论文中文题名: | 单目相机与激光雷达数据融合的综采工作面点云配准方法研究 |
姓名: | |
学号: | B201503007 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0802 |
学科名称: | 工学 - 机械工程 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山机电工程 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-06-21 |
论文答辩日期: | 2023-05-27 |
论文外文题名: | Research on Point Cloud Registration Method for Fully Mechanized Mining Face Based on Monocular Camera and LiDAR Data Fusion |
论文中文关键词: | |
论文外文关键词: | Fully mechanized mining faces ; Point cloud registration ; Data fusion ; Image enhancement ; Point cloud filtering ; Point cloud clustering |
论文中文摘要: |
<p>煤炭是我国最主要的一次能源。随着透明工作面建设的持续推进,激光雷达在综采工作面发挥着越来越重要的作用。点云配准是综采工作面三维激光扫描建模的关键技术。综采工作面的尘雾环境影响激光雷达测量精度和测量范围,导致点云配准存在精度低和误匹配率高的问题。通过单目相机与激光雷达的数据融合,能避免单一传感器使用的局限性,提高点云配准的精度和鲁棒性。针对综采工作面环境特点,对单目相机与激光雷达数据融合的点云配准方法进行深入研究,主要包括以下内容:</p>
<p>针对综采工作面单目相机与激光雷达在线标定存在的标定板提取效率低的问题,研制单目相机与激光雷达数据融合系统,设计井下在线标定板。在此基础上提出基于改进区域生长的标定板点云提取算法,首先采用体素随机法对点云进行降采样;其次采用欧氏距离和角度距离结合的方法实现点云的快速聚类;然后采用最小二乘法求解法向量计算平面参数,生成初始种子;最后对原点云采用区域生长方法进行标定板点云的精细化提取。标定板点云提取平均时间为32ms,提取速度比RANSAC算法提高12.1%,重投影误差小于4像素,旋转误差小于0.7°,平移误差小于6mm。结果表明在保证精度的同时提高标定板点云检测效率。</p>
<p>针对综采工作面图像增强存在的亮区域增强过度、暗区域细节增强不足的问题,提出双通道块匹配的图像增强算法。首先对原始图像数据进行暗通道和亮通道分析,估计环境光值和透射率;其次根据图像的非局部相似性对像素进行块匹配分组;然后通过小波变换将三维块转换成小波域系数,对系数进行硬阈值滤波;最后经过小波逆变换恢复增强后的图像。处理时间稳定在22ms以内,与传统图像增强算法相比较,将综采工作面图像的峰值信噪比提高2.85%,结构相似性提高1.31%,自然图像质量提高7.91%。结果表明提高综采工作面图像的清晰度和对比度,有效改善图像的质量。</p>
<p>针对综采工作面激光雷达点云滤波存在的近场噪声过多和远场有效数据丢失问题,构建尘雾对激光雷达的影响模型。在此基础上提出基于扇环邻域的综采工作面点云两次滤波算法。首先采用主成分分析法将三维点云数据进行降维处理,得到多组二维数据;其次对每组数据进行拉普拉斯运算,识别数据中的高频噪声,对数据进行第一次滤波;然后采用扇环邻域的统计分析,删除数据中的异常点,对数据进行第二次滤波;最后,将经过两次滤波后的数据恢复成三维点云。获得97.8%的滤波准确率,计算时间稳定在0.5s以内。对比统计滤波、半径滤波和动态半径滤波算法,结果表明在提高点云滤波的准确率和改善点云的结构化特征的同时,减少运行时间,有效抑制点云中的尘雾噪声。</p>
<p>针对综采工作面激光雷达点云聚类存在的阈值依赖和密度不均匀问题,提出单目相机与激光雷达数据融合的基于参考平面投影的综采工作面点云聚类算法,首先对增强后的图像采用梯度分位数双阈值进行边缘检测,得到二值边缘图像;其次对滤波后的点云采用随机采样一致性方法提取点云中的煤壁区域;然后根据单目相机和激光雷达的标定矩阵,将边缘图像投影到点云数据中,精细化提取煤壁边缘,得到图像边缘约束的煤壁点云;最后采用参考平面投影变换法对非煤壁点云进行聚类,得到点云簇类。煤壁分割准确率约为93.5%,平均聚类时间为58ms,对比Kmeans和A-DBSCAN算法,聚类结果DB指数平均降低7.25%,CH分数平均提升9.06%。结果表明能有效减少点云分割中的过分割和欠分割现象,提高聚类点云簇的类间差异性。</p>
<p>针对综采工作面激光雷达点云配准存在的精度低误匹配率高的问题,提出基于点云簇的光强灰度矫正点云配准算法。首先计算点云簇的特征值,通过特征匹配得到第一组候选匹配点对;其次提取关键点,采用扩展特征匹配得到第二组候选匹配点对;然后根据激光的反射光强和灰度矫正候选匹配点对,将候选匹配点对分类处理,剔除距离大的匹配点对,保留距离小的匹配点对,调整距离中间的匹配点对;最后采用鱼群搜索算法求解变换矩阵。计算时间稳定在0.35s以内,对比GP-ICP算法和CPD算法,RMSE平均降低11.4%。结果表明有效降低点云的误匹配率,提高综采工作面点云配准的精度。</p>
<p>采用研制的单目相机与激光雷达数据融合系统,结合提出的算法,在西安科技大学煤炭主体专业综合实训中心的综采工作面进行现场实验。通过综采工作面机头点云、中间点云和机尾点云拼接实验,对本文所研究的理论和方法进行验证,取得较好的效果。本文提出的点云配准方法为透明工作面提供技术支撑,也为实现煤矿综采工作面无人化奠定理论基础。</p>
﹀
|
论文外文摘要: |
<p>Coal is the most important primary energy in China. With the continuous promotion of transparent working face construction, LiDAR is playing an increasingly important role in fully mechanized mining faces. Point cloud registration is a key technology for 3D modeling of fully mechanized mining faces. The dust and mist environment of the fully mechanized mining face affects the accuracy and range of LiDAR, resulting in low accuracy and high mismatch rate in point cloud registration. By integrating data from monocular cameras and LiDAR, the limitations of using a single sensor can be overcome, and the accuracy and robustness of point cloud registration can be improved. A point cloud registration method for data fusion between monocular cameras and LiDAR is studied based on the environmental characteristics of fully mechanized mining faces. The main content is as follows:</p>
<p>In response to the problem of low extraction efficiency of calibration plates in online calibration of cameras and LiDAR, a data fusion system for monocular cameras and LiDAR was developed, and a underground coal mine calibration plate was designed. A calibration plate extraction algorithm based on improved region growth is proposed. Firstly, the voxel random method is used to down sampling the point cloud; Secondly, a combination of Euclidean distance and angular distance is used to achieve rapid clustering of point clouds; Then, the LSM is used to solve the normal vector to calculate the plane parameters and generate the initial seeds; Finally, the origin cloud is refined and extracted using the region growth method. The average extraction time is 32ms, and the extraction speed is 12.1% faster than the RANSAC algorithm. The reprojection error is less than 4 pixels, the rotation error is less than 0.7°, and the translation error is less than 6mm. The results show that the detection efficiency is improved while ensuring accuracy.</p>
<p>A dual channel block matching algorithm for image enhancement of fully mechanized mining faces is proposed to address the problems of excessive enhancement of bright areas and insufficient enhancement of dark areas in image enhancement. Firstly, perform dark and bright channel analysis on the original image data to estimate the ambient light value and transmittance; Secondly, block matching and grouping of pixels are performed based on the principle of non local similarity in the image; Then, the 3D blocks are transformed into wavelet domain coefficients through wavelet transform, and the coefficients are subjected to hard threshold filtering; Finally, the enhanced image is restored through inverse wavelet transform. The processing time is stable within 22ms. This algorithm improves the PSNR of image by 2.85%, SSIM by 1.31%, and natural image quality by 7.91%. The results show that improving the clarity and contrast of the images, effectively filters out dust and fog noise in the images, and improves the quality of the images.</p>
<p>In response to the problems of excessive near-field noise and loss of far-field effective data in the LiDAR point cloud filtering of fully mechanized mining faces, a model of the impact of dust and mist on LiDAR has been established. On the basis of this, a point cloud twice filtering algorithm based on fan ring neighborhood is proposed. Firstly, principal component analysis is used to reduce the dimensionality of 3D point cloud data and obtain multiple sets of 2D data; Secondly, perform Laplace operations on each group of data to identify high-frequency noise in the data and perform the first filtering on the data; Then, statistical analysis based on fan ring neighborhood is used to remove outliers from the data and perform a second filtering on the data. Finally, multiple sets of 2D data after two rounds of filtering are restored to 3D point cloud data. Obtained a filtering accuracy of 97.8%, with a stable calculation time within 0.5s. The comparison of statistical filtering, radius filtering, and dynamic radius filtering algorithms shows that while improving the accuracy of laser point cloud filtering and the structured features of point clouds, it reduces running time and effectively suppresses dust and fog noise in point clouds.</p>
<p>Aiming at the problems of threshold dependence and uneven density in the point cloud clustering of LiDAR, a point cloud clustering algorithm based on the reference plane projection of monocular camera and LiDAR data fusion was proposed. First, the enhanced image was edge detected using gradient quantile double threshold to obtain binary edge images; Secondly, the RANSAC method is used to extract the coal wall region from the filtered point cloud; Then, based on the calibration matrix of the monocular camera and LiDAR, the edge image is projected onto the point cloud data, and the coal wall edge is refined to obtain the coal wall point cloud with image edge constraints; Finally, the reference plane projection transformation method is used to cluster non coal wall point clouds and obtain point cloud clusters. The ground segmentation accuracy of this algorithm is about 93.5%, and the average clustering time is 58ms. Compared with the Kmeans and A-DBSCAN algorithms, the clustering results show an average decrease of 7.25% in DB index and an average increase of 9.06% in CH index. The results indicate that it can effectively reduce the phenomenon of over segmentation in point cloud segmentation, improve the inter class differences of clustered point cloud clusters, and reduce the intra class differences of point cloud clusters.</p>
<p>A light intensity gray correction point cloud registration algorithm based on point cloud clusters is proposed to address the problem of low accuracy and high error matching rate in the registration of laser radar point clouds in fully mechanized mining faces. Firstly, calculate the feature values of the point cloud cluster and obtain the first set of candidate matching point pairs through feature matching; Secondly, extract key points and use extended feature matching to obtain a second set of candidate matching point pairs; Then, based on the reflected light intensity and grayscale of the laser, correct candidate matching point pairs, classify and process them, eliminate matching point pairs with larger distances, retain matching point pairs with smaller distances, and adjust the matching point pairs in the middle of the distance; Finally, the fish school search algorithm is used to solve the transformation matrix. The calculation time is stable within 0.35s, and compared with GP-ICP and CPD algorithms, the average RMSE decreases by 11.4%. The results indicate that it can effectively reduce the mismatch rate of point clouds and improve the accuracy of point cloud registration.</p>
<p>Using a developed monocular camera and LiDAR data fusion system, combined with the proposed algorithm, on-site experiments were conducted on the fully mechanized mining working face at the Comprehensive Training Center of the Coal Major at Xi'an University of Science and Technology. The theory and method studied in this paper were validated through the splicing experiment of the head point cloud, middle point cloud, and tail point cloud of the fully mechanized mining face, and good results were achieved. The point cloud registration method proposed in this article provides technical support for the transparent working face, and also established a theoretical foundation for achieving unmanned fully mechanized coal mining face.</p>
﹀
|
参考文献: |
[1]袁亮.我国煤炭主体能源安全高质量发展的理论技术思考[J].中国科学院院刊,2023,38(01):11-22. [2]王国法,刘合,王丹丹,等.新形势下我国能源高质量发展与能源安全[J].中国科学院院刊,2023,38(01):23-37. [3]王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术, 2019,47(08):1-36. [4]袁亮,张平松.煤矿透明地质模型动态重构的关键技术与路径思考[J].煤炭学报,2023,48(01):1-14. [5]张帆,葛世荣.矿山数字孪生构建方法与演化机理[J].煤炭学报,2023,48(01):510-522. [6]刘小雄,王海军.薄煤层智能开采工作面煤层透明化地质勘查技术[J].煤炭科学技术,2022,50(07):67-74. [7]原长锁,王峰.综采工作面透明化开采模式及关键技术[J].工矿自动化,2022,48(03): 11-15+31. [8]王国法,张良,李首滨,等.煤矿无人化智能开采系统理论与技术研发进展[J].煤炭学报, 2023,48(01):34-53. [9]刘鹏坤,王聪,刘帅.综采工作面多视觉全局坐标系研究[J].煤炭学报, 2019,44(10) :3272-3280. [11]李森,王峰,刘帅等.综采工作面巡检机器人关键技术研究[J].煤炭科学技术,2020, 48(07):218-225. [12]张守祥,张学亮,张磊,等.综采巡检机器人关键技术研究[J].煤炭科学技术,2022, 50(01):247-255. [13]谷彬,赵云飞.自主智能割煤技术在榆家梁煤矿43101综采工作面的实践应用[J].能源科技,2020,18(07):29-32. [14]原长锁,王峰.综采工作面透明化开采模式及关键技术[J].工矿自动化,2022, 48(03):11-15+31. [15]王国法,杜毅博.智慧煤矿与智能化开采技术的发展方向[J].煤炭科学技术,2019, 47(01):1-10. [16]贺海涛.综采工作面智能化开采系统关键技术[J].煤炭科学技术,2021,49(S1):8-15. [17]刘万里,张学亮,王世博.采煤工作面煤层三维模型构建及动态修正技术[J].煤炭学报,2020,45(06):1973-1983. [18]姜龙飞,毛善君,李梅,等.基于激光点云的割煤顶板线提取技术研究[J].煤炭科学技术,2022,50(06):286-291. [19]黄志成.激光点云和可见光图像的数据融合方法研究[D].武汉:华中科技大学,2020. [20]张楚娟.基于道路环境语义信息的异构传感器在线标定和建图重定位[D].杭州:浙江大学,2022. [24]尹露.分布式激光雷达与视觉信息融合关键技术研究[D].武汉:武汉大学,2020. [25]王博.基于激光雷达的自动驾驶三维环境感知系统关键技术研究[D].长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所),2022. [27]黄志清,苏毅,王庆文,等.二维激光雷达与可见光相机外参标定方法研究[J].仪器仪表学报,2020,41(09):121-129. [28]彭梦,陈白帆,邓作杰,等.2D激光雷达和摄像机最小解标定的多解筛选及参数优化[J].仪器仪表学报,2021,42(07):89-97 [29]刘宇,蔡毅,戎宁涛,等.稀疏激光雷达与可见光红外成像系统的标定方法[J].红外技术,2022,44(12):1264-1272. [30]王术剑,阎宗尧,刘世杰,等.路侧激光雷达与摄像机时间和空间同步方法[J].山东大学学报(工学版),2022,52(06):56-62. [31]杨力,刘俊毅,王延长,等.基于全景相机和全向激光雷达的致密三维重建[J].浙江大学学报(工学版),2014,48(08):1481-1487. [36]刘今越,唐旭,贾晓辉,等.三维激光雷达-相机间外参的高效标定方法[J].仪器仪表学报,2019,40(11):64-72 [37]王晨宇.激光雷达和多相机融合的智能标定方法研究[D].哈尔滨:哈尔滨工业大学,2019 [38]许涵博.面向自动驾驶系统的相机激光雷达的自动标定[D].哈尔滨:哈尔滨工业大学,2019 [40]彭湃,耿可可,殷国栋,等.基于传感器融合里程计的相机与激光雷达自动重标定方法[J].机械工程学报,2021,57(20):206-214. [41]谢婧婷,蔺小虎,王甫红,等.一种点线面约束的激光雷达和相机标定方法[J].武汉大学学报(信息科学版),2021,46(12):1916-1923 [42]覃兴胜,李晓欢,唐欣,等.基于标定板关键点的激光雷达与相机外参标定方法[J].激光与光电子学进展,2022,59(04):400-407. [43]康国华,张琪,张晗,等.基于点云中心的激光雷达与相机联合标定方法研究[J].仪器仪表学报,2019,40(12):118-126 [47]王洪栋,郭伟东,朱美强,等.一种煤矿井下低照度图像增强算法[J].工矿自动化,2019, 45(11):81-85. [50]苏波,李超,王莉.基于多权重融合策略的Retinex矿井图像增强算法[J].煤炭学报,2023:1-11. [55]曹虎晨,姚善化,王仲根.基于边界约束的煤矿井下尘雾图像去雾算法[J].工矿自动化,2022,48(06):139-146. [59]王媛彬,韦思雄,段誉,等.基于自适应双通道先验的煤矿井下图像去雾算法[J].工矿自动化,2022,48(05):46-51+84. [60]张旭辉,杨红强,白琳娜,等.煤矿掘进工作面低照度视频增强技术研究[J].煤田地质与勘探,,2023,51(01):309-316. [61]智宁,毛善君,李梅,等.基于深度融合网络的煤矿图像尘雾清晰化算法[J].煤炭学报,2019,44(02):655-666. [64]孔华永,娄昭远.基于生成式对抗网络的煤矿图像去噪研究[J].煤矿机械,2022,43(07):173-175. [66]王满利,张航,李佳悦,等.基于深度神经网络的矿井下低光照图像增强算法[J].煤炭科学技术,2023:1-13. [67]吴佳奇,张文琪,陈伟,等.基于改进CycleGAN的煤矿井下低照度图像增强方法[J].华中科技大学学报(自然科学版),2023,51(05):40-46. [68]田子建,王满利,吴君,等.基于双域分解的矿井下图像增强算法[J].光子学报,2019,48(05):107-119. [70]范伟强,刘毅.基于自适应小波变换的煤矿降质图像模糊增强算法[J].煤炭学报,2020,45(12):4248-4260. [77]邵小强,杨涛,卫晋阳,等.改进同态滤波的矿井监控视频图像增强算法[J].西安科技大学学报,2022,42(06):1205-1213. [78]龚云,颉昕宇.一种改进同态滤波的井下图像增强算法[J].煤炭科学技术,2023,51(03): 241-250. [79]王征,汪梅.信息熵多属性约简的煤粉尘图像特性机理[J].西安科技大学学报,2019,(04):163-169. [80]王建国,闫涛,王康,等.不同影响因素下的矿工粉尘防治行为[J].西安科技大学学报,2021,(01):62-69. [81]孙继平,江嬴.矿井车辆无人驾驶关键技术研究[J].工矿自动化,2022,48(05):1-5+31. [84]王晓辉,吴禄慎,陈华伟.基于法向量距离分类的散乱点云数据去噪[J].吉林大学学报(工学版),2020,50(01):278-288. [86]赵凯,徐友春,李永乐,等.基于VG-DBSCAN算法的大场景散乱点云去噪[J].光学学报,2018,38(10):370-375. [87]伍锡如,薛其威.基于激光雷达的无人驾驶系统三维车辆检测[J].光学精密工程,2022, 30(4):489-497. [88]曲金博,王岩,赵琪.DBSCAN聚类和改进的双边滤波算法在点云去噪中的应用[J].测绘通报,2019(11):89-92. [89]钟文彬,肖振远,刘光帅.一种高效的点云去噪聚类方法[J].机械设计与制造,2022(08): 233-237. [90]任彬,崔健源,李刚,等.基于自适应阈值的三维点云分段式去噪方法[J].光子学报,2022,51(02):319-332. [91]赵夫群,周明全.层次化点云去噪算法[J].光学精密工程,2020,28(07):1618-1625. [93]唐瑞尹,范乃德,史涛,等.似然函数和随机滤波的点云去噪方法研究[J].机械设计与制造,2022(02):74-77. [94]秦沛霖,张传伟,周李兵,等.煤矿井下无人驾驶无轨胶轮车目标3D检测研究[J].工矿自动化,2022,48(02):35-41. [105]汪世豪.基于激光雷达与工业相机数据融合的路面感知算法研究[D].重庆:重庆理工大学,2022. [106]杜影丽.点云和图像融合的道路提取方法研究[D].武汉:武汉大学,2021. [115]邵靖滔,杜常清,邹斌.基于点云簇组合特征的激光雷达地面分割方法[J].激光与光电子学进展,2021(4):414-422. [116]郝雯,郝雯,王红霄,等.结合空间注意力与形状特征的三维点云语义分割[J].激光与光电子学进展,2022,59(8):512-522. [129]朱颖,赵明.基于语义分割的城区激光点云与光学影像配准[J].光子学报,2021(1): 188-202. [137]施庭雨,黄丽婷,林靖宇,等.融合图像边缘的区域生长点云分割算法[J].小型微型计算机系统,2023,44(04):805-811. [138]杨春雨,张鑫.煤矿机器人环境感知与路径规划关键技术[J].煤炭学报,2022,47(07): 2844-2872. [139]荣耀,曹琼,安晓宇,等.综采工作面三维激光扫描建模关键技术研究[J].工矿自动化,2022,48(10):82-87. [156]崔文,薛棋文,李庆玲,等.基于三维点云地图和ESKF的无人车融合定位方法[J].工矿自动化,2022(09):116-122. [157]李绕波,袁希平,甘淑,等.一种基于对偶四元素描述的线面特征约束的点云配准方法[J].光学学报,2022,42(02):167-175. [158]张正华.基于深度学习的激光雷达点云实时配准与场景识别算法研究[D].徐州:中国矿业大学,2022. [159] 林森,张强.应用邻域点信息描述与匹配的点云配准[J].光学精密工程,2022, 30(08):984-997. [160]吕品,季博文,赖际舟,等.面向变化场景的lidar鲁棒定位与地图维护方法[J].仪器仪表学报,2022,43(04):291-301. [161]彭湃,耿可可,殷国栋,等.基于传感器融合里程计的相机与激光雷达自动重标定方法[J].机械工程学报,2021,57(20):206-214. [165]许宇伟,颜文旭,吴炜.相似场景下基于局部地图的激光SLAM前端算法改进[J].机器人,2022,44(02):176-185. [168]康彩新,张道康,兰时勇.考虑亮通道取反的修正暗原色先验去雾算法[J].计算机工程与设计,2022,43(10):2836-2842. [170]Ding L,Goshtasby A.On the Canny edge detector[J].Pattern Recognition,2001,34(3): 721-725. |
中图分类号: | TD421.6 |
开放日期: | 2023-06-25 |