carbon dioxide on hydrogen explosion behaviors near suppression limit [J], J Loss Prevent Proc,2020, 67, 104228.

[21] 祝钊, 贾振元, 罗海珠. 瓦斯输送管道内抑爆过程数值模拟研究[J]. 大连理工大学学报, 2014, 54(1): 37–42.

[22] Bauwens C R, Bergthorson J M, Dorofeev S B . Experimental study of spherical-flame acceleration mechanisms in large-scale propane–air flames [J]. Pro Combust Inst, 2015, 35(2): 2059–2066.

[23] Yang S, Saha A, Wu F, et al. Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities [J]. Combust Flame, 2016, 171:112–118.

[24] Askari O, Elia M, Ferrari M, et al. Cell formation effects on the burning speeds and flame front areaof synthetic gas at high pressures and temperatures [J]. Appl Energ, 2017, 189: 568–577.

[25] Oppong F, Xu C S, Luo Z Y, et al. Cellularization of 2-methylfuran expanding spherical flame [J]. Combust Flame, 2019, 206: 379–389.

[26] Pejpichestakul W, Cuoci A, Frassoldati A, et al. Buoyancy effect in sooting laminar premixed ethylene flame [J]. Combust Flame, 2019, 205: 135–146.

[27] Choi B C, Park, J S, Ghoniem, A F. Characteristics of outwardly propagating spherical flames of R134a(C2H2F4)/CH4/O2/CH4 mixtures in a constant volume combustion chamber [J]. Energy, 2016, 95, 517–527.

[28] Zhao M, Fan A. Buoyancy effects on hydrogen diffusion flames confined in a small tube [J]. Int J Hydrogen Energ, 2020.05.010

[29] Ji J, Li B, Wan, H X, et al. Gas temperature rise and flame length induced by two buoyancy-controlled propane burners aligned parallel to the cross wind [J], Int J Therm Sci, 2020, 152, 106295.

[30] Berger L, Hesse R, Kleinheinz K, et al. A DNS study of the impact of gravity on spherically expanding laminar premixed flames [J]. Combust Flame, 2020, 216: 412–425.

[31] Sun Z Y, Li G X, Li H M, et al. Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames [J]. Energies, 2014, 7(8): 4938–4956.

[32] Zhang X L, Hu L H, Delichatsios M A, et al. Experimental study on flame morphologic characteristics of wall attached non-premixed buoyancy driven turbulent flames [J]. Appl Energ, 2019, 254 113672.

[33] Hawkes E. R, Chen J. H. Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames [J]. Combust. Flame, 2004, 138(3): 242–258.

[34] Luo K, Jin T, Lu S, et al. DNS analysis of a three-dimensional supersonic turbulent lifted jet flame [J]. Fuel, 2013, 108: 691–698.

[35] Sankaran R, Hawkes E R, Chen J H, et al. Structure of a spatially developing turbulent lean methane-air Bunsen flame [J]. Proc Combust Inst, 2007, 31(1): 1291–1298.

[36] Xiao H L, Luo K, Jin T, et al. Direct numerical simulation of turbulence modulation by premixed flames in a model annular swirling combustor [J]. Proc Combust Inst, 2020.

[37] Wang H O, Hawkes E R, Chen J H. A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame [J]. Combust Flame, 2017, 180: 110–123.

[38] Wang H O, Hawkes E R, Zhou B, et al. A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number [J]. Proc Combust Inst, 2017, 36(2): 2045–2053.

[39] Wang H O, Hawkes E R, Savard B, et al. Direct numerical simulation of a high Ka CH4/air stratified premixed jet flame [J]. Combust Flame, 2018, 193: 229–245.

[40] 孙明波, 汪洪波, 梁剑寒, 等. 复杂湍流流动的混合RANS/LES方法研究 [J]. 航空计算技术, 2011, 41(01): 24–33.

[41] Wen X P, Ding H Q, Su T F, et al. Effects of obstacle angle on methane–air deflagration characteristics in a semi-confined chamber [J]. J Loss Prevent Proc, 2017, 45: 210–216.

[42] Smagorinsky J. General circulation experiments with the primitive equations [J]. Monthly Weather Review. 1963, 91: 99‒164

[43] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model [J]. Phy Fluids, 1991, 3: 1760‒1765.

[44] Nicoud F, Ducros F. Subgrid-scale stress modeling based on the square of the velocity gradient tensor [J]. Flow Turbul Combust, 1999, 62: 183‒200.

[45] Yakhot A, Orszag S A, Yakhot V, et al. Renormali-zation group formulation of large-eddy simulations [J]. J Sci Comput, 1989, 4: 139‒158.

[46] Bardina J, Ferziger J H, Reynolds W C. Improved subgrid scale models for large-eddy simulations [J]. Am Inst Aeronaut Astronaut J, 1980, 34: 1111‒1119.

[47] Boger M, Veynante D, Boughanem H, et al., Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion [J]. Pro Combus Ins, 1998, 27: 917‒925.

[48] Hawkes E, Cant S. A flame surface density approach to LES of premixed turbulent combustion [J]. Pro Combus Ins, 2000, 28: 51‒56.

[49] Colin O, Ducros F, Veynante D, et al. A thickened flame model for large eddy simulations of turbulent premixed combustion [J]. Phy Fluids, 2000, 12: 1843‒1863.

[50] 肖华华. 管道中氢—空气预混火焰传播动力学实验与数值模拟研究 [D].中国科学技术大学, 2013.

[51] Wen X P, Yu M G, Liu Z C, et al. Large eddy simulation of methane–air deflagration in an obstructed chamber using different combustion models [J]. J Loss Prevent Proc, 2012, 25(4): 730–738.

[52] Li G Q, Du Y, Wang S M, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe [J]. J Hazard Mater, 2017, 339: 131–142.

[53] Chen P, Li Y C, Huang F J, et al. Experimental and LES investigation of premixed methane/air flame propagating in a chamber for three obstacle BR configurations [J]. J Loss Prevent Proc, 2016, 41, 48–54.

[54] 王公忠, 张建华, 李登科, 等. 障碍物对预混火焰特性影响的大涡数值模拟 [J]. 爆炸与冲击, 2017, 37(01): 68–76.

[55] 约翰•道尔顿. 道尔顿分压定律 [J]. 数理化学习(教研版), 2019(12): 2.

[56] 叶继飞,文明,徐徐. 纹影与阴影技术, 国防工业出版社, 北京.

[57] 高全. C1–C3气态烷烃预混燃烧特性研究 [D]. 西华大学, 2020.

[58] Wu F J, Kelley A P, Law C K. Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures [J]. Combust Flame, 2012, 159(4): 1417–1425.

[59] Gu X J, Haq M Z, Lawes M, et al. Laminar burning velocity and Markstein lengths of methane–air mixtures [J]. Combust Flame, 2000, 121(1–2): 41–58.

[60] Law C K. Combustion physics [M]. New York: Cambridge University Press, 2006.

[61] Comandini A, Dubois T, Chaumeix N. Laminar flame speeds of n-decane, n-butylbenzene, and n-propylcyclohexane mixtures [J]. Pro Combus Ins, 35(1): 671–678

[62] 马熹群. 汽油掺氢层流预混火焰燃烧特性研究[D], 北京理工大学, 2016.

[63] 李艳超. 氢气火焰失稳传播与爆炸压力的耦合影响机制研究[D], 大连理工大学, 2019.

[64] Favre A. Equations des gaz turbulents compressibles [J], J De Mecanique, 1965, 4(3): 361–390.

[65] Johansen C, Ciccarelli G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation [J]. J Loss Prevent Proc, 2013, 26(4): 571–585.

[66] Lesieur M. Large-eddy simulations of turbulence [M]. Cambridge: Cambridge University Press, 2005.

[67] Quillatre P, Vermorel O, Poinsot T, et al. Large Eddy Simulation of Vented Deflagration [J]. Ind Eng Chem Res, 2013, 52(33): 11414–11423.

[68] Launder B E, Spalding D B. Lectures in Mathematical Model of Turbulence, Acdemic Press [M]. London, Englend, 1972.

[69] Lilly D K. A proposed modification of the Germano subgrid-scale closure method [J]. Phy Fluids A Fluid Dynamics, 1998, 4.

[70] 温小萍. 瓦斯湍流爆燃火焰特性与多孔介质淬熄抑爆机理研究[D]. 大连理工大学, 2014.

[71] Boge M, Veynante D, Boughanem H. Direct numerical simulation anslysis of flame surface density concept for large eddy simulation of turbulent premixed combustion [C], Sym Combus. 1998, 27(1):917–925.

[72] Charlette F , Meneveau C, Veynante D . A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests [J]. Combustion Flame, 2002, 131(1/2):159–180.

[73] Pizzuti L, Martins C A, Lacava P T. Laminar burning velocity and flammability limits in biogas: A literature review [J]. Renew Sust Energ Rev, 2016.

中图分类号:

 X932    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式