- 无标题文档
查看论文信息

题名:

 液态CO2压裂煤层低温冲击强化裂缝起裂扩展实验研究    

作者:

 徐奕铭    

学号:

 21220226065    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

导师姓名:

 文虎    

导师单位:

 西安科技大学    

提交日期:

 2024-06-17    

答辩日期:

 2024-06-03    

外文题名:

 Experimental study of low-temperature impact enhanced fracture initiation and expansion in liquid CO2 fractured coal beds    

关键词:

 煤层增透 ; 瓦斯抽采 ; 低温冲击 ; 裂缝起裂扩展 ; 液态CO2    

外文关键词:

 Coal seam permeability enhancement ; Gas extraction ; Low-temperature impact ; Fracture initiation and expansion ; Liquid CO2    

摘要:

液态CO2压裂是一项具有广阔应用前景的无水压裂技术。针对液态CO2压裂诱导产生复杂裂缝和降低起裂扩展压力的机制,以往研究通常归结于液态CO2的低粘、低表面张力和强扩散性等性质,鲜有考虑到液态CO2注入煤层时的低温冲击效应,其形成的温度应力场效应改变了煤体的力学特性,造成室内实验和现场应用中选取的关键参数可靠性低。因此,为揭示液态CO2低温冲击对煤体裂缝起裂扩展的强化作用机制,本文依据拉应力准则和有效应力原理,构建考虑液态CO2低温冲击的煤体裂缝起裂和扩展准则;基于前人的研究基础,以煤体相似材料模拟煤层为研究手段,围绕液态CO2压裂过程中温度应力对煤层起裂压力的影响因素和对裂缝扩展的增强作用开展实验。研究成果如下:

(1)基于岩石力学、弹性力学和断裂力学的基本原理,系统分析了液态CO2注入过程中低温冲击作用下钻孔周围应力的分布规律,明晰了液态CO2与煤体间温差形成的温度应力可有效降低煤岩起裂扩展压力;根据应力叠加原理,以修正的拉应力破坏准则为煤体起裂扩展的判别条件,确定了裂缝起裂扩展表征关系式,建立了考虑温度应力的裂缝起裂扩展数学模型。

(2)基于相似定律,对标原煤的力学参数,筛选了模拟煤层的相似材料,通过分析不同配比的相似材料的力学性质和破裂形态,得出最接近于煤体力学性能的相似配比,即水泥:石膏:沙子:煤粉=4:1:3:2;基于De pater相似原理,计算模拟实验系统的相似因子,结合相似因子得出了液态CO2压裂的实验方案。

(3)开展了液态CO2低温冲击强化煤层起裂实验,探究了不同温度作用下,温度应力对煤体试件起裂压力和表面裂缝特征的影响规律。研究发现液态CO2与煤体的温差越大,对煤体起裂压力的影响越显著,有效降低了起裂压力,压注温度从0 ℃下降至-20 ℃,起裂压力降幅高达9.9 %,其中温度应力所占比例从10 %增长至18 %。单位温差条件下,起裂压力降幅和温度应力增幅均为0.017 MPa,低温冲击破裂产生的裂缝数量随温差增大而增加,裂缝形态更复杂。

(4)开展了液态CO2低温冲击强化诱导裂缝扩展相似模拟实验,探究低温液态CO2对煤层诱导裂缝的增强作用。研究发现注液温度降低,其形成的温度拉应力越大,诱导裂缝的扩展强化作用越显著,有效降低了诱导裂缝扩展的峰值压力,液态CO2诱导裂缝的扩展峰值压力10 ℃比-10 ℃低10.5 %,温度应力占比为10 % ~ 23 %,诱导裂缝压力峰值和温度应力随温差增大的变化率均为0.054 MPa;

(5)在诱导裂缝扩展过程中,高能量声发射事件与宏观裂缝具有较高的一致性,裂缝产生动态扩展。液态CO2注入温度越低,产生偏转和分支多裂缝,裂缝形态相对复杂且延伸较长,裂缝数量更多,声发射瞬间释放能量的最大值和累计能量越高,CO2注入温度为-10 ℃的累计能量比注入温度为10 ℃的高1个数量级,更容易形成裂缝网络。

 

外文摘要:

Liquid CO2 fracturing is an anhydrous fracturing technology with broad application prospects. Regarding the mechanism of liquid CO2 fracturing that induces complex fractures and reduces the fracture extension pressure, previous studies usually attribute it to the properties of liquid CO2, such as low viscosity, low surface tension, and strong diffusivity, but seldom take into account the low-temperature impact effect when liquid CO2 is injected into coal seams, and the effect of the temperature stress field formed by liquid CO2 alters the mechanical properties of the coal, which results in the low reliability of the key parameters selected in indoor experiments and on-site applications. . Therefore, in order to reveal the enhancement mechanism of the low-temperature impact of liquid CO2 on the crack initiation and expansion of coal seams, this paper constructs the crack initiation and expansion criterion of coal seams considering the low-temperature impact of liquid CO2 based on the tensile stress criterion and the effective stress principle; based on the research basis of the previous research, the coal seam simulated by the similar material of coal seams is used as a research tool, and the influence factors of the temperature stress on the fracture initiation pressure and the enhancement effect on crack extension of coal seams in the process of fracturing by liquid CO2 are investigated. and the enhancement effect on crack extension during the liquid CO2 fracturing process. The research results are as follows:

(1) Based on the basic principles of rock mechanics, elasticity mechanics and fracture mechanics, the distribution law of stress around the borehole under the low-temperature impact in the process of liquid CO2 injection was systematically analyzed, and it was clarified that the temperature stress formed by the temperature difference between the liquid CO2 and the coal body could effectively reduce the cracking and expansion pressure of the coal rock; according to the principle of superposition of stresses, and with the modified tensile stress damage criterion as a discriminant condition for the cracking and expansion of the coal body, a fracture expansion characterization relation was established to take account of temperature stress. Based on the principle of stress superposition and the modified tensile stress damage criterion as the discriminant condition of coal body crack initiation and expansion, the characterization relation equation of crack initiation and expansion was determined, and the mathematical model of crack initiation and expansion considering temperature stress was established.

(2) Based on the law of similitude and benchmarking the mechanical parameters of virgin coal, similar materials for simulating coal seams were selected. By analyzing the mechanical properties and fracture patterns of similar materials with different proportions, the most coal-like mechanical performance ratio was derived, which is cement: gypsum: sand: coal powder at a ratio of 4:1:3:2. Utilizing the De Pater similarity principle, the similarity factors for the simulation experimental system were calculated, and, combining these factors, an experimental plan for liquid CO2 fracturing was developed.

(3) Experiments on enhancing coal seam cracking through the impact of liquid CO2 at low temperatures were carried out to explore the influence of temperature stress on the fracture pressure and surface crack characteristics of coal specimens under different temperature conditions. The study found that the greater the temperature difference between the liquid CO2 and the coal body, the more significant the effect on the fracture pressure of the coal body, effectively reducing the fracture pressure. With the injection temperature dropping from 0 ℃ to -20 ℃, the fracture pressure decreased by as much as 9.9 %, where the proportion of temperature stress increased from 10 % to 18 %. For each unit of temperature difference, the reduction in fracture pressure and the increase in temperature stress were both 0.017 MPa. The quantity of fractures generated by the low-temperature shock increased with the temperature difference, and the fracture morphology became more complex.

(4) Experiments on the simulation of similar crack propagation induced by the impact of liquid CO2 at low temperatures were conducted to investigate the enhancement effect of low-temperature liquid CO2 on induced cracks in coal seams. The study found that a decrease in the injection temperature increases the tensile stress caused by temperature, thus significantly enhancing the crack propagation. This effectively reduces the peak pressure required for expanding the induced cracks. The expansion peak pressure of the cracks induced by liquid CO2 at 10 ℃ is 10.5 % lower than at -10 ℃, with temperature stress accounting for 10 % to 23 %. Both the peak pressure of induced fractures and the temperature stress increase at a rate of 0.054 MPa as the temperature difference increases.

(5) During the process of induced fracture expansion, high-energy acoustic emission events show high consistency with macroscopic fractures, leading to dynamic expansion of the fractures. The lower the injection temperature of liquid CO2, the more complex, extended, and numerous the fractures become due to increased deflection and branching. The maximum and cumulative energy released by acoustic emissions are higher. The cumulative energy at an injection temperature of -10 ℃ is an order of magnitude higher than at 10 ℃, facilitating easier formation of fracture networks.

参考文献:

[1]高玉洁. 2023煤炭行业发展年度报告[R]. 中国煤炭工业协会, 2024-03-28.

[2]黄中伟, 李国富, 杨睿月, 等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报, 2022, 47(9): 3212-3238.

[3]谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报, 2014, 39(8): 1391-1397.

[4]桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 2022, 47(4): 1430-1451.

[5]张千贵, 李权山, 范翔宇, 等. 中国煤与煤层气共采理论技术现状及发展趋势[J]. 天然气工业, 2022, 42(6): 130-145.

[6]李树刚, 丁洋, 安朝峰, 等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报, 2016(5): 904-910.

[7]谢东海. 我国煤矿瓦斯抽采技术现状与发展前景[J]. 科技视界, 2013(2): 24-26.

[8]黄炳香, 陈树亮, 程庆迎. 煤层压裂开采与治理区域瓦斯的基本问题[J]. 煤炭学报, 2016, 41(1): 128-137.

[9]Pillalamarry M, Harpalani S, Liu S. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs[J]. International Journal of Coal Geology, 2011, 86(4):342-348.

[10]聂百胜, 柳先锋, 郭建华, 等. 水分对煤体瓦斯解吸扩散的影响[J]. 中国矿业大学学报, 2015, 44(5):781-787.

[11]胡友林, 乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报, 2014, 39(6): 1107-1111.

[12]樊世星. 液态CO2压裂煤岩增透及裂缝形成机制研究[J]. 岩石力学与工程学报, 2021, 40(8): 1728.

[13]Sampath K H S M, Perera M S A, Ranjith P G. Theoretical overview of hydraulic fracturing break-down pressure[J]. Journal of Natural Gas Science and Engineering, 2018, 58:151-265.

[14]侯鹏, 高峰, 张志镇, 等. 黑色页岩力学特性及气体压裂层理效应研究[J]. 岩石力学与工程学报, 2016, 35(4): 670-681.

[15]BISSELL R C, VASCO D W, ATBI M, et al. A full feld simulation of the In Salah gas production and CO2 storage project using a coupled geo-me chanical and thermal fluid flow simulator [J]. Energy Procedia, 2011, 4: 3290-3297.

[16]周盛涛, 罗学东, 蒋楠, 等. 二氧化碳相变致裂技术研究进展与展望[J]. 工程科学学报, 2021, 43(7): 883-893.

[17]田磊, 刘小丽, 杨光, 等. 美国页岩气开发环境风险控制措施及其启示[J]. 天然气工业, 2013, 33(5): 115-119.

[18]Bullen RS, Lillies AT. Carbon dioxide fracturing process and apparatus [P]. United States Patent, 1983.

[19]Lillies AT. Sand Fracturing with Liquid Carbon Dioxide [C]. The 33r d Annual Technical Meeting of the Petroleum Society of CIM, Calgary, June 6-9, 1982.

[20]Reeves SR. An overview of CO2-ECBM and sequestration in coal seams [Z]. 2009.

[21]Fujioka Masaji, Yamaguchi Shinji, Nako Masao. CO2-ECBM field tests in the Ishikari Coal Basin of Japan [J]. International Journal of Coal Geology, 2010, 82(3-4): 287-298.

[22]王香增, 孙晓, 罗攀, 等. 非常规油气CO2压裂技术进展及应用实践[J]. 岩性油气藏, 2019, 31(2): 1-7.

[23]王兆丰, 孙小明, 陆庭侃, 等. 液态CO2相变致裂强化瓦斯预抽试验研究[J]. 河南理工大学学报(自然科学版), 2015, 34(1):1-5.

[24]赵龙, 王兆丰, 孙矩正, 等. 液态CO2相变致裂增透技术在高瓦斯低透煤层的应用[J]. 煤炭科学技术, 2016, 44(3): 75-79.

[25]周西华, 门金龙, 宋东平, 等. 煤层液态CO2爆破增透促抽瓦斯技术研究[J]. 中国安全科学学报, 2015, 25(2): 60-65.

[26]周西华, 门金龙, 王鹏辉, 等. 井下液态CO2爆破增透工业试验研究[J]. 中国安全生产科学技术, 2015(9): 76-82.

[27]文虎, 李珍宝, 王振平, 等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J]. 煤炭学报, 2016, 41(11): 2793-2799.

[28]樊世星, 文虎, 程小蛟, 等. 井下高压液态CO2压裂增透煤岩成套装备研制与应用[J]. 煤炭学报, 2020, 45(S2): 801-812.

[29]岳立新, 孙可明. 超临界CO2作用后煤微观结构与渗透率变化规律实验研究[J]. 实验力学, 2017, 32(3): 397-406.

[30]梁卫国, 张倍宁, 韩俊杰, 等. 超临界CO2驱替煤层CH4装置及试验研究[J]. 煤炭学报, 2014, 39(8): 1511-1520.

[31]黎力, 梁卫国, 李治刚, 等. 注热CO2驱替增产煤层气试验研究[J]. 煤炭学报, 2017, 42(8): 2045-2051.

[32]鲜学福, 殷宏, 周军平, 等, 页岩气藏超临界CO2致裂增渗实验装置研制[J]. 西南石油大学学报(自然科学版), 2015, 37(3): 1-8.

[33]刘国军, 鲜学福, 周军平, 等. 超临界CO2致裂后页岩渗透率变化规律及影响因素[J]. 煤炭学报, 2017, 42(10): 2670-2678.

[34]Chen Y, Nagaya Y, Ishida T. Observations of Fractures Induced by Hydraulic Fracturing in Anisotropic Granite [J]. Rock Mechanics & Rock Engineering, 2015, 48(4): 1455-1461.

[35]刘曰武, 高大鹏, 李奇, 等. 页岩气开采中的若干力学前沿问题[J]. 力学进展, 2019, 49(1): 1-236.

[36]M.K. Hubbert, D.G. Willis, Mechanics of hydraulic fracturing[J]. Trans. Am. Inst. Min. Metall. Eng. 1957, 210 (6): 153–163.

[37]Haimson B, Fairhurst C. Initiation and Extension of Hydraulic Fractures in Rocks[J]. Society of Petroleum Engineers Journal, 1967, 7(6): 310-318.

[38]D.R. Schmitt, M.D. Zoback. Poroelastic effects in the determination of the maximum horizontal principal stress in hydraulic fracturing tests-a proposed breakdown equation employing a modified effective stress relation for tensile failure[J], Int. J. Rock Mech. Min. Sci. 1989, 26 (6): 499506.

[39]周大伟, 张广清. 超临界CO2压裂诱导裂缝机理研究综述[J]. 石油科学通报, 2020, 2: 239-253.

[40]黄荣撙. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发, 1982(5): 65-77.

[41]Tsuyoshi, Ishida, Kazuhei, et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters, 2012, 39(16).

[42]卢义玉, 廖引, 汤积仁, 等.页岩超临界CO2压裂起裂压力与裂缝形态试验研究[J]. 煤炭学报, 2018, 43(1): 175-180.

[43]Jiang Yongdong, Qin Chao, Kang Zhipeng, et al. Experimental study of supercritical CO2, fracturing on initiation pressure and fracture propagation in shale under different tri-axial stress conditions[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 382-3954.

[44]Cai C, Kang Y, Wang X, et al. Mechanism of supercritical carbon dioxide (SC-CO2) hydro-jet fracturing[J]. Journal of CO2 Utilization, 2018, 26: 575-587.

[45]刘国军, 鲜学福, 周军平, 等. 超临CO2致裂页岩实验研究[J]. 煤炭学报, 2017, 42(3): 694-701.

[46]王磊, 梁卫国. 超临界CO2/清水压裂煤体起裂和裂缝扩展试验研究[J]. 岩石力学与工程学报, 2019, 38(S1): 2680-2689.

[47]Zou Yushi, Li Ning, Ma Xinfang, et al. Experimental study on the growth behavior of supercritical CO2-induced fractures in a layered tight sandstone formation[J]. Journal of Natural Gas Science and Engineering, 2017, 49: 145-156.

[48]Yan H., Zhang J., Li B., et al. Crack propagation patterns and factors controlling complex crack network formation in coal bodies during tri-axial supercritical carbon dioxide fracturing [J]. Fuel, 2021, 286.

[49]Deng B.Z., Yin G.Z., Zhang D.M., et al. Experimental investigation of fracture propagation induced by carbon dioxide and water in coal seam reservoirs[J]. Powder Technology, 2018, 338: 847-856.

[50]Liu L., Zhu W, Wei C., et al. Microcrack-based geomechanical modeling of rock-gas interaction during supercritical CO2 fracturing[J]. Journal of Petroleum Science and Engineering, 2018, 164: 91-102.

[51]樊世星, 文虎, 童校长, 等. 低透煤层液态CO2压裂增透理论与成套技术[J]. 煤矿安全, 2022, 53(10): 80-88.

[52]Ziad Bennour., Tsuyoshi Ishida., Yuya Nagaya., et al. Crack Extension in Hydraulic Fracturing of Shale Cores Using Viscous Oil, Water, and Liquid Carbon Dioxide [J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1463-1473.

[53]CHA M., YIN X., KNEAFSEY T., et al. Cryogenic fracturing for reservoir stimulation laboratory studies[J]. Journal of Petroleum Science and Engineering, 2014, 124(12): 436-450.

[54]Tian S., He Z., Li G., et al. Influences of ambient pressure and nozzle-to-target distance on SC-CO2 jet impingement and perforation[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 232-242.

[55]汤积仁, 卢义玉, 陈钰婷, 等. 超临界CO2作用下页岩力学特性损伤的试验研究[J]. 岩土力学, 2018, 39(3): 797-802.

[56]Yang J., Lian H., Liang W., et al. Experimental investigation of the effects of supercritical carbon dioxide on fracture toughness of bituminous coals[J]. International Journal of Rock Mechanics & Mining sciences, 2018, 107: 233-242.

[57]魏建平, 孙刘涛, 王登科, 等. 温度冲击作用下煤的渗透率变化规律与增透机制[J]. 煤炭学报, 2017, 42(8): 1919-1925.

[58]任韶然, 范志坤, 张亮, 等. 液氮对煤岩的冷冲击作用机制及试验研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3790-3794.

[59]黄中伟. 位江巍. 李根生, 等. 液氮冻结对岩石抗拉及抗压强度影响试验研究[J]. 岩土力学, 2016, 37(3): 694-700.

[60]Winkler EM. Frost damage to stone and concrete: geological considerations [J]. Engineering Geology, 1968, 2(5): 315-323.

[61]Nie B., Liu X., Yang L., et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy [J]. Fuel, 2015, 158: 908-917.

[62]Qin L., Zhai C., Liu S., et al. Changes in the petro physical properties of coal subjected to liquid nitrogen freeze-thaw–A nuclear magnetic resonance investigation [J]. Fuel, 2017, 194: 102-114

[63]Wen H., Wei G., Ma L., et al. Damage characteristics of coal microstructure with liquid CO2 freezing-thawing[J]. Fuel, 2019, 249: 169-177.

[64]蔡承政, 李根生, 黄中伟, 等. 液氮冻结条件下岩石孔隙结构损伤试验研究[J]. 岩土力学, 2014 35(4): 965-971.

[65]张开仲, 吴冬梅, 谢懂. 超临界CO2对无烟煤孔隙结构影响的实验研究[J]. 科学技术与工程, 2016(5): 37-40.

[66]Su Erlei, Liang Yunpei, Zou Quanle, et al. Structures and fractal characteristics of pores in long-flame coal after cyclical supercritical CO2 treatment[J]. Fuel, 286.

[67]徐吉钊, 翟成, 桑树勋, 等. 基于低场核磁共振技术的液态CO2循环致裂煤体孔隙特征演化规律[J]. 煤炭学报, 2021, 46(11): 3578-3589.

[68]李小江, 李根生, 王海柱, 等. 超临界CO2压裂井筒流动模型及耦合求解[J]. 中国石油大学学报(自然科学版), 2018(2): 87-94.

[69]李维特, 黄保海, 毕仲波. 热应力理论分析及应用[M]. 中国电力出版社, 2004.

[70]Zhou D, Zhang G, Prasad M ,et al. The effects of temperature on supercritical CO2 induced fracture: An experimental study[J]. Fuel, 2019, 247(Jul1): 126-134.

[71]许浩, 汤达祯, 陶树, 等. 深部和浅部煤层气地质条件差异及其形成机制[J/OL]. 煤田地质与勘探, 1-8.

[72]李庆芬. 断裂力学及其工程应用[M]. 哈尔滨工程大学出版社, 2007.

[73]Griffith AA. The phenomena of rupture and flow in solids[J]. Philos Trans R Soc Lond Ser A 1921; 221: 163–98.

[74]Irwin. Fracture. In: Elasticity and Plasticity / Elastizität und Plastizität, S. Flügge, Ed. Springer Berlin Heidelberg, 1958: 551-590.

[75]李维特, 黄保海, 毕仲波. 热应力理论分析及应用[M]. 中国电力出版社, 2004.

[76]李兵. 岩石相似材料的试验研究[D]. 重庆: 重庆大学, 2015.

[77]崔宁坤, 王军祥, 陈四利, 等. 泥灰岩相似材料配比试验研究[J]. 公路交通科技, 2020, 37(11): 81-88.

[78]战新宇, 高林, 赵芳昊, 等. 大相似比模型试验用超高强相似材料配比试验研究[J]. 煤田地质与勘探, 2023, 51(11): 109-118.

[79]康向涛, 黄滚, 邓博知, 等. 模拟原煤的相似材料试验研究[J]. 东北大学学报(自然科学版), 2015, 36(1): 138-142.

[80]De Pater C J, Cleary M P, Quinn T S, et al. Experimental verification of dimensional analysis for hydraulic fracturing[J]. SPE Production Facilities, 1994, 9(4): 230-238.

[81]Yew C H, Weng X. Mechanics of hydraulic fracturing[M]. Gulf Professional Publishing, 2014.

[82]De Joussineau G, Mutlu O, Aydin A, et al. Characterization of strike-slip fault–splay relationships in sandstone[J]. J Structural Geology, 2007, 29(11): 1831-1842.

[83]Mack, M.G., and Warpinski, N.R. Mechanics of Hydraulic Fracturing[M]. In M. J. Economides and K. G. Nolte (eds.), Reservoir Stimulation: Chichester, England, John Wiley & Sons, LTD., 2000.

[84]Johnson E, Cleary M P. Implications of recent laboratory experimental results for hydraulic fractures[C]. In Low Permeability Reservoirs Symposium, 15-17 April, Denver, Colorado. 1991, SPE-21846-MS.

中图分类号:

 TD712    

开放日期:

 2026-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式