- 无标题文档
查看论文信息

题名:

 孟巴矿富含水砂层下厚煤层分层协调减灾开采技术与应用    

作者:

 穆驰    

学号:

 17103077002    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 081901    

学科:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 开采损害与保护    

导师姓名:

 余学义    

导师单位:

 西安科技大学    

提交日期:

 2023-06-30    

答辩日期:

 2023-06-02    

外文题名:

 Coordinated disaster reduction mining technology and application of stratification of thick coal seams under the water-rich sand layer of Barapukuria coal mine    

关键词:

 孟巴矿 ; 冈瓦纳地层 ; 隔水关键层 ; 复合关键层 ; 水体下开采 ; 协调减灾开采    

外文关键词:

 Barapukuria coal mine ; gondwana formation ; waterproof key layer ; composite key ; coal mining under water body ; coordinated disaster reduction and mining    

摘要:

孟巴矿矿井地质采矿条件复杂特殊,矿井属于水害、冲击地压、自燃发火等多种灾害并存的井工开采类型。在近地表赋存有100~120m厚富含水砂层UDT,被誉为孟加拉国的地下水库,煤层开采一旦破坏主要隔水层LDT,导通UDT含水层,其形成的水害对于矿井是致命的,因此,保护隔水层的完整性,提高富含水砂层下的安全开采可靠性,降低冲击矿压威胁程度已经成为孟巴矿安全生产亟待解决的科学问题。通过理论分析、计算机数值模拟、物理相似实验模拟和地表钻孔观测覆岩结构破坏特征等方法,开展了基于保护LDT隔水层和分析复合关键层致灾与控灾条件下的孟巴矿厚煤层分层协调减灾开采技术研究,并取得以下主要成果:

(1)以孟巴矿隔水关键层和复合关键层的赋存特征为依据,研究了隔水关键层防水、阻水性能和复合关键层对覆岩结构的控制作用,通过分析矿井水文地质、地层结构特征和致灾、控灾条件,揭示了煤层开采对隔水关键层的影响因素和复合关键层稳定性对顶板动力灾害、水害防治的影响,分析了隔水关键层破坏渗漏性和复合关键层断裂强冲击性的致灾条件,提出了应用分层协调开采保护隔水关键层和利用复合关键层的控灾条件降低顶板动力灾害强度的减灾开采方法。

(2)运用了物理相似模拟实验和UDEC5.0数值模拟计算,通过比较厚煤层不同分层开采导裂带发育高度和裂采比的差异性,结合不同分层覆岩移动破坏钻孔探测成果分析,揭示了厚煤层多分层开采覆岩导水裂隙带发育规律,构建了导水裂隙带发育高度预计模型。

(3)通过限高开采达到降低顶板灾害强度,揭示了厚煤层开采覆岩复合关键层结构移动破坏失稳演化机理。基于采动覆岩运移规律,分析了不同分层开采高度复合关键层覆岩破断前后力学过程,采用突变理论建立尖点突变模型,通过对覆岩复合关键层失稳破断进行力学分析,给出了复合关键层结构稳定性的判定条件,提出了运用首分层限高开采实现顶板冲击能量分次释放的控灾方法;运用UDEC5.0离散元软件分析了不同开采高度对上覆复合关键层结构破坏演化规律,随着开采高度增加,复合关键层的破坏范围也随着增加,当复合关键层失稳破断,覆岩结构形式由隔水-复合关键层,演化为隔水关键层结构形式,覆岩综合岩性也由中硬转变为软弱。

(4)在分层开采覆岩移动变形分布规律的基础上,构建了针对保护隔水层的分层错距计算模型,确定了厚煤层错距协调减灾开采关键参数。为避免分层开采LDT隔水层拉伸区的叠加破坏,采用分层工作面协调错距布置方式;运用Comsol Multiphysics有限元多物理场耦合软件模拟了不同错距开采煤岩渗流演化规律,验证了采用分层工作面错距协调布置方式能够有效降低开采边界拉伸区对LDT隔水层破坏和隔水性能的影响,同时二分层开采能够有效消除一分层采空区煤柱应力,实现开采区覆岩整体沉降;运用UDEC5.0离散元软件模拟了错距开采覆岩移动破坏和裂缝区演化规律,解释了利用分层工作面错距协调布置能够有效减少开采边界拉伸区对LDT隔水层的拉伸裂缝损伤。

(5)在孟巴矿井特殊地质采矿条件下,进行长达10多年的研究与工程实践,从致灾因果关系分析,通过开采布局、顺序及限高开采等方式,证实了厚煤层分层错距协调布置开采模式能够有效降低开采致灾强度,结合常规的矿井灾害防治措施,实现了复杂条件下多灾害矿井的安全、经济开采模式,创建了厚富含水砂层下厚煤层分层协调减灾开采孟巴模式,为类似条件的矿井灾害防治和安全开采提供科学依据。

外文摘要:

The geological mining conditions of the Barapukuria coal mine are complex and special. The mine belongs to the type of well mining where multiple disasters such as water damage, impact ground pressure, and spontaneous combustion coexist. There is 100-120m thick water-rich sand layer UDT near the surface. Which is known as the underground reservoir of Bangladesh. Once coal seam mining destroys the main water barrier LDT and turns on the UDT aquifer. The water damage it forms is fatal to the mine. Therefore, protecting the integrity of the water barrier, improving the reliability of safe mining under the aquifer, and reducing the threat of impact ore pressure has become an urgent scientific problem to be solved for the safe production of the Barapukuria coal mine. The thesis uses theoretical calculations as the basis, physical similarity experimental simulation and computer numerical simulation as the method, on-site data observation as the means, and engineering technology application as the purpose. The research on coordinated disaster reduction mining technology for stratification of thick coal seams in the Barapukuria coal mine based on the protection of the LDT of the main water barrier layer and the stability of the composite key layer was carried out, and the following main results were achieved:

(1) Analyzed the hydrogeological and stratigraphic structure characteristics of the mine, as well as the disaster-causing and disaster-control conditions. Based on the survival characteristics of the key layers of the water barrier layer and the key layers of the structure of the Barapukuria coal mine. The waterproof and water resistance properties of the key layers of the water barrier and the control effect of the key layers of the structure on the overburden structure are studied. The influencing factors of mining on the key layers of the water barrier and the location of the damage are revealed. The stability of the key layers of the structure is affected by the dynamic disasters of the top plate and the prevention and control of water hazards. The damage and leakage of the key layers of the water barrier and the strong impact of the fracture of the key layers of the structure are analyzed. The disaster-causing conditions, disaster-reducing mining methods for protecting the key layers of the water barrier and the idea of using the key layers of the structure to control the dynamic disasters of the mining of the top plate are proposed.

(2) Physical similarity simulation experiments and UDEC5.0 numerical simulation calculations were used to compare the differences in the height and mining ratio of the hydraulic fracture zone among various experimental methods. The experimental results were fitted and analyzed. By comparing and analyzing the results of drilling exploration for the movement and damage of different layered overlying rocks. The development law of hydraulic fracture zones in thick coal seam multi layered mining was revealed. A prediction model for the development height of hydraulic fracture zones was constructed.

(3) The mechanism of the instability evolution of the movement failure of the key layer structure of the overburden structure in the mining of thick coal seams is revealed. The control conditions of the key layer of the structure are proposed to reduce the intensity of the top plate disaster through height-limiting mining. Based on the law of mining overburden movement. The mechanical processes before and after the overburden breaking of the key layers of the structure are analyzed, the destruction morphology of the key layers of the overburden structure of the Barapukuria coal mine is obtained. The mutation theory is used to establish a sharp point mutation model to perform mechanical analysis of the instability and fracture of the key layers of the overburden structure. The conditions for determining the structural stability of the key layers of the structure are given. The first layered high-limit mining is proposed to achieve the disaster control method of the top plate impact energy release in batches. UDEC5.0 discrete element software is used to analyze the structural damage of the key layers of the overburden structure at different mining heights. As the mining height increases, the damage range of the key structural layers also increases. When the key structural layers are unstable and broken. The structural form of overburden has evolved from the water barrier-the key structural layer-to the water barrier key structural form. The comprehensive lithology of overburden has also changed from medium-hard to weak rock formations.

(4) The key parameters for coordinated disaster reduction mining of thick coal seams at staggered distances have been determined. The application is based on the law of movement deformation distribution of mining overburden. The theoretical calculation formula of layered misalignment for the protection of the water barrier layer is established. In order to avoid the superposition and destruction of the stretching area of the layered mining LDT water barrier layer. The coordinated misalignment arrangement of the layered work surface provides a theoretical basis. The use of Comsol multiphysics finite element multiphysics coupling software simulates the evolution law of coal and rock seepage from different misalignment mining. Verifies that the use of layered work surface misalignment coordinated arrangement can effectively reduce the impact of the mining boundary stretching area on LDT damage and water isolation performance. While two-layer mining can effectively eliminate the stress of the coal column in a layered goaf area. To achieve the overall sedimentation of overburden in the mining area; using UDEC5.0 discrete element software to simulate the movement failure of overburden and the evolution law of the crack area in wrong-distance mining. It explains the coordinated arrangement of the layered working surface at wrong distances. Which can effectively reduce the tensile crack damage of the LDT water barrier in the stretching area of the mining boundary.

(5) Under the special geological and mining conditions of the Barapukuria coal mine. Over 10 years of research and engineering practice have been conducted. From the analysis of the causal relationship between disasters. Through mining layout, sequence, and height limit mining. It has been confirmed that the coordinated arrangement of thick coal seam layering and staggered mining mode can effectively reduce the intensity of mining disasters. Combined with conventional mine disaster prevention and control measures. The safe and economic mining mode of multi disaster mines under complex conditions has been achieved. We have created a Mengba model for coordinated disaster reduction and mining of thick coal seams under thick water rich sand layers, provided scientific basis for disaster prevention and safe mining in mines with similar conditions.

参考文献:

[1]王双明.对我国煤炭主体能源地位与绿色开采的思考[J].中国煤炭,2020,46(02):11-16.

[2]廖育恒. 孟巴矿输煤皮带走廊建设[A]. 中国煤炭学会煤炭建设与岩土工程专业委员会.矿山建设工程技术新进展——2008全国矿山建设学术会议文集(下)[C].中国煤炭学会煤炭建设与岩土工程专业委员会:中国煤炭学会,2008:4.

[3]白海波.孟巴矿“4·5”突水水源判断和治理[J].江苏煤炭,1998(04):5-6.

[4]庞卫东.孟巴矿突水事故原因与快速治理技术[J].煤炭科学技术,2010,38(12):101-104.

[5]庞卫东,杨胜强.孟巴矿地热特点及成因分析和治理[J].煤矿安全,2011,42(02):135-136.

[6]刘垒,杨胜强,刘杰,钱小平.孟巴矿地温梯度测定方法及其计算[J].煤炭工程,2013,32(02):97-99.

[7]金一,关伟.基于SSM模型的我国能源终端消费结构研究[J].辽宁师范大学学报(自然科学版),2020,43(02):228-234.

[8]翟小伟,文虎,岳宝祥.孟巴高温矿井煤层火灾形成机理及关键控制技术的应用[J].煤矿安全,2010,41(02):46-48.

[9]闫强,陈毓川,王安建,等.我国新能源发展障碍与应对:全球现状评述[J].地球学报,2010,31(05):759-767.

[10]尹春华,顾培亮.我国产业结构的调整与能源消费的灰色关联分析[J].天津大学学报,2003,15(01):104-107.

[11]牛克洪.中国煤炭革命的方向在哪里[J].能源,2018,11(02):95-97.

[12]池京云.世界能源革命及对我国的启示[J].国土资源情报,2020,19(01):25-30.

[13]庞卫东,夏明惠,王靖焘.孟加拉国煤炭资源状况及开发途径[J].中国煤炭,2011,37(04):122-125.

[14]李丽英.能源革命和经济新常态下我国煤炭科技发展趋势探析[J].煤炭工程,2017,49(03):143-145+148.

[15]李维明.煤炭分级分质利用是推动我国能源革命的必然选择[J].煤炭经济研究,2016,36(02):13-15.

[16]Cong Lin, Jianqiang Deng, Yaoru Liu, et al.Experiment simulation of hydraulic fracture in colliery hard roof control[J].Journal of Petroleum Science and Engineering,2016,38(06):265-271.

[17]Hu He, Linming Dou, Jun Fan, et al.Deep-hole directional fracturing of thick hard roof for rockburst prevention [J].Tunnelling and Underground Space Technology, 2012,32(03):34-43.

[18]朱稳樑,王坤.“一带一路”对煤炭发展的影响与机遇[J].中国煤炭工业,2016(04):81-83.

[19]牛楠,刘家顺,孙晔,等.“一带一路”战略对煤炭产业发展的影响及对策[J].煤炭经济研究,2015,35(07):66-70.

[20]韩梦瑶,熊焦,刘卫东.中国跨境能源贸易及隐含能源流动对比——以“一带一路”能源合作为例[J].自然资源学报,2020,35(11):2674-2686.

[21]马瑶. “一带一路”沿线国家煤炭产业投资风险研究[D].西安科技大学,2020.

[22]亚库比. 中哈煤炭行业发展的比较分析与合作路径研究[D].西安科技大学,2020.

[23]宁杰. 全球供应链重构下的我国矿业对外直接投资转型[D].中国地质大学(北京),2020.

[24]魏晨雨. “一带一路”中巴经济走廊建设中的能源合作研究[D].兰州大学,2020.

[25]孔会青. “一带一路”倡议下我国能源企业对外投资风险研究[D].首都经济贸易大学,2018.

[26]张会清,唐海燕.中国与“一带一路”沿线地区的贸易联系问题研究——基于贸易强度指数模型的分析[J].国际经贸探索,2017,33(03):27-40.

[27]任世华,陈茜.我国煤炭企业在“一带一路”沿线地区的投资环境评价[J].煤炭经济研究,2016,36(06):12-16.

[28]刘佳骏.“一带一路”战略背景下中国能源合作新格局[J].国际经济合作,2015,19(10):30-33.

[29]梁敦仕.“一带一路”战略下我国煤炭产业发展机遇[J].煤炭经济研究,2015,35(07):10-15.

[30]张政. 多式联运下我国煤炭调运问题的实证研究[D].北京交通大学,2018.

[31]KWIAKEK J. Ochronaobiektowbudowlanychnaterenachgorniczych[J]. Katowice GIG, 1997,22(06): 56-69.

[32]BAKUN-MAZOR D,HATZOR Y H,DERSHOWITZ W S.Modeling mechanical layering effects on stability of underground openings in jointed sedimentary rocks[J].International Journal of Rock Mechanics and Mining Sciences, 2009,46(02): 262-271.

[33]KHAIR A W, QUINN M K and CHAFFINS R D. Effect of topography on ground movement due to longwall mining[J]. Mining Engeering, 1988,40(08): 820-822.

[34]KOSTAK B, CHAN B and RYBAR J. Deformation trends in the Jezeri Castle massif, KrusneHory Mts[J]. Acta Geodynamica et Geomaterialia, 2006, 13(02): 39-49.

[35]DRUCKER H and LE CUN Y. Improving generalization performance using double backpropagation[J]. IEEE Transactions on Neural Networks, 1992,3(06):991-997.

[36]CUNDARI T R. Modeling lanthanide coordination complexes.Comparison of semiempiri- cal and classical methods[J]. Journal of Chemical Information and Computer Sciences, 1998,38(03):523-528.

[37]B. R. Leavitt , J. F. Gibbens、E. Werner and J. C. Hempel Three-dimensional effects of hydraulic conductivity enhancement and desaturation around mined panels[J]. International Joumal of Rock Mechanics and Mining Science, 1997,34(08):1139-1152.

[38]G. E. Tieman , H. W. Rauchand J. S. Walker Hydrologic variations due to longwall mining[J]. Ground Control in Mining. Morgantown, 2016,15(06):1105-1118.

[39]M. M. Singh, F. S. Kendorski. The effects of longwall coal mining on overlying aquifers[J]. In: YOUNGER P L and ROBINS N S (eds). Mine Water Hydrogeology and Geochemistry: Geological Society, London Special Publications 198, 2002, 31(07): 17-45.

[40]SINGH M M and KENDORSKI F S. Strata disturbance prediction for mining beneath surface water and waste impoundments[J]. Ground Control in Mining. Morgantown, 2015,21(02):1108-1119.

[41]余学义,毛旭魏,郭文彬.孟巴矿厚松散含水层下协调保水开采模式[J].煤炭学报,2019,44(03):739-746.

[42]余学义,穆驰,王皓,等.孟加拉国Barapukuria矿厚煤层分层协调减灾开采模式[J].煤炭学报,2022,47(06):2352-2359.

[43]余学义,穆驰,李剑锋.孟巴矿强含水体下分层开采覆岩导水裂隙带发育规律[J].煤炭学报,2022,47(S1):29-38.

[44]余学义,刘俊,赵兵朝,等.孟巴矿特厚煤层分层开采覆岩导水裂隙带高度测定[J].煤矿安全,2013,44(08):169-171+174.

[45]余学义,穆驰.神东矿区土地复垦效益评价[J].西安科技大学学报,2019,39(02):201-208.

[46]马立东. 孟巴矿厚煤层多分层开采覆岩导水裂隙带发育规律研究[D].西安科技大学,2020.

[47]赵保成. 厚煤层分层开采地表移动变形规律研究[D].中国矿业大学,2017.

[48]郭文彬. 孟加拉国Barapukuria井田三厚条件下协调减损开采理论研究与应用[D].西安科技大学,2018.

[49]魏飞. 孟巴矿厚煤层开采覆岩及地表沉陷规律研究[D].中国矿业大学,2018.

[50]娄培杰.厚煤层开采合理煤柱留设探讨[J].煤炭工程,2014,46(01):14-17.

[51]刘俊. 孟巴矿特厚煤层分层开采导水裂隙带高度研究[D].西安科技大学,2015.

[52]许文强. Barapukuria煤矿强含水厚松散层下协调减损开采技术研究[D].西安科技大学,2016.

[53]尚轩.孟巴矿中部采区下山煤柱开采关键技术研究[D].西安科技大学,2017.

[54]张建兵.孟巴矿北部采区强含水层下开采方法研究[D].西安科技大学,2017.

[55]SINGH M M and KENDORSKI F S. Strata disturbance prediction for mining beneath surface water and waste impoundments[J]. Ground Control in Mining. Morgantown, 2013,15(06):1005-1117.

[56]COE C J and STOWE S M. Evaluating the impact of longwall coal mining on the hydrologic balance[J]. The impact of mining on ground water. Denver, 2016,20(03):1125-1136.

[57]C. J. Coe, S. M. Stowe、. Strata-movement concepts and the hydrogeological impact of underground coal mining[J]. Ground Water, 1986, 24(04): 507-515.

[58]C. J. Booth and H. W. Rauch. Study of dewatering effects at an underground longwall mine site in the Pittsburgh Seam of the Northern Appalachian Coalfield. Proceedings of the Bureau of Mines technology transfer seminar[J]. Pittsburgh, 1987, 32(06): 412-422.

[59]C. J. Booth. A reappraisal of investigations into strata permeability changes associated with longwall mining[J]. Mine Water and the Environment, 1983, 2(01): 1-14.

[60]T. R. Astonand R. N. Singh. Design Aspects of Barrier Pillars Against Water-Logged Workings in Coal Mining Operations[J]. Water in Mining and Underground Works, 1984(01): 675-692.

[61]C. J. Booth. Topographic influence of longwall mining on ground-water supplies[J]. Ground Water, 1995, 33(05): 786-793.

[62]C. J. Booth. A reappraisal of investigations into strata permeability changes associated with longwall mining[J]. Mine Water and the Environment, 1983, 2(01): 1-14.

[63]B. R. Leavitt , J. F. Gibbens、E. Werner and J. C. Hempel Three-dimensional effects of hydraulic conductivity enhancement and desaturation around mined panels[J]. International Joumal of Rock Mechanics and Mining Science, 1997, 34(08): 1139-1152.

[64]G. E. Tieman , H. W. Rauchand J. S. Walker Hydrologic variations due to longwall mining. Ground Control in Mining. Morgantown[C]. 1992.

[65]C. J. Booth Topographic influence of longwall mining on ground-water supplies[J]. Ground Water, 1995, 33(15): 786-793.

[66]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008(01):1-4.

[67]缪协兴.综合机械化固体充填采煤技术研究进展[J].煤炭学报,2012,37(08):1247-1255.

[68]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报,2009,26(01):1-14.

[69]缪协兴,钱鸣高.采动岩体的关键层理论研究新进展[J].中国矿业大学学报,2000(01):25-29.

[70]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995(Z1):3-12+197.

[71]余学义,李邦帮,李瑞斌,等.西部巨厚湿陷性黄土层开采损害程度分析[J].中国矿业大学学报,2008(01):43-47.

[72]余学义,王昭舜,杨云.大采深综放开采地表移动变形规律[J].西安科技大学学报,2019,39(04):555-563.

[73]Yu, X.Y., Mu, C., Zhang, D.D. Assessment of land reclamation benefits in mining areas using fuzzy comprehensive evaluation. Sustainability 2020, 12(01):1106-1119.

[74]黄庆享.浅埋煤层保水开采隔水层稳定性的模拟研究[J].岩石力学与工程学报,2009,28(05):987-992.

[75]黄庆享,刘玉卫.巷道围岩支护的极限自稳平衡拱理论[J].采矿与安全工程学报,2014,31(03):354-358.

[76]黄庆享,张文忠,侯志成.固液耦合试验隔水层相似材料的研究[J].岩石力学与工程学报,2010,29(S1):2813-2818.

[77]王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(01):7-14.

[78]黄炳香,刘长友,许家林.采动覆岩破断裂隙的贯通度研究[J].中国矿业大学学报,2010,39(01):45-49.

[79]黄炳香,赵兴龙,陈树亮,等.坚硬顶板水压致裂控制理论与成套技术[J].岩石力学与工程学报,2017,36(12):2954-2970.

[80]黄炳香,程庆迎,刘长友,等.煤岩体水力致裂理论及其工艺技术框架[J].采矿与安全工程学报,2011,28(02):167-173.

[81]李利平,李术才,李树忱,等.松散承压含水层下采煤的流固耦合模型试验与数值分析研究[J].岩土工程学报,2013,35(04):679-690.

[82]柴敬,杜文刚,雷武林,等.浅埋煤层隔水关键层失稳光纤传感检测试验研究[J].采矿与安全工程学报,2020,37(04):731-740.

[83]黄庆享.浅埋煤层保水开采岩层控制研究[J].煤炭学报,2017,42(01):50-55.

[84]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报,2006,15(01):1-7.

[85]钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(04):973-984.

[86]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,13(04):5-10.

[87]钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J].岩土工程学报,1995,11(06):55-62.

[88]崔锋,张华兴,刘鹏亮,等.沙漠边缘煤矿风积砂膏体充填保水开采研究[J].煤炭科学技术,2011,39(02):10-13.

[89]刘建功,赵利涛.基于充填采煤的保水开采理论与实践应用[J].煤炭学报,2014,39(08):1545-1551.

[90]黄庆享,张文忠.浅埋煤层条带充填隔水岩组力学模型分析[J].煤炭学报,2015,40(05):973-978.

[91]黄庆享,刘建浩.浅埋大采高工作面煤壁片帮的柱条模型分析[J].采矿与安全工程学报,2015,32(02):187-191.

[92]黄庆享,王德发.三软煤层巷道锚杆加固机理模拟研究[J].煤炭技术,2015,34(01):63-66.

[93]黄庆享,蔚保宁,张文忠.浅埋煤层黏土隔水层下行裂隙弥合研究[J].采矿与安全工程学报,2010,27(01):35-39.

[94]郭文兵,杨达明,谭毅,等.薄基岩厚松散层下充填保水开采安全性分析[J].煤炭学报,2017,42(01):106-111.

[95]王磊. 固体密实充填开采岩层移动机理及变形预测研究[D].中国矿业大学,2012.

[96]金志远. 浅埋近距煤层重复扰动区覆岩导水裂隙发育规律及其控制[D].中国矿业大学,2015.

[97]李利平,李术才,李树忱,等.松散承压含水层下采煤的流固耦合模型试验与数值分析研究[J].岩土工程学报,2013,35(04):679-690.

[98]李猛,张吉雄,邓雪杰,等.含水层下固体充填保水开采方法与应用[J].煤炭学报,2017,42(01):127-133.

[99]董书宁,杨志斌,姬中奎,等.神府矿区大型水库旁烧变岩水保水开采技术研究[J].煤炭学报,2019,44(03):709-717.

[100]王国法,庞义辉,任怀伟,等.煤炭安全高效综采理论、技术与装备的创新和实践[J].煤炭学报,2018,43(04):903-913.

[101]刘万里,马修泽,张学亮.基于探地雷达的特厚煤层厚度动态探测技术[J].煤炭学报,2021,46(08):2706-2714.

[102]李化敏,蒋东杰,李东印.特厚煤层大采高综放工作面矿压及顶板破断特征[J].煤炭学报,2014,39(10):1956-1960.

[103]姜福兴,魏全德,王存文,等.巨厚砾岩与逆冲断层控制型特厚煤层冲击地压机理分析[J].煤炭学报,2014,39(07):1191-1196.

[104].张宏伟,朱志洁,霍利杰,等.特厚煤层综放开采覆岩破坏高度[J].煤炭学报,2014,39(05):816-821.

[105]王金华,黄志增,于雷.特厚煤层综放开采顶煤体“三带”放煤理论与应用[J].煤炭学报,2017,42(04):809-816.

[106]何江,窦林名,曹晋荣,等.急倾斜特厚煤层水平分段综放开采冲击矿压机理[J].煤炭学报,2020,45(05):1701-1709.

[107]于雷,闫少宏.特厚煤层综放开采顶板运动形式及矿压规律研究[J].煤炭科学技术,2015,43(08):40-44+59.

[108]史久林. 不同覆岩条件特厚煤层综放开采放煤规律研究[D].煤炭科学研究总院,2021.

[109]赵通. 近距离巨厚坚硬岩层下厚煤层开采顶板的破断失稳机理及控制研究[D].中国矿业大学,2018.

[110]匡铁军. 特厚煤层覆岩结构及远近场顶板控制技术研究[D].中国矿业大学,2021.

[111]刘天泉.矿山岩体采动影响与控制工程学及其应用[J].煤炭学报,1995,13(01):1-5.

[112]高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996.36(01):51-56.

[113]田开铭.开展对低渗透介质的水文地质学研究[J].水文地质工程地质,2000,11(02):27-28.

[114]刘英锋,王世东,王晓蕾.深埋特厚煤层综放开采覆岩导水裂隙带发育特征[J].煤炭学报,2014,39(10):1970-1976.

[115]马莲净,赵宝峰,徐会军,等.特厚煤层分层综放开采断层-离层耦合溃水机理[J].煤炭学报,2019,44(02):567-575.

[116]黎灵,舒宗运,冯宇锋.特厚煤层综放开采覆岩离层水突水机理分析及防治[J].煤炭科学技术,2018,46(01):175-182.

[117]窦林名,何烨,张卫东. 孤岛工作面冲击矿压危险及其控制[J]. 岩石力学与工程学报. 2003, 22(11): 1867-1872.

[118]姜耀东,赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报. 2015(11): 2188-2204.

[119]姜福兴,曲效成,于正兴,等. 冲击地压实时监测预警技术及发展趋势[J]. 煤炭科学技术. 2011, 39(2): 59-64.

[120]钱七虎. 冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学. 2014,22(01): 1-6.

[121]Díaz Aguado M B, González C. Influence of the stress state in a coal bump-prone deep coalbed: A case study[J]. International Journal of Rock Mechanics and Mining Sciences. 2009, 46(2): 333-345.

[122]陈建君. 厚硬顶板特厚煤层孤岛煤柱应力集中程度及错层防冲研究[D]. 中国矿业大学, 2016.

[123]刘宏军. 双侧采空孤岛煤体冲击地压发生机理与防治技术研究[D]. 中国矿业大学(北京), 2016.

[124]温经林. 深井条带开采冲击机理及应用研究[D]. 北京科技大学, 2018.

[125]汤建泉. 坚硬顶板条件冲击地压发生机理及控制对策[D]. 中国矿业大学(北京), 2016.

[126]杨英明. 动力扰动下深部高应力煤体冲击失稳机理及防治技术研究[D]. 中国矿业大学(北京), 2016.

[127]Wang S Y, Lam K C, Au S K, et al. Analytical and Numerical Study on the Pillar Rockbursts Mechanism[J]. Rock Mechanics and Rock Engineering. 2006, 39(05): 445-467.

[128]Cook N G W. The application of seismic techniques to problems in rock mechanics[J]. International Journal of Rock Mechanics and Mining Sciences. 1964, 33(03): 169-179.

[129]Cook N G W. A note on rockbursts considered as a problem of stability[J]. Journal of the South African Institute of Mining and Metallurgy. 1965, 36(02):: 437-446.

[130]谢和平,钱鸣高,彭苏萍,等. 煤炭科学产能及发展战略初探[J]. 中国工程科学. 2011(06): 44-50.

[131]潘一山,章梦涛. 用突变理论分析冲击地压发生的物理过程[J]. 阜新矿业学院学报(自然科学版). 1992(01): 12-18.

[132]潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报. 2018, 11(08): 2091-2098.

[133]窦林名,何江,曹安业,等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报. 2015, 40(7): 1469-1476.

[134]窦林名,李振雷,张敏. 煤矿冲击地压灾害监测预警技术研究[J]. 煤炭科学技术. 2016, 44(7): 41-46.

[135]Dou L, He X, He H, et al. Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal mine[J]. Transactions of Nonferrous Metals Society of China. 2014, 24(4): 1255-1261.

[136]尹光志,李贺,鲜学福,等. 煤岩体失稳的突变理论模型[J]. 重庆大学学报(自然科学版). 1994, 15(01): 23-28.

[137]潘俊锋. 冲击地压的冲击启动机理及其应用[D]. 煤炭科学研究总院, 2016.

[138]窦林名,牟宗龙,曹安业,等. 煤矿冲击矿压防治[M]. 北京: 科学出版社, 2017: 466-472.

[139]李振雷,窦林名,王桂峰,等. 坚硬顶板孤岛煤柱工作面冲击特征及机制分析[J]. 采矿与安全工程学报. 2014(04): 519-524.

[140]李新华,张向东. 浅埋煤层坚硬直接顶破断诱发冲击地压机理及防治[J]. 煤炭学报. 2017,11(02): 510-517.

[141]王兆会,程占博. “两硬”条件下孤岛型短煤柱工作面顶板破断形态及灾害防治分析[J]. 岩石力学与工程学报. 2016(S2): 4018-4028.

[142]Lu C, Dou L, Zhang N, et al. Microseismic frequency-spectrum evolutionary rule of rockburst triggered by roof fall[J]. International Journal of Rock Mechanics and Mining Sciences. 2013, 16(02): 6-16.

[143]钱鸣高,石平五.矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2003:180-181.

[144]朱庆华,茅献彪,冯梅梅,等. 跨采运输大巷动压显现规律研究[J]. 煤炭科技. 2010, 15(02): 71-73.

[145]张东升,茅献彪,马文顶. 综放沿空留巷围岩变形特征的试验研究[J]. 岩石力学与工程学报. 2002, 21(3): 331-334.

[146]何江,窦林名,王崧玮,等. 坚硬顶板诱发冲击矿压机理及类型研究[J]. 采矿与安全工程学报. 2017, 34(06): 1122-1127.

[147]张俊飞,姜福兴,杨建博,等. 冲击煤层孤岛煤柱可开采性研究[J]. 采矿与安全工程学报. 2016,11(05): 867-872.

[148]臧龙,谢文兵,荆升国,等. 孤岛煤柱下破碎软岩巷道支护技术研究[J]. 煤炭科学技术. 2014,17(03): 8-11.

[149]闫帅,柏建彪,卞卡,等. 复用回采巷道护巷煤柱合理宽度研究[J]. 岩土力学. 2012, 21(10): 3081-3086.

[150]Yu Y, Deng K, Chen S. Mine Size Effects on Coal Pillar Stress and Their Application for Partial Extraction[J]. Sustainability. 2018, 10(3): 792.

[151]Zhu S, Feng Y, Jiang F, et al. Mechanism and risk assessment of overall-instability-induced rockbursts in deep island longwall panels[J]. International Journal of Rock Mechanics and Mining Sciences. 2018, 106(06): 342-349.

[152]易恩兵,徐大连,孙进,等. 孤岛工作面不同宽度煤柱防治冲击地压分析[J]. 煤矿安全. 2011, 12(11): 126-128.

[153]王志扬,张振鹏.厚煤层无煤柱分层开采防灭火技术探讨[J].为主煤矿现代化,2009,5(S1):16-17.

[154]刘送永. 采煤机滚筒截割性能及截割系统动力学研究[D].中国矿业大学,2009.

[155]赵延林,吴启红,王卫军,等.基于突变理论的采空区重叠顶板稳定性强度折减法及应用[J].岩石力学与工程学报,2010,29(07):1424-1434.

[156]朱宗奎. 基于风险评估及突变理论的煤层底板突水危险性预测[D].中国矿业大学,2014.

[157][蒋腾飞,姜谙男,许梦飞,等.基于尖点突变理论和爆破累积损伤模型的岩溶基坑防突厚度研究[J].岩石力学与工程学报,2021,40(09):1902-1913.

[158]陈权川,王安礼,邬忠虎,等.基于尖点突变理论的含软弱夹层缓倾顺层岩质边坡稳定性研究[J].河南理工大学学报(自然科学版),2022,41(06):188-195.

[159]田水承,申章进.基于熵值法-突变理论的煤矿透水安全评价[J].西安科技大学学报,2022,42(06):1064-1070.

[160]许家林,朱卫兵,鞠金峰.浅埋煤层开采压架类型[J].煤炭学报,2014,39(08):1625-1634.

[161]鞠金峰,许家林,朱卫兵.浅埋特大采高综采工作面关键层“悬臂梁”结构运动对端面漏冒的影响[J].煤炭学报,2014,39(07):1197-1204.

[162]于洋. 特厚煤层坚硬顶板破断动载特征及巷道围岩控制研究[D].中国矿业大学,2015.

[163]许家林,轩大洋,朱卫兵,等.基于关键层控制的部分充填采煤技术[J].采矿与岩层控制工程学报,2019,1(02):69-76.

[164]赵兵朝,刘樟荣,同超,等.覆岩导水裂缝带高度与开采参数的关系研究[J].采矿与安全工程学报,2015,32(04):634-638.

[165]黄庆享,赵萌烨,黄克军.浅埋煤层群开采顶板双关键层结构及支护阻力研究[J].中国矿业大学学报,2019,48(01):71-77+86.

[166]柴敬,汪志力,刘文岗,等.采场上覆关键层运移的模拟实验检测[J].煤炭学报,2015,40(01):35-41.

[167]蒋金泉,张培鹏,秦广鹏,等.一侧采空高位硬厚关键层破断规律与微震能量分布[J].采矿与安全工程学报,2015,32(04):523-529.

[168]姚顺利. 巨厚坚硬岩层运动诱发动力灾害机理研究[D].北京科技大学,2015.

[169]梁运培,李波,袁永,等.大采高综采采场关键层运动型式及对工作面矿压的影响[J].煤炭学报,2017,42(06):1380-1391.

[170]余学义,王昭舜,杨云,等.大采深综放开采覆岩移动规律离散元数值模拟研究[J].采矿与岩层控制工程学报,2021,3(01):28-38.

[171]鞠金峰,许家林,刘阳军,等.关键层运动监测及岩移5阶段规律—以红庆河煤矿为例[J].煤炭学报,2022,47(02):611-622.

[172]张国建. 巨厚弱胶结覆岩深部开采岩层运动规律及区域性控制研究[D].中国矿业大学,2020.

[173]王高昂,朱斯陶,姜福兴,等.倾斜厚煤层综放工作面煤柱-关键层结构失稳型矿震机理[J].煤炭学报,2022,47(06):2289-2299.

[174]周坤友. 巨厚承压含水关键层的作用效应及疏水调压聚能诱冲机理[D].中国矿业大学,2022.

[175]张国辉. 酸性环境下矸石胶结充填体力学性能演化及渗流规律研究[D].中国矿业大学,2022.

[176]李仲夏. 孔隙介质渗流阻力实验及数值模拟研究[D].中国地质大学,2020.

[177]索永录,刘颖凯,肖江,等.废弃石油井周围煤层中油层气扩散-渗流规律[J].西安科技大学学报,2019,39(05):753-760.

[178]王登科,魏建平,付启超,等.基于Klinkenberg效应影响的煤体瓦斯渗流规律及其渗透率计算方法[J].煤炭学报,2014,39(10):2029-2036.

中图分类号:

 TD745    

开放日期:

 2025-11-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式