论文中文题名: |
含改性可膨胀石墨/Fe2O3硅橡胶泡沫阻燃抑烟研究
|
姓名: |
吕春晖
|
学号: |
19220214094
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
消防科学与技术
|
第一导师姓名: |
邓军
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
王彩萍
|
论文提交日期: |
2022-06-20
|
论文答辩日期: |
2022-06-01
|
论文外文题名: |
Study on flame retardant and smoke suppression of silicone rubber foam containing modified expandable graphite/Fe2O3
|
论文中文关键词: |
硅橡胶泡沫 ; 可膨胀石墨 ; 硼酸锌 ; Fe2O3 ; 阻燃抑烟
|
论文外文关键词: |
Silicone rubber foam ; Expandable graphite ; Zinc borate ; Fe2O3 ; Flame retardant ; Smoke suppression
|
论文中文摘要: |
︿
~硅橡胶泡沫(SRF)因为结合了硅橡胶材料和泡沫材料的优异特性,已被广泛应用。但是由于其侧链的可燃性和内部形成的泡孔结构,发生火灾时会产生大量浓烟,威胁人员健康和安全,所以必须对其进行阻燃抑烟处理。可膨胀石墨(GIC)是一种结合炭源和气源为一体的无机阻燃剂,并且价格低廉、绿色环保,已被应用于许多高分子泡沫材料中。但GIC在单独使用时形成的“蠕虫”状炭层较为稀疏、松散,不能起到良好的阻燃抑烟效果。硼酸锌(ZB)具有抑烟、无毒、促进成炭等优势,在硅橡胶材料中有着良好的阻燃抑烟效果,并且与膨胀型阻燃剂配合使用时具有优异的协同阻燃抑烟效果。Fe2O3具有强力的协效作用,在其他高分子材料中已经展现出了良好的阻燃抑烟能力,但目前还未在SRF材料中进行应用。为此,本研究以提升SRF的阻燃抑烟性能为目标,采用石墨插层技术将ZB引入GIC层间形成新型阻燃剂改性可膨胀石墨(ZB-GIC),利用ZB高温下形成的熔融态液体填补GIC膨胀之后形成的缝隙,强化炭层,从而提升GIC的阻燃抑烟性能。并将ZB-GIC与Fe2O3加入到SRF中,采用多种测试方法系统地研究了ZB-GIC/Fe2O3对SRF阻燃抑烟性能的影响,并揭示了其阻燃抑烟机理。主要创新性成果如下:
(1)通过石墨插层技术将ZB引入GIC层间,成功制备出新型阻燃剂ZB-GIC。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、激光粒度分析和傅里叶转换红外光谱(FTIR)测试表明,ZB-GIC的层间距离明显变大,由2.931 Å增大至2.972 Å,粒径也明显变大,FTIR光谱中新出现的峰位置对应的是物质为ZB和磷酸,证明ZB-GIC制备成功。
(2)通过水平垂直燃烧测试(UL-94)、氧指数测试、锥形量热仪和万能拉伸试验机对GIC/SRF和ZB-GIC/SRF的阻燃抑烟性能和力学性能进行了研究。结果表明,ZB-GIC对SRF材料的阻燃抑烟效果明显优于GIC。5%ZB-GIC/SRF的阻燃抑烟性能最佳,达到了UL-94 V0级,极限氧指数(LOI)提升至42.6%,热释放速率(HRR)、总热释放量(THR)、烟气释放速率(SPR)和总烟释放量(TSP)也均有明显降低。ZB-GIC与GIC会在一定程度削弱SRF的拉伸性能,但ZB-GIC比GIC能更大程度的提升材料的压缩性能。
(3)通过UL-94、LOI测试、锥形量热仪和万能拉伸试验机对Fe2O3/SRF和ZB-GIC/Fe2O3/SRF的阻燃抑烟性能和力学性能进行了研究。结果表明,Fe2O3单独添加时具有良好的抑烟性能,但是阻燃效果差,5%Fe2O3/SRF的综合性能最佳。当两者复配时,5%ZB-GIC/5%Fe2O3/SRF的阻燃性抑烟效果最佳,达到了UL-94 V0级,LOI值为44.2%,热释放速率峰值(PkHRR)降低了67.42%,THR降低了89.55%,烟气释放速率峰值(PSPR)下降了76.86%,TSP下降了91.81%,对CO和CO2也有一定的抑制效果。当复配总含量不超过10%时,对SRF材料的拉伸性能几乎没有影响,但可以小幅提升SRF材料的抗压强度。
(4)利用SEM、热重分析(TGA)和热重红外联用(TG-FTIR)对SRF、5%ZB-GIC/SRF、5%Fe2O3/SRF和5%ZB-GIC/5%Fe2O3/SRF的宏观与微观残炭形貌、热稳定性和热解产物进行研究,从凝聚相和气相两方面揭示其阻燃抑烟机理。结果表明,两者复配可以使SRF的炭渣更为致密、紧实,能够更好地延迟分解温度,大幅度提升SRF材料的热稳定性。5%ZB-GIC/SRF的残炭量较纯增加了3.28%,5%Fe2O3/SRF的残炭量提升了6.07%;5%ZB-GIC/5%Fe2O3/SRF的残炭量提高了12.11%。ZB-GIC/Fe2O3主要在凝聚相起阻燃抑烟作用,ZB-GIC与Fe2O3复配形成的高强度炭层具有隔热、隔氧的作用,并且会阻止燃烧产生的烟气和热量逸出。此外,在气相方面,两者复配会释放更多的不可燃气体,降低SRF材料基体内部的可燃气体浓度,从而达到良好的阻燃抑烟效果。
﹀
|
论文外文摘要: |
︿
~Silicone rubber foam (SRF) has been widely used because it combines the excellent properties of silicone rubber material and foam material. However, due to the flammability of its side chain and the bubble structure formed inside, a large amount of smoke will be generated in the event of fire, threatening the health and safety of personnel. Therefore, it must be treated with fire retardant and smoke suppression. Expandable graphite (GIC) is a kind of flame retardant which combines carbon source and gas source. It is cheap and green, and has been applied in many polymer foam materials. However, the "worm" carbon layer formed by GIC when used alone is sparse and loose, which cannot play a good flame retardant and smoke suppression effect. Zinc borate (ZB) has the advantages of smoke suppression, non-toxicity and promotion of carbon formation. It has a good flame retardant and smoke suppression effect in silicone rubber materials, and has an excellent synergistic flame retardant and smoke suppression effect when combined with the expansion flame retardant. Fe2O3 has strong synergistic effect and has shown good flame retardancy and smoke suppression ability in other polymer materials, but it has not been applied in SRF materials. Therefore, in order to improve the flame retardancy and smoke suppression performance of SRF, this study adopts graphite intercalation technology to introduce ZB into GIC layers to form a new flame retardancy modified expandable graphite (ZB-GIC), and uses the molten liquid formed under high temperature of ZB to fill the gap formed after GIC expansion to strengthen the carbon layer, so as to improve the flame retardancy and smoke suppression performance of GIC. The effect of ZB-GIC/Fe2O3 on SRF flame retardancy and smoke suppression was systematically studied by using various test methods, and the mechanism of flame retardancy and smoke suppression was revealed. The main innovative achievements are as follows:
(1)ZB was introduced into GIC layers by graphite intercalation technology to form a new flame retardant ZB-GIC. SEM, XRD, laser particle size analysis and FTIR test show that the interlayer distance of ZB-GIC was obviously increased from 2.931Å to 2.972Å, and the particle size was obviously larger. The new peak positions correspond to ZB and phosphoric acid, which proved that ZB-GIC had been successfully prepared.
(2)Flame retardant and smoke suppression performance and mechanical performance of GIC/SRF and ZB-GIC/SRF were studied by horizontal and vertical combustion test (UL-94), oxygen index test, conical calorimeter and universal tensile testing machine. The results showed that ZB-GIC was better than GIC in flame retardancy and smoke suppression of SRF materials. The flame retardance and smoke suppression performance of 5%ZB-GIC/SRF was the best, reaching UL-94 V0 rating, and the limiting oxygen index (LOI) increased to 42.6%, and the heat release rate (HRR), total heat release rate (THR), smoke release rate (SPR) and total smoke release rate (TSP) decreased obviously. ZB-GIC and GIC weaken the tensile properties of SRF to a certain extent, but ZB-GIC can improve the compressive strength of materials to a greater extent than GIC.
(3)Flame retardant and smoke suppression performance and mechanical performance of Fe2O3/SRF and ZB-GIC/Fe2O3/SRF were studied by UL-94, LOI test, cone calorimeter and universal tensile testing machine. The results showed that Fe2O3 alone has good smoke suppression performance, but poor flame retardant effect, 5%Fe2O3/SRF has the best comprehensive performance. When combined with 5%ZB-GIC/5%Fe2O3/SRF, the flame retardance and smoke suppression effect of 5%ZB-GIC/5%Fe2O3/SRF was the best, reaching UL-94 V0 rating, LOI value was 44.2%, peak heat release rate (PkHRR) decreased 67.42%, THR decreased 89.55%. The peak emission rate (PSPR) and TSP decreased by 76.86% and 91.81% respectively, which also had certain inhibition effect on CO and CO2. When the total compound content was less than 10%, the tensile properties of SRF materials were almost not affected, and the compressive strength of SRF materials could be slightly improved.
(4)The macro-morphology and micro-morphology of carbon slags were analyzed by digital camera and SEM, and the thermal stability and pyrolysis products of SRF, 5%ZB-GIC/SRF, 5%Fe2O3/SRF and 5%ZB-GIC/5%Fe2O3/SRF were studied by thermogravimetric analysis (TGA) and thermogravimetric-fourier infrared spectroscopy (TG-FTIR). The results showed that the carbon residue of SRF could be made denser and more compact by the combination of the two, which could delay the decomposition temperature better and greatly improved the thermal stability of SRF materials. ZB-GIC/Fe2O3 mainly played the role of flame retardant and smoke suppression in condensed phase, and the high-strength carbon layer formed by the combination of ZB-GIC and Fe2O3 had the functions of heat insulation and oxygen isolation, and could prevent the smoke and heat generated by combustion from escaping. In addition, in the gas phase, the combination of the them would release more non-combustible gas and reduce the concentration of combustible gas in SRF matrix, thus achieving excellent flame retardant and smoke suppression effect.
﹀
|
参考文献: |
︿
[1]唐书通,张德虎,任怡,等.CNT-MF/硅橡胶泡沫复合材料的制备及介电性能[J].塑料工业,2022,50(01):163-168. [2]Song L, Ai L, Feng P, et al. Preparation of silicone rubber foam using supercritical carbon dioxide[J]. Materials Letters, 2014, 121(Apr.15):126-128. [3]Yang Q, Yu H, Song L, et al. Solid-state microcellular high temperature vulcanized (HTV) silicone rubber foam with carbon dioxide[J]. Journal of Applied Polymer ence, 2017, 134(20):135-141. [4]Sanborn B, Song B. Energy Dissipation Characteristics in Pre-strained Silicone Foam Transitioning to Silicone Rubber[J]. Journal of Dynamic Behavior of Materials, 2019, 10(5):51–58. [5]杜少忠. 无卤阻燃聚乙烯泡沫塑料的制备与性能研究[D].青岛大学,2018. [6]Song JQ, Huang ZX, Qin Y, et al. Ceramifiable and mechanical properties of silicone rubber foam composite with frit and high silica glass fiber[J]. IOP Conference Series Materials Science and Engineering, 2018, 423(1):012168. [7]Zielecka M, Klapsa W, Dziechciarz A. Factors determining the creation of a ceramized protective layer during combustion of electric cables with the sheaths made of silicone rubber composites Przemysl Chemicany, 2020, 99 (7), 1045-1049. [8]王天强,闫宁,周静,等.硅橡胶泡沫材料的研究进展[J].橡胶工业,2017,64(05):315-319. [9]邓军,李航,康付如,等.硅橡胶复合材料阻燃研究进展[J].高分子通报,2020(03):1-8. [10]夏乔琦,李扬,曹承飞,等.硅橡胶泡沫复合材料的制备、性能与应用[J].中国材料进展,2018,37(03):168-177. [11]Xiang B, Jia Y, Lei Y, et al. Mechanical properties of microcellular and nanocellular silicone rubber foams obtained by supercritical carbon dioxide[J]. Polymer Journal, 2019, 51(6):1-7. [12]孟丛丛.导热硅胶垫选型和性能探究[J].汽车零部件,2020(02):81-84. [13]张静,王洪强,张继鑫,等.汽车空调箱鼓风机噪声源识别的实验研究[J].噪声与振动控制,2019,39(05):73-77. [14]特斯拉为何频频自燃[J].汽车观察,2019(05):10-12. [15]Wei C, Liu Y, Xu C, et al. Synthesis and properties of an intrinsic flame retardant silicone rubber containing phosphaphenanthrene structure[J]. RSC Advances, 2017,7(63):39786-39795. [16]Kang FR, Deng J, Li H. Pyrolysis and oxidation behaviour of dehydrogenation silicone foam containing Pt compounds[J]. Joural of Thermal Analysis and Calorimetry,2021,144(2):351-361. [17]Deng J, Kang FR, Yang X. Effects of platinum compounds/superfine aluminum hydroxide/ultrafine calcium carbonate on the flame retardation and smoke suppression of silicone foams[J]. Jouranal of Applied Polymer Science, 2020,137(1):311-319.. [18]李智奇,许苗军,高健,等.高效阻燃硅橡胶材料的制备及性能研究[J].化学与粘合,2020,42(03):188-191. [19]姬振行,袁振,王子航,等.一种导热阻燃型硅橡胶绝缘涂料的制备[J].中国涂料,2020,35(08):55-57. [20]邓军,张瓷,康付如,等.含氢氧化铝铂金催化体系HTV阻燃抑烟硅橡胶的制备和性能[J].西安科技大学学报,2019,39(06):928-933. [21]刘志超. DMMP阻燃微胶囊的制备及在硅橡胶泡沫中的应用[D].西安科技大学,2019. [22]陈浩然,李晓丹.阻燃剂的研究发展现状[J].纤维复合材料,2012,29(01):18-21. [23]闫冬雪,王俊和,李龙锐,等.无卤阻燃填料对热硫化阻燃硅橡胶性能的影响[J].有机硅材料,2019,33(04):262-266. [24]Guo BY, Zhang TQ, Zhang WX, et al. Influence of surface flame-retardant layer containing ammonium polyphosphate and expandable graphite on the performance of jute/polypropylene composites[J]. Journal of Thermal Analysis and Calorimetry, 2018,18:135-142. [25]白静兰,孙立婧,闫莉,等.无机阻燃剂协同阻燃聚合物研究进展[J].高分子通报,2014(11):71-76. [26]Yan L, Xu Z, Wang X. Synergistic flame-retardant and smoke suppression effects of zinc borate in transparent intumescent fire-retardant coatings applied on wood substrates[J]. Journal of Thermal Analysis and Calorimetry, 2019,136(4),1563-1574. [27]吴笑. 金属氧化物基有机/无机杂化化合物的制备及其阻燃聚丙烯行为研究[D].北京工商大学,2018. [28]许硕,武伟红,程路瑶,等.蒲绒活性炭负载Fe2O3的制备及其在软质聚氯乙烯中的阻燃应用[J].复合材料学报,2018,35(07):1745-1753. [29]邓军,成晨阳,康付如.含钴基金属有机框架硅橡胶泡沫阻燃特性研究[J].中国安全生产科学技术,2021,17(12):5-10. [30]鲍文亮,赖学军,李红强,等.低密度阻燃室温硫化硅橡胶的制备与性能研究[J].合成材料老化与应用,2021,50(05):7-10. [31]王新古.陶瓷化硅橡胶的介电与防火性能研究[D].山东理工大学,2021. [32]李航. 改性硅系阻燃剂/硼酸锌/硅橡胶泡沫阻燃抑烟研究[D].西安科技大学,2021. [33]马砺,刘西西,刘志超,等.改性水滑石的制备及在硅橡胶泡沫阻燃抑烟中的应用[J].高分子材料科学与工程,2020,36(10):55-62. [34]Januszewski R, Dutkiewic Z. Synthesis and characterization of phosphorus-containing, silicone rubber based flame retardant coatings[J]. Reactive And Functional Polymers, 2018,33:173-179. [35]Yang J, Ma W, Hu D, et al. Facile preparation and flame retardancy mechanism of cyclophosphazene derivatives for highly flame‐retardant silicone rubber composites[J]. Journal of Applied Polymer Science,2019,30:51-62. [36] Wang N, Xu G. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites[J]. Journal of Thermal Analysis & Calorimetry, 2016,23(05):320-321. [37]Chen X, Zhuo J, Song W, et al. Flame retardant effects of organic inorganic hybrid intumescent flame retardant based on expandable graphite in silicone rubber composites[J]. Polymers for Advanced Technologies, 2014, 25(12):122-131. [38]李智奇. 大分子磷—硅阻燃剂的合成及阻燃硅橡胶研究[D].东北林业大学,2020. [39]谢超,秦岩,黄志雄,等.空心玻璃微珠对膨胀阻燃硅橡胶复合材料性能的影响[J].复合材料科学与工程,2020(01):95-100. [40]孙名伟.阻燃型高温硫化硅橡胶的制备及性能研究[D]. 青岛科技大学,2014. [41]Zirnstein B, Schulze D, Schartel B. The Impact of Polyaniline in Phosphorus Flame Retardant Ethylene-Propylene-Diene-Rubber (EPDM) [J]. Thermochimica Acta, 2019,14(2):225-233. [42]Yang XJ, Yao ZJ, Zhang YH. Organic Nano-Montmorillonite for Simultaneously Improving the Flame Retardancy, Thermal Stability, and Mechanical Properties of Intumescent Flame-Retardant Silicone Rubber Composites[J]. Journal of Macromolecular Science, Patt B. Physics, 2015,45(12):117-126. [43]Modic FJ. Silicone foam composition which has burn resistant properties[M].US. 1980. Rubber Industry,2016,39(2):125-128. [44]邓军,李航,康付如.硼酸锌和镁铝水滑石对硅橡胶泡沫性能的影响[J].高分子材料科学与工程,2020,36(12):42-48. [45]亢庆卫,罗权焜.以三氧化二锑为协效剂的复合阻燃剂对MVQ硫化胶阻燃性能的影响[J].橡胶工业,2014(11):651-655. [46]李齐敏,王靖宇,陈腊梅,等.磷-氮多元醇浸渍可膨胀石墨协同增强硬质聚氨酯泡沫的隔热及阻燃性能[J].高分子材料科学与工程,2019,35(05):57-62. [47]Wang H, Cao J, Luo F, et al. Hugely enhanced flame retardancy and smoke suppression properties of UHMWPE composites with silicone oated expandable graphite[J]. Polymers for Advanced Technologies, 2019,19(19):372-379. [48]Bai SB, Chen X, et al. Macromolecular Nitrogen-Phosphorous Compound/Expandable Graphite Synchronous Expansion Flame Retardant Polystyrene Foam [J]. Polymer Plastics Technology and Engineering, 2014,42(9):96-107. [49]李琳珊,刘志琦,姚媛媛,等.可膨胀石墨的氧化处理对复配阻燃PU涂层性能的影响[J].中国塑料,2017,31(02):43-50. [50]张昌海,迟庆国,刘立柱,陈阳.氢氧氧铋包覆可膨胀石墨/聚乙烯复合材料阻燃特性研究[J].电机与控制学报,2018,22(11):46-51. [51]Wang YC, Zhao JP , Meng XJ. Effect of expandable graphite on polyester resin-based intumescent flame retardant coating[J]. Progress in Organic Coatings, 2019, 132:178-183. [52]费月英.建筑用膨胀石墨阻燃聚氨酯泡沫材料的制备及性能[J].工程塑料应用,2020,48(02):119-122. [53] Lee S, Kim H. Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites-ScienceDirect[J]. Carbon, 2019, 143:650-659. [54]黄长江.可膨胀石墨的制备及其在硬质聚氨酯泡沫中的阻燃应用[D].北京化工大学,2015. [55]Yao WG, Zhang DY, ZhangYX, et al. Synergistic Flame Retardant Effects of Expandable Graphite and Ammonium Polyphosphate in Water-Blow Polyurethane Foam. 2019, 16(14):52-59. [56]Li J, Mo XH, Li Y, et al. Influence of expandable graphite particle size on the synergy flame retardant property between expandable graphite and ammonium polyphosphate in semi-rigid polyurethane foam. 2018, 75(11):5287-5304. [57]刘珂,张英,张威,等.可膨胀石墨和碳纳米管对PMMA火蔓延特性的影响[J].过程工程学报:2019,15,1-10. [58]李建华.可膨胀石墨对改性硅橡胶膨胀及燃烧性能的影响[J].消防科学与技术,2020,39(11):1573-1576. [59]庞青涛,邓军,邵水源,严瑾.可膨胀石墨阻燃多孔硅胶的制备与表征[J].化工新型材料,2020,48(08):185-189. [60]黄雨薇. 膨胀阻燃及可瓷化硅橡胶的制备与性能研究[D].北京化工大学,2018. [61]孙凤勤,洪玲.可膨胀石墨对室温硫化硅橡胶性能的影响[J].化学通报,2011,74(04):376-379. [62]Pang QT, Deng J, Kang FR, et al. Effect of expandable Graphite/Hexaphenoxy cyclotriphosphazene beads on the flame retardancy of silicone rubber foam[J]. Materials Research Express, 2020, 7(5):055308. [63]Hong L, Hu XX. Mechanical and Flame Retardant Properties and Microstructure of Expandable Graphite/Silicone Rubber Composites[J]. Journal of Macromolecular Science, Part B, 2016, 55(2):75-187. [64]窦艳丽,张天琪,姚卫国,等.可膨胀石墨阻燃半硬泡聚氨酯材料的性能[J].高分子材料科学与工程,2017,33(01):50-56. [65]王成群. 无卤阻燃剂复配/包覆可膨胀石墨阻燃软质聚氨酯泡沫的性能[D].东华大学,2013. [66]赵德胜,张琪,马文中,等.双子磷酸酯改性硼酸锌晶须及其在聚乙烯中的阻燃研究[J].化工新型材料,2020,48(07):100-103. [67]Sultygova ZK, Kitieva LI, Timur A, Borukaev. Using Zinc Borate as Effective Flame Retardant. 2019, 5997:129-133. [68]Jiang MW, Zhang YS, Yu Y, et al. Flame retardancy of unsaturated polyester composites with modified ammonium polyphosphate, montmorillonite, and zinc borate. 2019, 136(11):231-240. [69]杨正,王振华,鲁世科,等.硼酸锌协效二乙基次膦酸铝阻燃PA6[J].中国塑料,2022,36(01):120-127. [70]林晓兰,刘惠平,张晋桢,等.硼酸锌复配阻燃体系阻燃聚甲醛的研究[J].消防科学与技术,2018,37(01):80-83. [71]邓军,李航,康付如.硼酸锌和镁铝水滑石对硅橡胶泡沫性能的影响[J].高分子材料科学与工程,2020,36(12):42-48. [72]谢超. 膨胀阻燃硅橡胶的制备及其性能的研究[D].武汉理工大学,2019. [73]张红霞,史旭灿,郁宇,等.氢氧化镁/硼酸锌复配阻燃剂对硅橡胶性能的影响研究[J].唐山师范学院学报,2018,40(03):26-28. [74]Wang XS, Li L, Tong YJ, et al. Synthesis of Core/Shell Structured Zinc Borate/Silica and Its Surface Charring for Enhanced Flame Retardant Properties. 2020, 183(18):109432. [75]Li ZX. Study of flame‐retarded silicone rubber with ceramifiable property[J]. Fire and Materials, 2020, 44(4):487-496. [76]Cheng X, Wu JM, Yao CG, et al. Flame-retardant mechanism of zinc borate and magnesium hydroxide in aluminum hypophosphite–based combination for TPE-S composites. 2019, 37(3):273-300. [77]Fontaine G, Bourbigot S, Duquesne S. Neutralized flame retardant phosphorus agent: Facile synthesis, reaction to fire in PP and synergy with zinc borate[J]. Polymer Degradation and Stability, 2008, 93(1):68-76. [78]刘昌伟,张红霞.壳聚糖基膨胀阻燃剂/硼酸锌对PE-HD性能的影响[J].塑料,2020,49(06):9-12. [79]刘惠平,刘宇婷,王晗,等.硼酸锌对膨胀阻燃聚甲醛的协效阻燃研究[J].中国安全科学学报,2020,30(05):14-20. [80]吴亚楠.硼酸锌对水性膨胀型防火涂料的抑烟影响规律研究[D].重庆科技学院,2018. [81]Qin Q, Guo RH, Ren E, et al. Waste Cotton Fabric/Zinc Borate Composite Aerogel with Excellent Flame Retardancy[J]. ACS Sustainable Chemistry And Engineering, 2020, 8(28):10335-10344. [82]薛帅伟,刘华夏,周侃,等.硅橡胶阻燃开发研究进展[J].橡塑技术与装备,2021,47(01):14-17. [83]王瑞浩,宋文魁,郭长平,等.g-C3N4/Fe2O3复合催化剂的表征及其对AP的催化作用[J].推进技术,2020,1-6. [84]万丽娟,杨明,张丽.可见光响应的Fe2O3-碳氮插层化合物复合物的制备及光催化性能研究[J].云南大学学报(自然科学版),2021,43(06):1176-1182. [85]Li G, Yang J, He T, et al. An Investigation of the thermal degradation of the intumescent coating containing MoO3 and Fe2O3[J]. Surface & Coatings Technology, 2008, 202(13):3121-3128. [86]Peng Y, Niu M, Qin R, et al. Study on flame retardancy and smoke suppression of PET by the synergy between Fe2O3 and new phosphorus-containing silicone flame retardant[J]. High Performance Polymers, 2020, 32(9):362-371. [87]Liu L, Chen XL, Jiao CM, et al. Influence of ferric phosphate on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites[J]. Iranian Polymer Journal, 2015, 24(4):337-347. [88]Jiao C, Zhao L, Chen X. Preparation of modified hollow glass microspheres using Fe2O3 and its flame retardant properties in thermoplastic polyurethane[J]. Journal of Thermal Analysis & Calorimetry, 2017, 127(3):2101-2112. [89]Jiao C, Zhao L, Chen X. Preparation of modified hollow glass microspheres using Fe2O3 and its flame retardant properties in thermoplastic polyurethane[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(3):2101-2112. [90]Fu M, Wu Y, Xue Z, et al. Study on the flame retardant property and the pyrolysis process of a novel potassium-ferric carrageenan fiber-ScienceDirect[J]. Materials Letters, 2020, 281-288. [91]Chen X, Liu L, Zhuo J, et al. Influence of Iron Oxide Brown on Smoke‐Suppression Properties and Combustion Behavior of Intumescent Flame‐Retardant Epoxy Composites[J]. Advances in Polymer Technology, 2015, 34(1):625-633. [92]金雪峰,梁惠强. Fe2O3对MCA阻燃尼龙6体系热释放速率的影响[J].工程塑料应用,2012,40(06):86-88. [93]彭云. Fe2O3效新型含磷有机硅(PDPSI)对PET及纤维的阻燃、抑烟研究[D].太原理工大学,2019. [94]陈红光,颜龙,徐志胜,等.纳米α-Fe2O3协同膨胀阻燃EP材料的阻燃和抑烟性能[J].工程塑料应用,2017,45(12):12-18. [95]丛佳玉,张世锋,张求慧. Fe2O3聚磷酸铵对聚氨酯木粉复合发泡材料的阻燃抑烟性能[J].林业工程学报,2018,3(03):95-101. [96]Chen X, Li M, Zhuo J, et al. Influence of Fe2O3 on smoke suppression and thermal degradation properties in intumescent flame-retardant silicone rubber[J]. Journal of Thermal Analysis and Calorimetry, 2015, 123(1):439-448. [97]Chen Z, Xu Y, Yu Y, et al. Polyaniline-modified Fe2O3/expandable graphite: A system for promoting the flame retardancy, mechanical properties and electrical properties of epoxy resin[J]. Powder Technology, 2020,45: 378-386. [98]Laachachi A, Leroy E, Cochez M, et al. Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate)- ScienceDirect[J]. Polymer Degradation and Stability, 2005, 89( 2):344-352. [99]周越. 高导热可膨胀石墨微胶囊阻燃天然橡胶的应用[D].青岛科技大学,2021. [100]Boda R, Shareefuddin MD, Chary MN, et al. FTIR and Optical Properties of Europium Doped Lithium Zinc Bismuth Borate Glasses[J]. Materials Today Proceedings, 2016, 3(6):1914-1922. [101]孙艺,姜润韬,金晶,李凯涛,林彦军,刘军枫,段雪.高分子材料阻燃与抑烟的分立设计思想[J].化工学报,2022,73(01):18-31. [102]谢华理. 具有火灾预警功能仿珍珠贝结构阻燃纳米涂层的制备与性能[D].华南理工大学,2020. [103]Hermouet F, Guillaume R, Rogaume T, et al. Experimental determination of the evolution of the incident heat flux received by a combustible during a cone calorimeter test: Influence of the flame irradiance:[J]. Journal of Fire Sciences, 2021, 39(2):119-141. [104]Zhang, XS, Wang, et al. Universal evaluation of fire retardant properties of fiber mats by the optimal cone calorimeter[J]. Textile research journal, 2018,88(8):892-903. [105]Yun GW , Lee JH , Kim SH. Flame retardant and mechanical properties of expandable graphite/polyurethane foam composites containing iron phosphonate dopamine‐coated cellulose[J]. Polymer Composites, 2020,41(7),2816-2828. [106]Oualha MA, Amdouni N, Laoutid F. Synergistic flame-retardant effect between calcium hydroxide and zinc borate in ethylene-vinyl acetate copolymer (EVA)[J]. Polymer Degradation & Stability, 2017,144,315-324. [107]Jeencham R ,Suppakarn N, Jarukumjorn K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites[J]. Composites Part B Engineering, 2014, 56:249-253. [108]PolatO K. Effects of Zinc Borate on the Flame Retardancy Performance of Aluminum Diethylphosphinate in Polyamide-6 and its Composites[J]. International Polymer Processing, 2019, 34(1):59-71. [109]Liu Y, Zhang L, et al. A facile and novel modification method of beta-cyclodextrin and its application in intumescent flame-retarding polypropylene with melamine phosphate and expandable graphite[J]. Journal of Polymer Research, 2016,23(4),1-17. [110]于宝刚.用锥形量热仪研究聚氨酯泡沫的阻燃性能[J].中国塑料,2010,24(03):55-59. [111]苏培循,林志,蒋浩,李佳奇,孙鑫阳.基于火灾烟气蔓延规律设置的城市地下快速路逃生通道间距[J].现代隧道技术,2021,58(S1):471-478. [112]张玉涛,车博,张玉杰.烟囱效应作用下火灾烟气蔓延规律模拟研究[J].安全与环境学报:1-10. [113]洪瑶,康建宏,符策基.基于PID方法的倾斜隧道中火灾烟气控制数值模拟[J].中国矿业大学学报,2021,50(04):701-708. [114]鲁杰. 液体硅橡胶阻燃泡沫材料制备工艺及性能研究[D].西安科技大学,2018. [115]林琳. 地铁站台火灾烟气流动模拟及排烟研究[D].大连交通大学,2010. [116]刘鑫鑫,叶南飚,郑一泉,常欢,朱秀梅,苏榆钧.不同环保溴系阻燃剂对ABS阻燃性能和力学性能的影响[J].塑料工业,2021,49(10):115-119. [117]Ynka B, Ymh A, Jepa C, et al. Flame retardant, antimicrobial, and mechanical properties of multifunctional polyurethane nanofibers containing tannic acid-coated reduced graphene oxide[J]. Polymer Testing, 2020, 93(7):125-132. [118]Braun U, Schartel B, Fichera MA, et al. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6[J]. Polymer Degradation & Stability, 2007, 92(8):1528-1545. [119]Chen Z, Xu Y, Yu Y, et al. Polyaniline-modified Fe2O3/expandable graphite: A system for promoting the flame retardancy, mechanical properties and electrical properties of epoxy resin[J]. Powder Technology, 2020, 378(19):96-106. [120]Laachachi A, Leroy E, Cochez M, et al. Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate) ScienceDirect[J]. Polymer Degradation and Stability, 2005, 89( 2):344-352. [121]Li G, Yang J, He T, et al. An Investigation of the thermal degradation of the intumescent coating containing MoO3 and Fe2O3 [J]. Surface & Coatings Technology, 2008, 202(13):3121-3128. [122]许硕,武伟红,程路瑶,孟伟华,王雪,屈红强,徐建中.蒲绒活性炭负载Fe2O3的制备及其在软质聚氯乙烯中的阻燃应用[J].复合材料学报,2018,35(07):1745-1753. [123]陈红光,颜龙,徐志胜,楚志勇.纳米α–Fe2O3协同膨胀阻燃EP材料的阻燃和抑烟性能[J].工程塑料应用,2017,45(12):12-18. [124]Wang X, Cai W, Ye DL, et al. Bio-based polyphenol tannic acid as universal linker between metal oxide nanoparticles and thermoplastic polyurethane to enhance flame retardancy and mechanical properties[J]. Composites Part B: Engineering, 2021(13):3121-3128. [125]汪聪颖. 膨胀耐火硅橡胶的成炭强化研究[D].上海大学,2020. [126]祝海波. 阻燃、陶瓷化硅橡胶的制备及性能研究[D].天津理工大学,2021.
﹀
|
中图分类号: |
TQ333.93
|
开放日期: |
2022-06-21
|