论文中文题名: |
玉华煤矿厚煤层采动覆岩卸压瓦斯富集区识别及其应用
|
姓名: |
孙宝强
|
学号: |
18220214076
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085224
|
学科名称: |
工学 - 工程 - 安全工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
矿井瓦斯防治
|
第一导师姓名: |
李树刚
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
刘超
|
论文提交日期: |
2021-06-18
|
论文答辩日期: |
2021-05-30
|
论文外文题名: |
Identification and Application of Overburden Pressure Relief Gas Accumulation Area in Thick Coal Seam of Yuhua Coal Mine
|
论文中文关键词: |
厚煤层 ; 裂隙场 ; 瓦斯富集区 ; 微震 ; 煤与瓦斯共采
|
论文外文关键词: |
Gas Drainage ; Thick coal seam ; Fissure field ; Gas enrichment area ; Microseism ; Simultaneous extraction of coal and gas
|
论文中文摘要: |
︿
随着科技进步,煤矿基本实现自动化,高强度开采高瓦斯含量厚煤层也以常态出现,高强度开采导致本煤层充分卸压,导致瓦斯大量解吸成游离瓦斯,升浮-扩散到生产工作面、采空区以及隅角位置,造成部分区域瓦斯富集,瓦斯浓度超限,对生产工作面煤矿工人生命安全造成严重威胁。因此,通过研究分析煤层在采动后覆岩裂隙演化特征和卸压瓦斯运移机理并提出相应的治理措施,能够为煤矿安全生产提供积极的安全保障,并具有较高的经济、社会效益,从而达到煤及伴生资源安全、绿色和科学共采。为了科学、详细的研究分析厚煤层采动覆岩裂隙发育规律、裂隙场边界范围以及高浓卸压瓦斯在采动覆岩裂隙场富集特征,本文以玉华煤矿2407工作面为试验对象,依据经典的采动覆岩裂隙场理论及卸压瓦斯运移机理,采用高精度微震监测技术以及多功能的智能钻孔探测等方法,在现场对玉华煤矿厚煤层强采动覆岩卸压瓦斯富集区进行识别,并对其进行了效果检验。本文主要研究内容及成果如下:
(1)根据理论分析,初步确定了厚煤层采动裂隙场的三维空间模型,分析了采空区瓦斯来源,确定了厚煤层采动裂隙场中卸压瓦斯的运移形态,明确了卸压瓦斯在裂隙场中富集特征为:卸压瓦斯扩散流动、卸压瓦斯纵向扩散升浮和水平瓦斯富集。
(2)建立了厚煤层采动覆岩裂隙场。确定了裂隙场发育宽度、走向长度以及发育高度。优化了采场走向分区理论模型。在垂直方向上,利用微震表征覆岩裂隙带高度为85~105m。研究了采动覆岩裂隙周期演化机理、微震事件的空间动态演化特征,验证了试验工作面回风侧覆岩裂隙周期破断规律,并确定了冒落带高度范围19.7~24m。
(3)优化拓展了厚煤层采动裂隙场中卸压瓦斯富集规律,将厚煤层采动裂隙场瓦斯富集区域可分为:瓦斯扩散流动区、竖向瓦斯升浮区和高浓瓦斯富集区。确定了卸压瓦斯富集区钻孔判别原则,构建了钻孔探测方案。沿着走向来看,回风侧卸压瓦斯经过扩散-升浮-富集到裂隙场中,具有滞后性,随采动影响在探测期间第一次周期来压步距内扩散升浮基本在瓦斯流动扩散区,第二次周期来压步距内,卸压瓦斯运移富集,瓦斯浓度增大比较明显。
(4)根据识别的高浓瓦斯富集区,指导了现场高位走向大直径钻孔抽采瓦斯工程实践。工作面及回风瓦斯治理效果极佳,浓度均低于0.5%,保障了工作面安全高效的煤与瓦斯抽采。
通过现场效果检验,研究结果为高浓瓦斯抽采钻孔终孔的确定提供有效的理论支持,并可以有效解决瓦斯涌出严重的问题。有利于井下工作人员的安全防护、控制工作面上隅角瓦斯浓度、抑制采空区瓦斯涌出以及瓦斯抽采成本的节约都有很大的现实意义。
﹀
|
论文外文摘要: |
︿
With the advancement of science and technology, coal mines are basically automated and high intensive mining of thick coal seams with high gas content is the norm. High intensity mining leads to full decompression of this coal seam, resulting in a large amount of gas desorption into free gas, which floats to the production working face, the extraction area and the corner position, causing gas enrichment in some areas and concentration concentration exceeding the limit, posing a serious threat to the lives of coal miners at the production working face. Therefore, by studying and analysing the evolution characteristics of overburden fissures and the mechanism of unloading gas transport after mining and proposing corresponding management measures, we can provide positive safety guarantee for coal mine safety production and have high economic and social benefits, so as to achieve safe, green and scientific co-mining of coal and associated resources. In order to scientifically and thoroughly study and analyse the development pattern of fissures in mining overburden of thick coal seams, the boundary range of fissure field and the enrichment characteristics of highly concentrated unburdened gas in the fissure field of mining overburden, this paper takes 2407 working face of Yuhua coal mine as the test object and identifies the enrichment area of strong mining overburden unburdened gas in thick coal seams by using high-precision micro-vibration monitoring technology and multi-functional intelligent borehole detection equipment in the field, and tests its effect. The main research and results of this paper are as follows:
(1) According to the theoretical analysis, the three-dimensional spatial model of the mining fissure field of thick coal seam was initially determined, the sources of gas in the mining fissure area were analysed, the transport pattern of unloading gas in the mining fissure field of thick coal seam was determined, and the enrichment characteristics of unloading gas in the fissure field were clearly defined as: diffusion flow of unloading gas, longitudinal diffusion and floating of unloading gas and horizontal gas enrichment.
(2) A fissure field in the overburden of the thick coal seam was established. The fissure field development width, strike length and development height were determined. The theoretical model for the strike zoning of the quarry was optimised. In the vertical direction, microseismic characterisation of the overburden fissure zone was used to characterise the height of 85-105 m. The mechanism of fissure cycle evolution in the overburden of mining and the spatial dynamic evolution characteristics of microseismic events were studied to verify the fissure cycle breakage law of the overburden on the return side of the test face, and to determine the height range of the bubble fall zone from 19.7 to 24 m.
(3) The gas enrichment rules in the mining fissure field of thick coal seams are optimised and expanded, and the gas enrichment zones in the mining fissure field of thick coal seams are divided into: gas diffusion and flow zone, vertical gas rise and float zone and high concentration gas enrichment zone. The principles for the identification of boreholes in the unloading gas enrichment zone are determined, and a borehole detection scheme is constructed. Along the direction, the unloading gas on the return wind side is diffused - floated - enriched into the fissure field, with a lag, and with the influence of mining in the first cycle of incoming pressure step during the detection period, the diffusion and floating is basically in the gas flow diffusion zone, and in the second cycle of incoming pressure step, the unloading gas is transported and enriched, and the gas concentration increases more obviously.
(4) Based on the identified highly concentrated gas-rich areas, we guided the practice of gas extraction engineering in large diameter boreholes at high level towards the site. The working face and return wind gas management effect was excellent, with concentrations below 0.5%, ensuring safe and efficient coal and gas extraction from the working face.
The results of the study provide effective theoretical support for the determination of the final hole of the highly concentrated gas extraction borehole and can effectively solve the problem of serious gas outflow. It is of great relevance to the safety of underground staff, the control of gas concentration in the corner of the working face, the suppression of gas gushing from the extraction area and the saving of gas extraction costs.
﹀
|
参考文献: |
︿
[1]刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021,46(01): 1-15. [2]胡社荣,蔺丽娜,黄灿,等. 超厚煤层分布与成因模式[J]. 中国煤炭地质,2011,23(01): 1-5. [3]国家安全生产监督管理总局. 煤矿安全规程[M]. 煤炭工业出版社,2009. [4]袁亮,杨科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报,2021,46(01): 16-24. [5]袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(08): 2277-2284. [6]袁亮. 煤及共伴生资源精准开采科学问题与对策[J]. 煤炭学报,2019,44(01): 1-9. [7]袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(01): 1-7. [8]WHITTAKER B N, SINGH R N. Design and stability of pillars in longwall mining [J]. Mining Engineer London, 1979, 139: 59-73. [9] WILSON A H. An hypothesis concerning pillar stability[J]. The Mining Engineer, 1972,131: 409-417. [10]宋振琪编. 实用矿山压力控制[M]. 中国矿业大学出版社,1988. [11]宋振骐,蒋宇静. 采场顶板控制设计中几个问题的分析探讨[J]. 矿山压力,1986(01): 1-9. [12]钱鸣高,缪协兴,何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报,1994(06): 557-563. [13]钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996(03): 2-7. [14]GJ H, KL. J. A hydrogen mechanical study of overburden aquifer response to longwall mining: Proceedings, 7th Conf. Ground Control in Mining[C], Morgantown: West Virginia University, 1988. [15]BAI M, ELSWORTH D. Some aspects of mining under aquifers in China [J]. Mining Science and Technology, 1990,10(1): 81-91. [16] KARMIS M, TRIPLETT T, HAYCOCKS C, et al. Mining subsidence and its prediction in the Appalachian coalfield[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(2): 665-675. [17]刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报,1995(01): 1-5. [18]钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 中国矿业大学出版社,2010. [19]许家林,钱鸣高. 应用图像分析技术研究采动裂隙分布特征[J]. 煤矿开采,1997(01): 37-39. [20]钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996(03): 2-7. [21]钱鸣高,许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报,1998(05): 20-23. [22]刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报,1995(01): 1-5. [23]高延法. 岩移“四带”模型与动态位移反分析[J]. 煤炭学报,1996(01): 51-56. [24]高延法. 煤矿岩层与地表移动的电算模拟研究[J]. 山东矿业学院学报,1987(01): 18-24. [25]姜福兴. 采场覆岩空间结构观点及其应用研究[J]. 采矿与安全工程学报, 2006(01): 30-33. [26]袁亮, 郭华, 沈宝堂, 等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报, 2011,36(03): 357-365. [27]李树刚,石平五, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J].矿山压力与顶板管理,1999(Z1): 44-46. [28]李树刚.综放开采围岩活动及瓦斯运移[M]. 中国矿业大学出版社, 2000. [29]李树刚,钱鸣高, 石平五. 煤层采动后甲烷运移与聚集形态分析[J]. 煤田地质与勘探, 2000(05): 31-33. [30]李树刚,林海飞,成连华. 综放开采支承压力与卸压瓦斯运移关系研究[J]. 岩石力学与工程学报, 2004(19): 3288-3291. [31]林海飞,李树刚,成连华,等. 覆岩采动裂隙带动态演化模型的实验分析[J]. 采矿与安全工程学报, 2011,28(02): 298-303. [32]杨科, 谢广祥. 采动裂隙分布及其演化特征的采厚效应[J]. 煤炭学报, 2008(10): 1092-1096. [33]杨科, 谢广祥. 应力壳与采动裂隙演化特征及其动态效应: 2010年中国煤炭学会青年科技工作者论坛[C]. 中国北京, 2010. [34]杨科, 谢广祥, 常聚才. 不同采厚围岩力学特征的相似模拟实验研究[J]. 煤炭学报, 2009,34(11): 1446-1450. [35]薛俊华. 近距离高瓦斯煤层群大采高首采层煤与瓦斯共采[J]. 煤炭学报, 2012,37(10): 1682-1687. [36]赵勇明,蒋曙光,邵昊,等. 采空区瓦斯抽放钻孔终孔范围确定方法研究[J]. 煤炭科学技术, 2011,39(05): 51-53. [37]王琰. 近距离倾斜上保护层卸压范围与卸压瓦斯抽放研究[D]. 内蒙古科技大学, 2011. [38]石必明,俞启香,周世宁. 保护层开采远距离煤岩破裂变形数值模拟[J]. 中国矿业大学学报,2004(03): 25-29. [39]石必明,刘泽功. 保护层开采上覆煤层变形特性数值模拟[J]. 煤炭学报, 2008(01): 17-22. [40]石必明,俞启香,王凯. 远程保护层开采上覆煤层透气性动态演化规律试验研究[J]. 岩石力学与工程学报, 2006(09): 1917-1921. [41]LIU Y, ZHOU F, LIU L, et al. An experimental and numerical investigation on the deformation of overlying coal seams above double-seam extraction for controlling coal mine methane emissions [J]. International Journal of Coal Geology, 2011,87(2):139-149. [42]XIEXING M, XIMIN C, JIN'AN W, et al. The height of fractured water-conducting zone in undermined rock strata[J]. Engineering Geology, 2011,120(1): 32-39. [43]YANG J, CHEN W, YANG D, et al. Numerical determination of strength and deformability of fractured rock mass by FEM modeling[J]. Computers and Geotechnics , 2015,64: 20-31. [44]MAJDI A, HASSANI F P, NASIRI M Y. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining [J]. International Journal of Coal Geology, 2012, 98: 62-72. [45]涂敏, 缪协兴, 黄乃斌. 远程下保护层开采被保护煤层变形规律研究[J]. 采矿与安全工程学报, 2006(03): 253-257. [46]HE J, CHEN S, SHAHROUR I. Numerical estimation and prediction of stress-dependent permeability tensor for fractured rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2013 , 59: 70-79. [47]刘超, 李树刚, 许满贵, 等. 采空区覆岩采动裂隙演化过程及其分形特征研究[J]. 湖南科技大学学报(自然科学版), 2013,28(03): 1-5. [48]李宏艳, 王维华, 齐庆新, 等. 基于分形理论的采动裂隙时空演化规律研究[J]. 煤炭学报, 2014,39(06): 1023-1030. [49]刘泉声, 刘学伟. 多场耦合作用下岩体裂隙扩展演化关键问题研究[J]. 岩土力学, 2014,35(02): 305-320. [50]谢和平,于广明,杨伦,等. 采动岩体分形裂隙网络研究[J]. 岩石力学与工程学报, 1999(02): 29-33. [51]谢和平,张泽天,高峰,等.不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J]. 煤炭学报, 2016,41(10): 2405-2417. [52]薛东杰, 周宏伟, 任伟光,等. 浅埋深薄基岩煤层组开采采动裂隙演化及台阶式切落形成机制[J]. 煤炭学报, 2015,40(08): 1746-1752. [53]张玉军, 高超. 急倾斜特厚煤层水平分层综放开采覆岩破坏特征[J]. 煤炭科学技术, 2016,44(01): 126-132. [54]LIU C, XUE J, YU G, et al. Fractal characterization for the mining crack evolution process of overlying strata based on microseismic monitoring technology[J]. International Journal of Mining Science and Technology, 2016, 26(2): 295-299. [55]史博文,白建平,郝春生,等. 采动覆岩裂隙动态演化规律的三维模拟[J]. 煤矿安全, 2019,50(07): 259-262. [56]魏宗勇,李树刚,林海飞,等. 大采高综采覆岩裂隙演化特征三维实验研究[J]. 西安科技大学学报,2020,40(04): 589-598. [57]龚选平, 武建军, 李树刚,等. 低瓦斯煤层高强开采覆岩卸压瓦斯抽采合理布置研究[J]. 采矿与安全工程学报,2020,37(02): 419-428. [58]赵毅鑫, 令春伟, 刘斌,等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报,2021,38(01): 9-18. [59]韩佩博. 三维采动应力条件下煤层覆岩及底板裂隙场演化规律与瓦斯运移特征研究[D]. 重庆大学, 2015. [60]华明国. 采动裂隙场演化与瓦斯运移规律研究及其工程应用[D]. 中国矿业大学(北京), 2013. [61]武猛猛. 基于DEM的煤层上覆岩层采动裂隙场及瓦斯富集区识别方法研究[D]. 山东科技大学安全工程, 2017. [62]周世宁. 瓦斯在煤层中流动的机理[J]. 煤炭学报, 1990(01): 15-24. [63]周世宁. 煤层瓦斯赋存与流动理论[M]. 煤炭工业出版社, 1999. [64]谭学术, 鲜学福, 张广洋,等. 煤的渗透性研究[J]. 西安矿业学院学报, 1994(01): 22-25. [65]孙培德, 鲜学福. 煤层气越流的固气耦合理论及其应用[J]. 煤炭学报, 1999(01): 62-66. [66]PEIDE S. Solid-gas interaction modelling for mining safety range and numerical simulations [J]. Journal of Coal Science & Engineering:china, 2000(6(2)): 41-46. [67]曹树刚, 鲜学福. 煤岩固-气耦合的流变力学分析[J]. 中国矿业大学学报, 2001(04): 42-45. [68] 章梦涛,王景琰. 采场空气流动状况的数学模型和数值方法[J]. 煤炭学报, 1983(03): 46-54. [69]丁广骧,柏发松. 采空区混合气运动基本方程及其有限元解法[J]. 中国矿业大学学报, 1996(03): 21-26. [70] 丁广骧. 煤层瓦斯实用动力学方程及其有限元解法[J]. 中国矿业大学学报, 1997(04): 76-79. [71]李树刚, 张伟, 邹银先, 等. 综放采空区瓦斯渗流规律数值模拟研究[J]. 矿业安全与环保, 2008(02): 1-3. [72]金龙哲, 姚伟, 张君. 采空区瓦斯渗流规律的CFD模拟[J]. 煤炭学报, 2010,35(09): 1476-1480. [73]许满贵, 林海飞, 潘宏宇. 综采采空区瓦斯运移规律及抽采研究[J]. 湖南科技大学学报(自然科学版), 2010,25(02): 6-9. [74]王兵建, 陶占宇, 李军, 等. 上隅角埋管抽放前后采空区瓦斯运移规律研究[J]. 煤炭科学技术, 2012,40(09): 32-35. [75]李宗翔, 吴强, 潘利明. 采空区双分层渗流模型及耗氧-升温分布特征[J]. 中国矿业大学学报, 2009,38(02): 182-186. [76]李宗翔, 顾润红, 张晓明, 等. 基于RNG k-ε湍流模型的3D采空区瓦斯上浮贮移[J]. 煤炭学报, 2014,39(05): 880-885. [77]高建良, 王海生. 采空区渗透率分布对流场的影响[J]. 中国安全科学学报, 2010,20(03): 81-85. [78]高建良, 李星星, 崔亚凯. 综采工作面采空区风流及瓦斯分布规律的数值模拟[J]. 安全与环境学报, 2013,13(02): 164-168. [79]张西斌, 张勇, 刘传安, 等. 基于采空区瓦斯运移规律的抽采钻场设计[J]. 煤炭科学技术, 2012,40(03): 56-61. [80]李东印, 许灿荣, 熊祖强. 采煤工作面瓦斯流动模型及COMSOL数值解算[J]. 煤炭学报, 2012,37(06): 967-971. [81]齐庆新, 季文博, 元继宏, 等. 底板贯穿型裂隙现场实测及其对瓦斯抽采的影响[J]. 煤炭学报, 2014,39(08): 1552-1558. [82]张东明, 齐消寒, 宋润权, 等. 采动裂隙煤岩体应力与瓦斯流动的耦合机理[J]. 煤炭学报, 2015,40(04): 774-780. [83]彭守建, 张超林, 梁永庆, 等. 抽采瓦斯过程中煤层瓦斯压力演化规律的物理模拟试验研究[J]. 煤炭学报, 2015,40(03): 571-578. [84]许江, 唐勖培, 张超林, 等. 不同气压条件下瓦斯抽采效果物理模拟试验研究[J]. 煤炭科学技术, 2017,45(05): 115-120. [85]李树刚, 魏宗勇, 林海飞, 等. 煤与瓦斯共采三维大尺度物理模拟实验系统的研制与应用[J]. 煤炭学报, 2019,44(01): 236-245. [86]张子春. 大同煤矿坚硬顶板大面积来压及其冒落特征的探讨[J]. 冶金安全, 1977(02): 23-25. [87]王乃明. 矿压的观测和予报[J]. 煤矿安全, 1978(05): 4-6. [88]张银平. 岩体声发射与微震监测定位技术及其应用[J]. 工程爆破, 2002(01): 58-61. [89]姜福兴. 微震监测技术在矿井岩层破裂监测中的应用[J]. 岩土工程学报, 2002(02): 147-149. [90]贾瑞生, 张兴民, 孙红梅, 等. 井下微震监测系统中远程串行通讯方案的设计与实现[J]. 计算机测量与控制, 2005(02): 195-197. [91]刘国清. 基于声发射的岩体工程灾害微震监测系统[J]. 采矿技术, 2005(01): 30-38. [92]唐礼忠, 杨承祥, 潘长良. 大规模深井开采微震监测系统站网布置优化[J]. 岩石力学与工程学报, 2006(10): 2036-2042. [93] 曹安业, 窦林名, 秦玉红, 等. 微震监测冲击矿压技术成果及其展望[J]. 煤矿开采, 2007(01): 20-23. [94]刘超, 唐春安, 李连崇, 等. 基于背景应力场与微震活动性的注浆帷幕突水危险性评价[J]. 岩石力学与工程学报, 2009,28(02): 366-372. [95]刘超, 吴顺川, 程爱平, 等. 采动条件下底板潜在导水通道形成的微震监测与数值模拟[J]. 北京科技大学学报, 2014,36(09): 1129-1135. [96]赵国栋. 基于微震监测的大采高综采面覆岩破断特征研究[J]. 煤矿开采, 2014,19(04): 112-114. [97]SUN J, WANG L, HOU H. Application of micro-seismic monitoring technology in mining engineering[J]. International Journal of Mining Science and Technology, 2012, 22(1): 79-83. [98]温经林, 姜福兴, 魏全德, 等. 深井沿空工作面冲击地压的微震监测与数值模拟[J]. 煤矿安全, 2016,47(08): 194-197. [99]汤国水, 朱志洁, 韩永亮, 等. 基于微震监测的双系煤层开采覆岩运动与矿压显现关系[J]. 煤炭学报, 2017,42(01): 212-218. [100]何树生, 陈吉, 孙晓彤. IMS微震监测系统在北山坑探设施中的应用: 北京力学会第二十三届学术年会[C]. 中国北京, 2017. [101]CHENG G, MA T, TANG C, et al. A zoning model for coal mining - induced strata movement based on microseismic monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2017,94: 123-138. [102]MA T, TANG C, TANG S, et al. Rockburst mechanism and prediction based on microseismic monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 177-188. [103]KONICEK P, WACLAWIK P. Stress changes and seismicity monitoring of hard coal longwall mining in high rockburst risk areas[J]. Tunnelling and Underground Space Technology, 2018, 81: 237-251. [104]ZHAO Y, YANG T, YU Q, et al. Dynamic reduction of rock mass mechanical parameters based on numerical simulation and microseismic data – A case study[J]. Tunnelling and Underground Space Technology, 2019, 83: 437-451. [105]MAITY D, CIEZOBKA J. Using microseismic frequency-magnitude distributions from hydraulic fracturing as an incremental tool for fracture completion diagnostics[J]. Journal of Petroleum Science and Engineering, 2019,176: 1135-1151. [106]王川婴, TIM LAWK. 钻孔摄像技术的发展与现状[J]. 岩石力学与工程学报, 2005(19): 42-50. [107]张玉军, 李凤明. 高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J]. 岩石力学与工程学报, 2011,30(S1): 2994-3001. [108]张玉军. 钻孔电视探测技术在煤层覆岩裂隙特征研究中的应用[J]. 煤矿开采, 2011,16(03): 77-80. [109]张玉军, 张华兴, 陈佩佩. 覆岩及采动岩体裂隙场分布特征的可视化探测[J]. 煤炭学报, 2008(11): 1216-1219. [110]Zu-Qiang Xiong , WANG C, ZHANG N. A field investigation for overlying strata behaviour study during protective seam longwall overmining[J]. Arabian Journal of Geosciences, 2015,8(10): 7797-7809. [111]高保彬, 刘云鹏, 潘家宇, 等. 水体下采煤中导水裂隙带高度的探测与分析[J]. 岩石力学与工程学报, 2014,33(S1): 3384-3390. [112]HAN Z, WANG C, LIU S, et al. Research on Connectivity of Deep Ore-lodes of Borehole based on Digital Borehole Camera[J]. Disaster Advances, 2013,6(8): 41-46. [113]HAN Z,WANG C, ZHU H. Research on Deep Joints and Lode Extension Based on Digital Borehole Camera Technology[J]. Polish Maritime Research, 2015, 22(s1):10-14. [114]王云广. 高强度开采覆岩破坏特征与机理研究[D]. 河南理工大学, 2016. [115]建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M]. 煤炭工业出版社, 2000. [116]陈全. 矿井瓦斯气体的浮升与压强扩散[J]. 阜新矿业学院学报(自然科学版), 1997(01): 34-38. [117]李伟. 高瓦斯厚煤层覆岩裂隙演化与瓦斯运移规律及应用研究[D]. 西安科技大学, 2015. [118]李生舟. 采动覆岩裂隙场演化及瓦斯运移规律研究[D]. 重庆大学, 2012. [119]史博文, 白建平, 郝春生, 等. 采动覆岩裂隙动态演化规律的三维模拟[J]. 煤矿安全, 2019,50(07): 259-262. [120]GUO H, YUAN L, SHEN B,et al. Mining-induced strata stress changes, fractures and gas flow dynamics in multi-seam longwall mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 54: 129-139. [121]WU H,ZHOU Y, YAO Y, et al. Imaged based fractal characterization of micro-fracture structure in coal [J]. Fuel, 2019, 239: 53-62. [122]童晨晨. 余吾煤业N2201工作面顶板走向长钻孔替代高抽巷瓦斯抽采技术研究[D]. 太原理工大学, 2018.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2021-06-18
|