- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 景宁波    

学号:

 B201503007    

保密级别:

     

论文语种:

 chi    

学科代码:

 0802    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2023    

培养单位:

 西    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

     

第一导师姓名:

 马宪民    

第一导师单位:

 西安科技大学    

第二导师姓名:

 郭卫    

论文提交日期:

 2023-06-21    

论文答辩日期:

 2023-05-27    

论文外文题名:

 Research on Point Cloud Registration Method for Fully Mechanized Mining Face Based on Monocular Camera and LiDAR Data Fusion    

论文中文关键词:

 综采工作面 ; 点云配准 ; 数据融合 ; 图像增强 ; 点云滤波 ; 点云聚类    

论文外文关键词:

 Fully mechanized mining faces ; Point cloud registration ; Data fusion ; Image enhancement ; Point cloud filtering ; Point cloud clustering    

论文中文摘要:
<p>使</p> <p>线线32msRANSAC12.1%40.7&deg;6mm</p> <p>22ms2.85%1.31%7.91%</p> <p>97.8%0.5s</p> <p>93.5%58msKmeansA-DBSCANDB7.25%CH9.06%</p> <p>0.35sGP-ICPCPDRMSE11.4%</p> <p>西</p>
论文外文摘要:
<p>Coal is the most important primary energy in China. With the continuous promotion of transparent working face construction, LiDAR is playing an increasingly important role in fully mechanized mining faces. Point cloud registration is a key technology for 3D modeling of fully mechanized mining faces. The dust and mist environment of the fully mechanized mining face affects the accuracy and range of LiDAR, resulting in low accuracy and high mismatch rate in point cloud registration. By integrating data from monocular cameras and LiDAR, the limitations of using a single sensor can be overcome, and the accuracy and robustness of point cloud registration can be improved. A point cloud registration method for data fusion between monocular cameras and LiDAR is studied based on the environmental characteristics of fully mechanized mining faces. The main content is as follows:</p> <p>In response to the problem of low extraction efficiency of calibration plates in online calibration of cameras and LiDAR, a data fusion system for monocular cameras and LiDAR was developed, and a underground coal mine calibration plate was designed. A calibration plate extraction algorithm based on improved region growth is proposed. Firstly, the voxel random method is used to down sampling the point cloud; Secondly, a combination of Euclidean distance and angular distance is used to achieve rapid clustering of point clouds; Then, the LSM is used to solve the normal vector to calculate the plane parameters and generate the initial seeds; Finally, the origin cloud is refined and extracted using the region growth method. The average extraction time is 32ms, and the extraction speed is 12.1% faster than the RANSAC algorithm. The reprojection error is less than 4 pixels, the rotation error is less than 0.7&deg;, and the translation error is less than 6mm. The results show that the detection efficiency is improved while ensuring accuracy.</p> <p>A dual channel block matching algorithm for image enhancement of fully mechanized mining faces is proposed to address the problems of excessive enhancement of bright areas and insufficient enhancement of dark areas in image enhancement. Firstly, perform dark and bright channel analysis on the original image data to estimate the ambient light value and transmittance; Secondly, block matching and grouping of pixels are performed based on the principle of non local similarity in the image; Then, the 3D blocks are transformed into wavelet domain coefficients through wavelet transform, and the coefficients are subjected to hard threshold filtering; Finally, the enhanced image is restored through inverse wavelet transform. The processing time is stable within 22ms. This algorithm improves the PSNR of image by 2.85%, SSIM by 1.31%, and natural image quality by 7.91%. The results show that improving the clarity and contrast of the images, effectively filters out dust and fog noise in the images, and improves the quality of the images.</p> <p>In response to the problems of excessive near-field noise and loss of far-field effective data in the LiDAR point cloud filtering of fully mechanized mining faces, a model of the impact of dust and mist on LiDAR has been established. On the basis of this, a point cloud twice filtering algorithm based on fan ring neighborhood is proposed. Firstly, principal component analysis is used to reduce the dimensionality of 3D point cloud data and obtain multiple sets of 2D data; Secondly, perform Laplace operations on each group of data to identify high-frequency noise in the data and perform the first filtering on the data; Then, statistical analysis based on fan ring neighborhood is used to remove outliers from the data and perform a second filtering on the data. Finally, multiple sets of 2D data after two rounds of filtering are restored to 3D point cloud data. Obtained a filtering accuracy of 97.8%, with a stable calculation time within 0.5s. The comparison of statistical filtering, radius filtering, and dynamic radius filtering algorithms shows that while improving the accuracy of laser point cloud filtering and the structured features of point clouds, it reduces running time and effectively suppresses dust and fog noise in point clouds.</p> <p>Aiming at the problems of threshold dependence and uneven density in the point cloud clustering of LiDAR, a point cloud clustering algorithm based on the reference plane projection of monocular camera and LiDAR data fusion was proposed. First, the enhanced image was edge detected using gradient quantile double threshold to obtain binary edge images; Secondly, the RANSAC method is used to extract the coal wall region from the filtered point cloud; Then, based on the calibration matrix of the monocular camera and LiDAR, the edge image is projected onto the point cloud data, and the coal wall edge is refined to obtain the coal wall point cloud with image edge constraints; Finally, the reference plane projection transformation method is used to cluster non coal wall point clouds and obtain point cloud clusters. The ground segmentation accuracy of this algorithm is about 93.5%, and the average clustering time is 58ms. Compared with the Kmeans and A-DBSCAN algorithms, the clustering results show an average decrease of 7.25% in DB index and an average increase of 9.06% in CH index. The results indicate that it can effectively reduce the phenomenon of over segmentation in point cloud segmentation, improve the inter class differences of clustered point cloud clusters, and reduce the intra class differences of point cloud clusters.</p> <p>A light intensity gray correction point cloud registration algorithm based on point cloud clusters is proposed to address the problem of low accuracy and high error matching rate in the registration of laser radar point clouds in fully mechanized mining faces. Firstly, calculate the feature values of the point cloud cluster and obtain the first set of candidate matching point pairs through feature matching; Secondly, extract key points and use extended feature matching to obtain a second set of candidate matching point pairs; Then, based on the reflected light intensity and grayscale of the laser, correct candidate matching point pairs, classify and process them, eliminate matching point pairs with larger distances, retain matching point pairs with smaller distances, and adjust the matching point pairs in the middle of the distance; Finally, the fish school search algorithm is used to solve the transformation matrix. The calculation time is stable within 0.35s, and compared with GP-ICP and CPD algorithms, the average RMSE decreases by 11.4%. The results indicate that it can effectively reduce the mismatch rate of point clouds and improve the accuracy of point cloud registration.</p> <p>Using a developed monocular camera and LiDAR data fusion system, combined with the proposed algorithm, on-site experiments were conducted on the fully mechanized mining working face at the Comprehensive Training Center of the Coal Major at Xi&#39;an University of Science and Technology. The theory and method studied in this paper were validated through the splicing experiment of the head point cloud, middle point cloud, and tail point cloud of the fully mechanized mining face, and good results were achieved. The point cloud registration method proposed in this article provides technical support for the transparent working face, and also established a theoretical foundation for achieving unmanned fully mechanized coal mining face.</p>
参考文献:

[1]袁亮.我国煤炭主体能源安全高质量发展的理论技术思考[J].中国科学院院刊,2023,38(01):11-22.

[2]王国法,刘合,王丹丹,等.新形势下我国能源高质量发展与能源安全[J].中国科学院院刊,2023,38(01):23-37.

[3]王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术, 2019,47(08):1-36.

[4]袁亮,张平松.煤矿透明地质模型动态重构的关键技术与路径思考[J].煤炭学报,2023,48(01):1-14.

[5]张帆,葛世荣.矿山数字孪生构建方法与演化机理[J].煤炭学报,2023,48(01):510-522.

[6]刘小雄,王海军.薄煤层智能开采工作面煤层透明化地质勘查技术[J].煤炭科学技术,2022,50(07):67-74.

[7]原长锁,王峰.综采工作面透明化开采模式及关键技术[J].工矿自动化,2022,48(03): 11-15+31.

[8]王国法,张良,李首滨,等.煤矿无人化智能开采系统理论与技术研发进展[J].煤炭学报, 2023,48(01):34-53.

[9]刘鹏坤,王聪,刘帅.综采工作面多视觉全局坐标系研究[J].煤炭学报, 2019,44(10) :3272-3280.

[10]Dunn M,Reid P,Malos J.Development of a protective enclosure for remote sensing applications case study: laser scanning in underground coal mines[J].Resources,2020, 9(5):1-10.

[11]李森,王峰,刘帅等.综采工作面巡检机器人关键技术研究[J].煤炭科学技术,2020, 48(07):218-225.

[12]张守祥,张学亮,张磊,等.综采巡检机器人关键技术研究[J].煤炭科学技术,2022, 50(01):247-255.

[13]谷彬,赵云飞.自主智能割煤技术在榆家梁煤矿43101综采工作面的实践应用[J].能源科技,2020,18(07):29-32.

[14]原长锁,王峰.综采工作面透明化开采模式及关键技术[J].工矿自动化,2022, 48(03):11-15+31.

[15]王国法,杜毅博.智慧煤矿与智能化开采技术的发展方向[J].煤炭科学技术,2019, 47(01):1-10.

[16]贺海涛.综采工作面智能化开采系统关键技术[J].煤炭科学技术,2021,49(S1):8-15.

[17]刘万里,张学亮,王世博.采煤工作面煤层三维模型构建及动态修正技术[J].煤炭学报,2020,45(06):1973-1983.

[18]姜龙飞,毛善君,李梅,等.基于激光点云的割煤顶板线提取技术研究[J].煤炭科学技术,2022,50(06):286-291.

[19]黄志成.激光点云和可见光图像的数据融合方法研究[D].武汉:华中科技大学,2020.

[20]张楚娟.基于道路环境语义信息的异构传感器在线标定和建图重定位[D].杭州:浙江大学,2022.

[21]Yuan C,Liu X,Hong X,et al.Pixel level extrinsic self calibration of high resolution lidar and camera in targetless environments[J].IEEE Robotics and Automation Letters,2021, 6(4): 7517-7524.

[22]Park C,Moghadam P,Kim S,et al.Spatiotemporal camera-lidar calibration: A targetless and structureless approach[J].IEEE Robotics and Automation Letters,2020,5(2): 1556-1563.

[23]Mishra S,Pandey G,Saripalli S.Extrinsic calibration of a 3D-lidar and a camera[J].IEEE Intelligent Vehicles Symposium,2020,5:1765-1770.

[24]尹露.分布式激光雷达与视觉信息融合关键技术研究[D].武汉:武汉大学,2020.

[25]王博.基于激光雷达的自动驾驶三维环境感知系统关键技术研究[D].长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所),2022.

[26]Duy A,Myungsik Y.Calibration-Net:lidar and camera auto-calibration using cost volume and convolutional neural network[C]//IEEE ICAIIC International Conference on Artificial Intelligence in Information and Communication,2022:141-144.

[27]黄志清,苏毅,王庆文,等.二维激光雷达与可见光相机外参标定方法研究[J].仪器仪表学报,2020,41(09):121-129.

[28]彭梦,陈白帆,邓作杰,等.2D激光雷达和摄像机最小解标定的多解筛选及参数优化[J].仪器仪表学报,2021,42(07):89-97

[29]刘宇,蔡毅,戎宁涛,等.稀疏激光雷达与可见光红外成像系统的标定方法[J].红外技术,2022,44(12):1264-1272.

[30]王术剑,阎宗尧,刘世杰,等.路侧激光雷达与摄像机时间和空间同步方法[J].山东大学学报(工学版),2022,52(06):56-62.

[31]杨力,刘俊毅,王延长,等.基于全景相机和全向激光雷达的致密三维重建[J].浙江大学学报(工学版),2014,48(08):1481-1487.

[32]Mishra S,Osteen P R,Pandey G,et al.Experimental evaluation of 3d-lidar camera extrinsic calibration[C]//IEEE RSJ International Conference on Intelligent Robots and Systems (IROS),2020:9020-9026.

[33]Toth T, Zoltan P, Levente H.Automatic lidar-camera calibration of extrinsic parameters using a spherical target[C]//IEEE ICRA International Conference on Robotics and Automation,2020:8580-8586.

[34]Grammatik L,Anastasios P,Antonios V,et al.An effective camera-to-lidar spatiotemporal calibration based on a simple calibration target[J].Sensors,2022,22(15),5576:1-15.

[35]Zamanakos G, Lazaros T, Angelos A,et al.A cooperative lidar-camera scheme for extrinsic calibration[C]//IEEE IVMSP 14th Image Video and Multidimensional Signal Processing Workshop,2022:1-5.

[36]刘今越,唐旭,贾晓辉,等.三维激光雷达-相机间外参的高效标定方法[J].仪器仪表学报,2019,40(11):64-72

[37]王晨宇.激光雷达和多相机融合的智能标定方法研究[D].哈尔滨:哈尔滨工业大学,2019

[38]许涵博.面向自动驾驶系统的相机激光雷达的自动标定[D].哈尔滨:哈尔滨工业大学,2019

[39]Jung S,Kim J,Lee H,et al.Camera lidar calibration using icp-based automatic plane extraction method[J].IWAIT International Workshop on Advanced Imaging Technology 2020,11515:556-561.

[40]彭湃,耿可可,殷国栋,等.基于传感器融合里程计的相机与激光雷达自动重标定方法[J].机械工程学报,2021,57(20):206-214.

[41]谢婧婷,蔺小虎,王甫红,等.一种点线面约束的激光雷达和相机标定方法[J].武汉大学学报(信息科学版),2021,46(12):1916-1923

[42]覃兴胜,李晓欢,唐欣,等.基于标定板关键点的激光雷达与相机外参标定方法[J].激光与光电子学进展,2022,59(04):400-407.

[43]康国华,张琪,张晗,等.基于点云中心的激光雷达与相机联合标定方法研究[J].仪器仪表学报,2019,40(12):118-126

[44]Tsai D, Stewart W, Mao S,et al.Optimising the selection of samples for robust lidar camera calibration[C]//IEEE ITSC International Intelligent Transportation Systems Conference,2021:2631-2638.

[45]Singandhp A, Hung M,Quang P.Single frame lidar-camera calibration using registration of 3d planes[C]//IEEE IRC International Conference on Robotic Computing,2022: 395-402.

[46]Aguiar A, Miguel A, Eurico F,et al.A camera to lidar calibration approach through the optimization of atomic transformations[J].Expert Systems with Applications.2021,176, 114894:1-10.

[47]王洪栋,郭伟东,朱美强,等.一种煤矿井下低照度图像增强算法[J].工矿自动化,2019, 45(11):81-85.

[48]Reza A M.Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J].Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology,2004,38:35-44.

[49]Ganguly B,Anwesa B, Ananya S,et al.Single image haze removal with haze map optimization for various haze concentrations[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(1):286-301.

[50]苏波,李超,王莉.基于多权重融合策略的Retinex矿井图像增强算法[J].煤炭学报,2023:1-11.

[51]Fuh C,Tzu-Chia T.MCPA:A fast single image haze removal method based on the minimum channel and patchless approach[J].IEEE Access,2022,10:73033-73045.

[52] Zotin A.Fast algorithm of image enhancement based on multi-scale retinex[J].Procedia Computer Science,2018,131:6-14.

[53]He K,Jian S,Fellow,et al.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2010,33(12):2341-2353.

[54]Das M,Kokila P,Dinulal G,et al.Image dehazing using improved dark channel prior and relativity of Gaussian[J].Procedia Computer Science,2019,16:442-448.

[55]曹虎晨,姚善化,王仲根.基于边界约束的煤矿井下尘雾图像去雾算法[J].工矿自动化,2022,48(06):139-146.

[56]Yan Y,Ren W,Guo Y,et al.Image deblurring via extreme channels prior[C]//In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017: 4003-4011.

[57]Dharejo F,Yuanchun Z,Farah D,Munsif A,et al.A remote‐sensing image enhancement algorithm based on patch‐wise dark channel prior and histogram equalisation with colour correction[J].IET Image Processing,2021,15(1):47-56.

[58]Manik K,Mahesh,Bhandra G.Modified dark channel prior modified dcp for dehazing[J]. IJCRT International Journal of Creative Research Thoughts,2021,9(4):294-301.

[59]王媛彬,韦思雄,段誉,等.基于自适应双通道先验的煤矿井下图像去雾算法[J].工矿自动化,2022,48(05):46-51+84.

[60]张旭辉,杨红强,白琳娜,等.煤矿掘进工作面低照度视频增强技术研究[J].煤田地质与勘探,,2023,51(01):309-316.

[61]智宁,毛善君,李梅,等.基于深度融合网络的煤矿图像尘雾清晰化算法[J].煤炭学报,2019,44(02):655-666.

[62]Ngo D, Gi-Dong L,Bongsoon K.Improved color attenuation prior for single-image haze removal[J].Applied Sciences,2019,9(19),4011:1-22.

[63]Dudhane A,Biradar K M,Patil P W,et al.Varicolored image de-hazing[C]//IEEE CVF Computer Vision and Pattern Recognition,2020:4564-4573.

[64]孔华永,娄昭远.基于生成式对抗网络的煤矿图像去噪研究[J].煤矿机械,2022,43(07):173-175.

[65] Dudhane A,Murala S.RYF-Net:deep fusion network for single image haze removal[J]. IEEE Transactions on Image Processing,2019,29:628-640.

[66]王满利,张航,李佳悦,等.基于深度神经网络的矿井下低光照图像增强算法[J].煤炭科学技术,2023:1-13.

[67]吴佳奇,张文琪,陈伟,等.基于改进CycleGAN的煤矿井下低照度图像增强方法[J].华中科技大学学报(自然科学版),2023,51(05):40-46.

[68]田子建,王满利,吴君,等.基于双域分解的矿井下图像增强算法[J].光子学报,2019,48(05):107-119.

[69]Kaur M,Singh D,Chahar V,et al.Color Image dehazing using gradient channel prior and guided l0 filter[J]. Information Sciences,2020,521:326-342.

[70]范伟强,刘毅.基于自适应小波变换的煤矿降质图像模糊增强算法[J].煤炭学报,2020,45(12):4248-4260.

[71]Mahdaoui A E,Abdeldjalil O,Mohamed S M.Image denoising using a compressive sensing approach based on regularization constraints[J].Sensors,2022,22(6),2199:1-22.

[72]Dang N,Le T,Nnh C,et al.Adaptive total variation L1 regularization for salt and pepper image denoising[J].Optik,2020,208,163677:1-10.

[73]Hsu W Y,Chen Y S.Single image dehazing using wavelet-based haze-lines and denoising[J].IEEE Access,2021,99:104547-104559.

[74]Dharejo F A,Zhou Y, Farah D,et al.A deep hybrid neural network for single image dehazing via wavelet transform[J].Optik,2021,231,166462:1-13.

[75]Dabov K,Alessandro F,Vladimir K,et al.Image denoising by sparse 3-D transform domain collaborative filtering[J].IEEE Transactions on image processing,2007,16(8): 2080-2095.

[76]Laha S,Hassan F.Haar wavelet-based attention network for image dehazing[C]//IEEE ICIP International Conference on Image Processing,2022:3948-3952.

[77]邵小强,杨涛,卫晋阳,等.改进同态滤波的矿井监控视频图像增强算法[J].西安科技大学学报,2022,42(06):1205-1213.

[78]龚云,颉昕宇.一种改进同态滤波的井下图像增强算法[J].煤炭科学技术,2023,51(03): 241-250.

[79]王征,汪梅.信息熵多属性约简的煤粉尘图像特性机理[J].西安科技大学学报,2019,(04):163-169.

[80]王建国,闫涛,王康,等.不同影响因素下的矿工粉尘防治行为[J].西安科技大学学报,2021,(01):62-69.

[81]孙继平,江嬴.矿井车辆无人驾驶关键技术研究[J].工矿自动化,2022,48(05):1-5+31.

[82]Rusu R B,Blodow N,Marton Z,et al.Towards 3D object maps for autonomous household robots[C]//IEEE International Conference on Intelligent Robots and Systems, 2007,10:3191-3198.

[83]Rusu R B,Cousins S.3D is here: Point cloud library (PCL)[C]//IEEE International Conference on Robotics and Automation,2011,5:1-4.

[84]王晓辉,吴禄慎,陈华伟.基于法向量距离分类的散乱点云数据去噪[J].吉林大学学报(工学版),2020,50(01):278-288.

[85]Pistilli F,Fracastoro G,Valsesia D,et al.Learning robust graph-convolutional representations for point cloud denoising[J].IEEE Journal of Selected Topics in Signal Processing,2020,15(02):402-414.

[86]赵凯,徐友春,李永乐,等.基于VG-DBSCAN算法的大场景散乱点云去噪[J].光学学报,2018,38(10):370-375.

[87]伍锡如,薛其威.基于激光雷达的无人驾驶系统三维车辆检测[J].光学精密工程,2022, 30(4):489-497.

[88]曲金博,王岩,赵琪.DBSCAN聚类和改进的双边滤波算法在点云去噪中的应用[J].测绘通报,2019(11):89-92.

[89]钟文彬,肖振远,刘光帅.一种高效的点云去噪聚类方法[J].机械设计与制造,2022(08): 233-237.

[90]任彬,崔健源,李刚,等.基于自适应阈值的三维点云分段式去噪方法[J].光子学报,2022,51(02):319-332.

[91]赵夫群,周明全.层次化点云去噪算法[J].光学精密工程,2020,28(07):1618-1625.

[92]Roriz,Ricardo,Campos,et al.DIOR: A hardware-assisted weather denoising solution for lidar point clouds[J].IEEE Sensors Journal,2021,22(2):1621-1628.

[93]唐瑞尹,范乃德,史涛,等.似然函数和随机滤波的点云去噪方法研究[J].机械设计与制造,2022(02):74-77.

[94]秦沛霖,张传伟,周李兵,等.煤矿井下无人驾驶无轨胶轮车目标3D检测研究[J].工矿自动化,2022,48(02):35-41.

[95]Heinzler R,Piewak F,Schindler P,et al.CNN-based lidar point cloud de-noising in adverse weather[J].IEEE Robotics and Automation Letters,2020,5(2):2514-2521.

[96]Park, J I,Park J,Kim K S.Fast and accurate desnowing algorithm for lidar point clouds[J]. IEEE Access,2020,8:160202-160212.

[97]Charron N,Phillips S,Waslander S L.De-noising of lidar point clouds corrupted by snowfall[C]//IEEE 15th Conference on Computer and Robot Vision (CRV),2018,5: 254-261.

[98]Le M H,Cheng C H,Liu D G,et al.Adaptive two-stage filter for de-snowing lidar point clouds[C]//IEEE ICCRI International Conference on Control, Robotics and Informatics, 2022:38-42.

[99]Roy G,Cao X,Bernier R,et al.Physical model of snow precipitation interaction with a 3D lidar scanner[J].Applied Optics,2020,59(25).7660-7669.

[100]Jokela M,Kutila M,Pyyknen P.Testing and validation of automotive point-cloud sensors in adverse weather conditions[J].Applied Sciences,2019,9(11),2341:1-14.

[101]Sebastian G,Vattem T,Lukic L,et al.RangeWeatherNet for lidar-only weather and road condition classification[J].IEEE IV Intelligent Vehicles Symposium,2021:777-784.

[102]Heinzler R,Schindler P,Seekircher J,et al.Weather influence and classification with automotive lidar sensors[J].IEEE IV Intelligent Vehicles Symposium,2019:1527-1534.

[103]Sun P,Sun C,Wang R,et al.Object detection based on roadside lidar for cooperative driving automation: a review[J].Sensors,2022,9316(23):1-25.

[104]Bae G,Kim B,Ahn S Y,et al.SLiDE:self-supervised lidar de-snowing through reconstruction difficulty[C]//European Conference Computer Vision,2022: 283-300.

[105]汪世豪.基于激光雷达与工业相机数据融合的路面感知算法研究[D].重庆:重庆理工大学,2022.

[106]杜影丽.点云和图像融合的道路提取方法研究[D].武汉:武汉大学,2021.

[107]Luo Z,Martin V,Habibi S.A probability occupancy grid based approach for real-time lidar ground segmentation[J].IEEE Transactions on Intelligent Transportation Systems, 2019,21(3):998-1010.

[108]Lim H,Minho O,Hyun M.Patchwork: Concentric zone-based region-wise ground segmentation with ground likelihood estimation using a 3D lidar sensor[J].IEEE Robotics and Automation Letters,2021,6(4):6458-6465.

[109]Jimenez V,Godoy J,Artunedo A,et al.Ground segmentation algorithm for sloped terrain and sparse lidar point cloud[J].IEEE Access,2021,9:132914-132927.

[110]Arora M,Wiesmann L,Chen X L,et al.Mapping the static parts of dynamic scenes from 3D lidar point clouds exploiting ground segmentation[C]//IEEE ECMR European Conference on Mobile Robots,2021:1-6.

[111]Seo D U,Lim H,Lee S,et al.PaGO-LOAM: Robust ground-optimized lidar odometry[C] //IEEE UR the 19th International Conference on Ubiquitous Robots,2022:1-7.

[112]Guerrero J A,Chapuis R,Aufrere R,et al.Road curb detection using traversable ground segmentation: Application to autonomous shuttle vehicle navigation[C]//IEEE ICARCV the 16th International Conference on Control, Automation, Robotics and Vision,2020: 266-272.

[113]Anand B,Senapati M,Barsaiyan V,et al.lidar-INS/GNSS-based real-time ground removal, segmentation, and georeferencing framework for smart transportation[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11.

[114]Aksoy E,Baci S,Cavdar S.Salsanet: Fast road and vehicle segmentation in point clouds for autonomous driving[C]//IEEE Intelligent Vehicles Symposium,2020:926-932.

[115]邵靖滔,杜常清,邹斌.基于点云簇组合特征的激光雷达地面分割方法[J].激光与光电子学进展,2021(4):414-422.

[116]郝雯,郝雯,王红霄,等.结合空间注意力与形状特征的三维点云语义分割[J].激光与光电子学进展,2022,59(8):512-522.

[117]Aygun M,Osep A,Weber M,et al.4D panoptic lidar segmentation[C]//IEEE CVF Conference on Computer Vision and Pattern Recognition,2021:5527-5537.

[118]Thomas H,Agro B,Gridseth M,et al.Self-supervised learning of lidar segmentation for autonomous indoor navigation[C]//IEEE ICRA International Conference on Robotics and Automation,2021:14047-14053.

[119]Marcuzzi R,Nunes L,Wiesmann L,et al.Mask-based panoptic lidar segmentation for autonomous driving[J].IEEE Robotics and Automation Letters,2023,8(2):1141-1148.

[120]Milioto A,Vizzo I,Behley J,et al.Rangenet++: Fast and accurate lidar semantic segmentation[C]//IEEE RSJ IROS International Conference on Intelligent Robots and Systems,2019:4213-4220.

[121]Unal O,Dai D X, Gool L V.Scribble-supervised lidar semantic segmentation[C]//IEEE CVF Conference on Computer Vision and Pattern Recognition,2022:2697-2707.

[122]Sirohi K,Mohan R,Buscher D,et al.Efficientlps: Efficient lidar panoptic segmentation[J]. IEEE Transactions on Robotics,2021,38(3):1894-1914.

[123]Tan W K,Qin N N,Ma L F,et al.Toronto-3D: A large-scale mobile lidar dataset for semantic segmentation of urban roadways[C]//IEEE CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:202-203.

[124]Alonso I,Riazuelo L,Montesano L,et al.3D-MiniNet: Learning a 2d representation from point clouds for fast and efficient 3d lidar semantic segmentation[J].IEEE Robotics and Automation Letters,2020,5,(4):5432-5439.

[125]Milioto A,Behley J,McCool C,et al.lidar panoptic segmentation for autonomous driving [C]//IEEE RSJ IROS International Conference on Intelligent Robots and Systems,2020: 8505-8512.

[126]Cortinhal T,Tzelepsis G,Aksoy E E. Salsanext: Fast, uncertaintyaware semantic segmentation of lidar point clouds[C]//ISVC Advances in Visual Computing: 15th International Symposium,2020,15:207-222.

[127]Behley J,Milioto A,Stachniss C.A benchmark for lidar-based panoptic segmentation based on KITTI[C]//IEEE ICRA International Conference on Robotics and Automation, 2021:13596-13603.

[128]Gasperini S,Nikouei M A,Alvaro M R,et al.Panoster: End-to-end panoptic segmentation of lidar point clouds[J].IEEE Robotics and Automation Letters,2021,6(2):3216-3223.

[129]朱颖,赵明.基于语义分割的城区激光点云与光学影像配准[J].光子学报,2021(1): 188-202.

[130]Komorowski J,Wysoczanska M,Trzcinski T,MinkLoc++: lidar and monocular image fusion for place recognition[C]//IJCNN International Joint Conference on Neural Networks,2021:1-8.

[131]Caltagirone L,Bellone M,Svensson L,et al.Lidar camera semi-supervised learning for semantic segmentation[J].Sensors,2021,21(14),4813:1-13.

[132]Senapati M,Anand B,Thakur A,et al.Object Detection and Segmentation using lidar Camera Fusion for Autonomous Vehicle[C]//IEEE IRC International Conference on Robotic Computing,2021:123-124.

[133]Singh A,Kamireddypalli A,Gandhi V,et al.lidar guided small obstacle segmentation[C]// IEEE RSJ IROS International Conference on Intelligent Robots and Systems,2020: 8513-8520.

[134]Madawy K E,Rashed H,Sallab A E,et al.RGB and lidar fusion based 3D Semantic Segmentation for Autonomous Driving[C]// IEEE ITSC Intelligent Transportation Systems Conference,2019:7-12.

[135]Cortinhal T,Kurnaz F,Aksoy E E.Semantics-aware multi-modal domain translation: From lidar point clouds to panoramic color images[C]//IEEE/CVF International Conference on Computer Vision,2021:3032-3048.

[136]Krispel G,Opitz M,Waltner G,et al.FuseSEG: lidar point cloud segmentation fusing multi-modal data[C]//IEEE CVF Winter Conference on Applications of Computer Vision,2020:1874-1883.

[137]施庭雨,黄丽婷,林靖宇,等.融合图像边缘的区域生长点云分割算法[J].小型微型计算机系统,2023,44(04):805-811.

[138]杨春雨,张鑫.煤矿机器人环境感知与路径规划关键技术[J].煤炭学报,2022,47(07): 2844-2872.

[139]荣耀,曹琼,安晓宇,等.综采工作面三维激光扫描建模关键技术研究[J].工矿自动化,2022,48(10):82-87.

[140]Hassani K,Haley M.Unsupervised multi-task feature learning on point clouds[C]//IEEE CVF International Conference on Computer Vision,2019:8160-8171.

[141]Choy C,Park J,Koltun V.Fully convolutional geometric features[C]//IEEE International Conference on Computer Vision,2019:8958-8966.

[142]Cattaneo D,Vaghi M,Valada A.LCDNet: Deep loop closure detection and point cloud registration for lidar slam[J].IEEE Transactions on Robotics,2022,38(4):2074-2093.

[143]Koide K,Yokozuka M,Oishi A,et al.Voxelized gicp for fast and accurate 3d point cloud registration[C]//IEEE ICRA International Conference on Robotics and Automation,2021: 11054-11059.

[144]Horn M,Engel N,Belagiannis V,et al.DeepCLR Correspondence-less architecture for deep end-to-end point cloud registration[C]//IEEE ITSC the 23rd International Conference on Intelligent Transportation Systems,2020:1-7.

[145]Gro J,Osep A,Leibe B.Alignnet-3d: Fast point cloud registration of partially observed objects[C]//IEEE International Conference on 3D Vision,2019:623-632.

[146]Ramezani M,Tinchev G,Iuganov E,et al.Online lidar-SLAM for legged robots with robust registration and deep-learned loop closure[C]//IEEE ICRA International Conference on Robotics and Automation,2020:4158-4164.

[147]Ma H,Yin D Y,Liu J.3D convolutional auto-encoder based multi-scale feature extraction for point cloud registration[J].Optics & Laser Technology,2022,149,107860:1-5

[148]Ghorbani F,Ebadi H,Sedaghat A,et al.A novel 3-D local DAISY-style descriptor to reduce the effect of point displacement error in point cloud registration[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15: 2254-2273.

[149]Aoki Y,Goforth H,Srivatsan R A,et al.PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet[C]//IEEE CVPR Conference on Computer Vision and Pattern Recognition,2019:7163-7172.

[150]Yew Z J,Lee G H.RPM-Net: Robust point matching using learned features[C]//IEEE CVF Conference on Computer Vision and Pattern Recognition,2020:11824-11833.

[151]Choy C,Dong W,Koltun V.Deep Global Registration[C]//IEEE CVF Conference on Computer Vision and Pattern Recognition,2020:2514-2523.

[152]Pais G Dias,Ramalingam S,Govindu V M,et al.3DRegNet: A deep neural network for 3d point registration[C]//IEEE CVF conference On Computer Vision and Pattern Recognition,2020:7193-7203.

[153]Gojcic Z,Zhou C,Wegner J D,et al.The perfect match: 3d point cloud matching with smoothed densities[C]//IEEE CVF Conference on Computer Vision and Pattern Recognition,2019:5545-5554.

[154]Prokudin S,Lassner C,Romero J.Efficient learning on point clouds with basis point sets[C]//IEEE CVF International Conference on Computer Vision,2019:4332-4341.

[155]Rozenberszki D,Majdik A L.LOL: lidar-only odometry and localization in 3D point cloud maps[C]//IEEE ICRA International Conference on Robotics and Automation, 2020:4379-4385.

[156]崔文,薛棋文,李庆玲,等.基于三维点云地图和ESKF的无人车融合定位方法[J].工矿自动化,2022(09):116-122.

[157]李绕波,袁希平,甘淑,等.一种基于对偶四元素描述的线面特征约束的点云配准方法[J].光学学报,2022,42(02):167-175.

[158]张正华.基于深度学习的激光雷达点云实时配准与场景识别算法研究[D].徐州:中国矿业大学,2022.

[159] 林森,张强.应用邻域点信息描述与匹配的点云配准[J].光学精密工程,2022, 30(08):984-997.

[160]吕品,季博文,赖际舟,等.面向变化场景的lidar鲁棒定位与地图维护方法[J].仪器仪表学报,2022,43(04):291-301.

[161]彭湃,耿可可,殷国栋,等.基于传感器融合里程计的相机与激光雷达自动重标定方法[J].机械工程学报,2021,57(20):206-214.

[162]Hirose,Osamu.A Bayesian formulation of coherent point drift[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(7):2269-2286.

[163]Kadam P,Zhang M,Liu S,et al.R-PointHop: a green, accurate, and unsupervised point cloud registration method[J].IEEE Transactions on Image Processing : a Publication of the IEEE Signal Processing Society,2022,31:2710-2725.

[164]Junior E M Ol,Santos D R,Miila G A R,et al. A new variant of the icp algorithm for pairwise 3d point cloud registration[J].American Academic Scientific Research Journal for Engineering, Technology, and Sciences,2022,85,(1):71-88.

[165]许宇伟,颜文旭,吴炜.相似场景下基于局部地图的激光SLAM前端算法改进[J].机器人,2022,44(02):176-185.

[166]Wang W,Ken S,Nobuo K.Reflectance intensity assisted automatic and accurate extrinsic calibration of 3d lidar and panoramic camera using a printed chessboard[J].Remote Sensing,2017,9(8),851:1-24.

[167]Lin H,Shi Z.Multi-scale retinex improvement for nighttime image enhancement[J]. Optik,2014,125(24):7143-7148.

[168]康彩新,张道康,兰时勇.考虑亮通道取反的修正暗原色先验去雾算法[J].计算机工程与设计,2022,43(10):2836-2842.

[169]Chum O,Matas J,Kittler J.Locally optimized RANSAC[C]//Pattern Recognition,25th DAGM Symposium,2003,25:236-243.

[170]Ding L,Goshtasby A.On the Canny edge detector[J].Pattern Recognition,2001,34(3): 721-725.

[171]Likas A,Vlassis N,Verbeek J.The global k-means clustering algorithm[J].Pattern recognition,2003,36(2):451-461.

[172]Wang C,Ji M,Wang J,et al.An improved DBSCAN method for LiDAR data segmentation with automatic Eps estimation[J].Sensors, 2019(1):172-198.

[173]Weinmann M,Jutzi B,Mallet C.Semantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features[J].ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,2014:181–88.

[174]Rusu R B,Blodow N,Beetz M.Fast point feature histograms (FPFH) for 3D registration [C]//IEEE International Conference on Robotics and Automation.2009:3212-3217.

[175]Kim H,Song S,Myung H.GP-ICP: Ground plane ICP for mobile robots[J].IEEE Access. 2019,7:76599-76610.

[176]Myronenko A,Song X B.Point set registration: coherent point drift[J].IEEE Transactions On Pattern Analysis and Machine Intelligence.2010,32(12):2262-2275.

[177] Biber P,Wolfgang S.The normal distributions transform: A new approach to laser scan matching[C]//IEEE RSJ International Conference on Intelligent Robots and Systems, 2003,3:2743-2748.

[178]Sipiran I,Bustos B.Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes[J].The Visual Computer,2011,27:963-976.

[179]Bastos-Filho C J,Lima-Neto F B,Lins A,et al.Fish School Search[J].NISCO Nature Inspired Algorithms for Optimisation,2009,193:261-277.

中图分类号:

 TD421.6    

开放日期:

 2023-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式