论文中文题名: |
三种细菌对新疆低阶煤的降解过程研究
|
姓名: |
周静
|
学号: |
18213211023
|
保密级别: |
保密(3年后开放)
|
论文语种: |
chi
|
学科代码: |
085216
|
学科名称: |
工学 - 工程 - 化学工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
化学工程
|
研究方向: |
煤的微生物转化
|
第一导师姓名: |
刘向荣
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-25
|
论文答辩日期: |
2021-06-06
|
论文外文题名: |
Investigation lor='red'>of the Degradation Process lor='red'>of Xinjiang Low-Rank Coal by Three Bacteria
|
论文中文关键词: |
细菌 ; 新疆低阶煤 ; 降解 ; 工艺条件 ; 表面活性剂
|
论文外文关键词: |
Bacteria ; Xinjiang low-rank coal ; Biodegradation ; Technological conditions ; ; Surfactants
|
论文中文摘要: |
︿
低阶煤水分高、挥发分高、热值低,直接用作燃料燃烧,不仅效率低而且严重污染环境,因此,探索低阶煤的清洁高效利用方法成为急需开展的工作。其中低阶煤的微生物降解技术,由于设备简单、能耗低、污染小,成为低阶煤绿色加工利用的研究热点。
本文采用冷湖游动微菌、格尔木马赛菌和纺锤形赖氨酸芽孢杆菌三种细菌对新疆大南湖煤、乌东煤两种低阶煤进行降解实验,并在最佳工艺条件下研究了四种表面活性剂对细菌降解新疆低阶煤的影响。
主要工作如下:
(1)采用单因素实验探究了五种实验因素对三种细菌降解新疆低阶煤的影响
考察了培养方式、粒度、接种量、煤浆浓度和降解时间五种因素对三种细菌降解新疆大南湖煤和乌东煤过程的影响,结果表明五种实验因素对三种细菌降解煤的影响均显著:摇床培养均优于静置培养,粒度区间均为0.075-0.125 mm、煤浆浓度区间均为0.5-0.6 g/50 mL、降解时间区间均为12-15 d、冷湖游动微菌接种量区间为15-20 mL、格尔木马赛菌和纺锤形赖氨酸芽孢杆菌接种量区间为1-3 mL。
(2)通过正交实验得到三种细菌降解新疆低阶煤的最佳工艺条件
选取粒度、接种量、煤浆浓度和降解时间四个因素,对三种细菌降解新疆大南湖煤和乌东煤进行四因素四水平的正交实验研究,确定了三种细菌对两种新疆低阶煤的最佳降解工艺条件。格尔木马赛菌是降解大南湖煤的优势菌,最佳工艺条件为:摇床培养,粒度为0.075-0.125 mm,接种量为2 mL,煤浆浓度为0.4 g/50 mL培养基,降解时间为16 d,最大降解率为59.12%。纺锤形赖氨酸芽孢杆菌是降解乌东煤的优势菌,最佳工艺条件为:摇床培养,粒度为0.075-0.125 mm,接种量为2 mL,煤浆浓度为0.3 g/50 mL培养基,降解时间为17 d,最大降解率为19.53%。
(3)研究了四种表面活性剂对细菌降解新疆低阶煤的作用
在最佳工艺条件下研究了四种表面活性剂(Triton X-100、Tween 80、SDBS和SDS)对三种细菌降解新疆大南湖煤和乌东煤的影响,结果表明Triton X-100是冷湖游动微菌和格尔木马赛菌降解新疆大南湖煤的优势表面活性剂,在最适浓度下将降解率分别从51.33%和59.12%提高到63.36%和73.08%;SDBS是纺锤形赖氨酸芽孢杆菌降解新疆大南湖煤的优势表面活性剂,在最适浓度下将降解率从45.61%提高到57.22%。Triton X-100是三种细菌降解乌东煤的优势表面活性剂,在最适浓度下将降解率分别从15.65%、17.23%和19.53%提高到29.26%、33.37%和37.66%。
(4)分析了三种细菌降解新疆低阶煤的固、液相产物组成及降解机理
两种新疆低阶煤经细菌降解后的剩煤表面沟壑和多孔增加,被降解痕迹明显,碳含量降低,氧和氮含量升高,芳香度降低,平均缩合环升高。细菌断裂了氧化煤分子中的含氧官能团,降解了氧化煤结构中脂肪族侧链或芳香族侧链,提高煤样的稳定性;细菌降解对煤样小孔和微孔的影响最显著,破坏煤的孔隙结构,使煤样平均孔径增大。细菌降解液相产物中主要含有烷烃类、芳香烃类和酯类等小分子物质。根据上述结果分析,推测出细菌降解新疆低阶煤是碱作用机理、螯合物作用机理和酶作用机理等多种机理共同作用的结果。
﹀
|
论文外文摘要: |
︿
~Low-rank coal has high moisture, high volatile content, and low calorific value. It is directly used as fuel for combustion, which is not only inefficient but also seriously pollutes the environment. Therefore, exploring the clean and efficient use lor='red'>of low-rank coal has become an urgent work. Among them, the microbial degradation technology lor='red'>of low-rank coal has become a research hotspot in the green processing and utilization lor='red'>of low-rank coal due to its simple equipment, low energy consumption and low pollution.
In this paper, three kinds lor='red'>of bacteria, namely P. lenghuensis, M. golmudensis and L. fusiformis, were used to degrade two kinds lor='red'>of low-rank coals in Xinjiang : Xinjiang Dananhu coal and Wudong coal, and the effects lor='red'>of four surfactants on the degradation lor='red'>of Xinjiang low-rank coal by bacteria were also studied under the optimum conditions.
The main work is as follows:
(1)The influences lor='red'>of five factors on the degradation lor='red'>of Xinjiang low-rank coal by three bacteria were studied through single factor experiments.
The effects lor='red'>of five factors lor='red'>of cultivation method, particle size, inoculation quantity, concentration lor='red'>of coal slurry and degradation time on the degradation lor='red'>of Xinjiang Dananhu coal and Wudong coal by three bacteria were studied. The results showed that the effects lor='red'>of five factors on the degradation lor='red'>of coal by three kinds lor='red'>of bacteria were significant: shaking table culture was better than static culture, the particle size range was 0.075-0.125 mm, the concentration range lor='red'>of coal slurry was 0.5-0.6 g/50 mL, the degradation time range was 12-15 d, the inoculation quantity range lor='red'>of P. lenghuensis was 15-20 mL, the inoculation quantity range lor='red'>of M. golmudensis and L. fusiformis was 1-3 mL.
(2)The optimum degradation conditions lor='red'>of Xinjiang low-rank coal by three bacteria were obtained by orthogonal experiments.
The four factors lor='red'>of particle size, inoculation quantity, coal slurry concentration and degradation time were selected to carry out four-factor and four-level orthogonal experiments on the degradation lor='red'>of Xinjiang Dananhu coal and Wudong coal by three bacteria, and the optimal degradation process conditions lor='red'>of two kinds lor='red'>of Xinjiang low-rank coal by three bacteria were determined. The results showed that M. golmudensis was the dominant bacteria to degrade Dananhu coal, and the the best technological conditions were as follows: shaking table culture, particle size lor='red'>of 0.075-0.125 mm, inoculation quantity lor='red'>of 2 mL, coal slurry concentration lor='red'>of 0.4 g/50 mL medium, degradation time lor='red'>of 16 d, and the maximum degradation rate was 59.12%. The results showed that L. fusiformis was the dominant bacteria to degrade Wudong coal, and the optimal process conditions were as follows: shaking table culture, particle size lor='red'>of 0.075-0.125 mm, inoculation quantity lor='red'>of 2 mL, coal slurry concentration lor='red'>of 0.3 g/50 mL medium, degradation time lor='red'>of 17 d, and the maximum degradation rate was 19.53%.
(3)The effects lor='red'>of four kinds lor='red'>of surfactants on bacterial degradation lor='red'>of Xinjiang low-rank coal were studied.
The effects lor='red'>of four kinds lor='red'>of surfactants (Triton X-100, Tween 80, SDBS and SDS) on the degradation lor='red'>of Xinjiang Dananhu coal and Wudong coal by three kinds lor='red'>of bacteria were studied under the optimal process conditions. The results showed that Triton X-100 was the superior surfactant for the degradation lor='red'>of Xinjiang Dananhu coal by P. lenghuensis and M. golmudensis, At the optimum concentration, the degradation rate increased from 51.33% and 59.12% to 63.36% and 73.08% respectively; SDBS was the dominant surfactant for the degradation lor='red'>of Xinjiang Dananhu coal by L. fusiformis. Under the optimal concentration, the degradation rate increased from 45.61% to 57.22%. Triton X-100 was the dominant surfactant for Wudong coal degradation by three kinds lor='red'>of bacteria. Under the optimal concentration, the degradation rate increased from 15.65%, 17.23% and 19.53% to 29.26%, 33.37% and 37.66% respectively.
(4)The solid and liquid product composition and degradation mechanism lor='red'>of Xinjiang low-rank coal degradation by three kinds lor='red'>of bacteria were analyzed.
The surface ravines and porosity lor='red'>of the residua coal increased after two kinds lor='red'>of Xinjiang low-rank coals were degraded by bacteria, and the traces lor='red'>of degradation were obvious. The carbon content decreased, the oxygen and nitrogen content increased, the aromaticity increased, and the average condensation ring decreased. Bacteria could break the oxygen-containing functional groups in oxidized coal molecules, degrade aliphatic or aromatic side chains in oxidized coal structure, and improve the stability lor='red'>of coal samples; The degradation lor='red'>of bacterial has the most significant effect on the pore and micropore lor='red'>of coal samples, destroying the pore structure lor='red'>of coal, and increasing the average pore size lor='red'>of coal samples. The liquid products lor='red'>of bacterial degradation mainly contain alkanes, aromatic hydrocarbons, esters and other small molecules. Based on the analysis lor='red'>of the above results, it is speculated that the degradation lor='red'>of Xinjiang low-rank coal by bacteria is the result lor='red'>of a combination lor='red'>of multiple mechanisms including alkali action mechanism, chelate action mechanism and enzyme action mechanism.
﹀
|
参考文献: |
︿
[1]谢克昌. 让煤炭利用清洁高效起来[N]. 中国能源报, 2020-11-30(15). [2]国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[M]. 中国统计出版社, 2021. [3]中华人民共和国自然资源部. 2019中国矿产资源报告[M]. 北京: 地质出版社, 2019. [4]中华人民共和国自然资源部. 2020中国矿产资源报告[M]. 北京: 地质出版社, 2020. [5]冯丹丹, 刘超, 王嫱, 等. 主要矿产品供需形势分析报告(2018年)[M]. 地质出版社, 2020. [6]Feng Z H, Pang K L, Bai Z Q, et al. Occurrence and transformation of sodium and calcium species in mild liquefaction solid product of Hami coal during pyrolysis[J]. Fuel, 2021, 286: 1-11. [7]中国煤炭资源网. 新疆煤矿项目密集获批2020年产量将达2.5亿吨[EB/OL]. https://www.xjcec. com/c/2020-09-22/ 519946. shtml, 2020-9-22. [8]孙海勇, 杨芊, 樊金璐. 新疆煤炭及煤化工产业发展现状与趋势分析[J]. 煤炭经济研究, 2020, 40(2): 57-61. [9]苏天雄. 浅谈我国低阶煤资源分布及其利用途径[J]. 广东化工, 2012, 39, (6): 133-134. [10]尤陆花, 史应武, 高雁, 等. 新疆低阶煤本源生物甲烷转化中微生物群落组成及变化[J]. 微生物学通报, 2014, 41(12): 2423-2431. [11]张镭, 孙伯刚, 任梵. 云南煤炭资源应用和煤化工产业发展现状及展望[J]. 云南化工, 2019, 46(11): 40-47. [12]刘亮. 褐煤资源开发风险研究[J]. 露天采矿技术, 2017, 32(6): 73-75. [13]Guo M Y, Xu Y. Coal-to-liquids projects in China under water and carbon constraints[J]. Energy Policy, 2018, 117: 58-65. [14]成建国, 马力通, 赵文渊, 等. 一株褐煤内源菌对平庄褐煤的降解转化[J]. 煤炭转化, 2021, 44(1): 26-34. [15]尚菲, 王春林, 宋曦, 等. 低阶煤微生物降解转化研究进展[J]. 煤, 2018, 27(1): 10-13. [16]Akimbekov N, Digel I, Abdieva G, et al. Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data[J]. Biofuels, 2020(4): 1-12. [17]Potter M C. Bacteria as agents in the oxidation of amorphous carbon[J]. Proceedings of the Royal Society of London, 1908, 80(5): 239-259. [18]Fakoussa R M. Coal as a substrate for microorganisms. Investigations of the microbial decomposition of untreated bituminous coal[D]. Rhein Friedrich-Wilhelms University, Bonn, 1981. [19]Cohen M S, Gabriele P D. Degradation of coal by the fungi Polyporus versicolor and Poria monticola[J]. Applied and Environmental Microbiology, 1982, 44(1): 23-27. [20]Scott C D, Strandberg G W, Lewis S N. Microbial solubilization of coal[J]. Biotechnol Prog, 1986, 2: 131-139. [21]Grethlein H E. Pretreatment of lignite. In: Wise DL (ed) Bioprocessing and biotreatment of coal[J]. New York, 1990, 73-81. [22]Quigley D R, Wey J E, Breckenridge C R, et al. Comparison of alkali and microbial solubilization of oxidized, low-rank coal [M]//Germantown M. Proceeding of the Biological Treatment of Coals Workshop. US Department of Energy. 1987: 151. [23]Strandberg G, Lewis S. Factors affecting coal solubilization by the bacterium Streptomyces setonii 75Vi2 and by alkaline buffers [J]. Applied Biochemistry and Biotechnology, 1988, 18(1): 355-361. [24]Quigley D R, Wey J E, Breckenridge C R, et al. The influence of pH on biological solubulization of oxidized, low-rank coal [J]. Resources, Conservation and Recycling, 1988, 1(3-4): 163-174. [25]Quigley D R, Breckenridge C R, Dugan P R. Effects of multivalent cations on low-rank coal solubilities in alkaline solutions and microbial cultures [J]. Energy Fuels, 1989, (3): 571-575. [26]Quigley D R, Breckenridge C R, Dugan P R, et al. Effects of multivalent cations found in coal on alkali- and biosolubilities[M]. 1988. [27]Fakoussa R M, Willmann G. Inverstigations into the mechanism of coal solubilisation/ liquefaction:Chelators; proceedings of the second international symposium on the biological processing of coal, EPRI, F, 1991[C]. Palo Alto, CA. [28]Hölker U, Fakoussa R M, Höfer M. Growth substrates control the ability of Fusarium oxysporum to solubilize low-rank coal [J]. Applied Microbiology and Biotechnology, 1995, 44(3): 351-355. [29]Steinbüchel A, Füchtenbusch A .PHA from coal in: Ziegler A, van Heek KH, Klein J, Wanzl W (eds) Proceedings of the 9th International Conference on Coal[J]. Science, 1997, 7:1673-1676. [30]Füchtenbusch A, Steinbüchel A. Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus rubber[J]. Appl Microbiol Biotechnol, 1990, 4: 73-81. [31]Fakoussa R M, Hofrichter M. Biotechnology and microbiology of coal degradation[J]. Applied Microbiology and Biotechnology, 1999, 52(1): 25-40. [32]Başaran Y, Denizli A, Sakintuna B, et al. Bio-liquefaction/Solubilization of low-rank Turkish lignites and characterization of the products[J]. Energy and Fuels, 2003, 17(4): 1068-1074. [33]Elbeyli I Y, Palantken A, Pkn S, et al. Liquefaction/Solubilization of low-rank Turkish coals by white-rot fungus (Phanerochaete chrysosporium)[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2006, 28(11): 1063-1073. [34]Oboirien B O, Burton S G, Cowan D, et al. The effect of the particulate phase on coal biosolubilisation mediated by Trichoderma atroviride in a slurry bioreactor[J]. Fuel Processing Technology, 2008, 89(2): 123-130. [35]Mukasa-Mugerwa T T, Dames J F, Rose P D. The role of a plant/fungal consortium in the degradation of bituminous hard coal[J]. Biodegradation, 2011, 22(1): 129-141. [36]Romanowska I, Strzelecki B, Bielecki S. Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020[J]. Fuel Processing Technology, 2015, 131: 430-436. [37]Baylon M G, David Y, Pamidimarri S D V N, et al. Bio-solubilization of the untreated low rank coal by alkali-producing bacteria isolated from soil[J]. Korean Journal of Chemical Engineering, 2017, 34(1): 105-109. [38]Saha P, Sarkar S. Microbial degradation of coal into a value added product[J]. International Journal of Coal Preparation and Utilization, 2018, 35(8): 1-19. [39]Sabar M A, Ali M I, Fatima N, et al. Evaluation of humic acids produced from Pakistani subbituminous coal by chemical and fungal treatments[J]. Fuel, 2020, 278: 1-7. [40]黄伟, 吴秀珍. 微生物降解褐煤的研究[J]. 煤炭分析及利用, 1993(2): 12-14. [41]武丽敏. 微生物降解褐煤的研究[J]. 煤炭加工与综合利用, 1995(1): 26-28. [42]许华夏, 张春桂. 褐煤的微生物降解及褐煤生物肥的肥效[J]. 腐植酸, 1998(2): 17-21. [43]郭蓉. 煤表面的大豆蛋白质改性及其生物降解研究[D]. 西安科技大学, 2005. [44]Yuan H L, Yang J S, Chen W X. Production of alkaline materials, surfactants and enzymes by Penicillium decumbens strain P6 in association with lignite degradation/solubilization[J]. Fuel, 2006, 85(10): 1378-1382. [45]张明旭, 徐敬尧, 欧泽深. 几种真菌对煤炭的固体溶煤转化研究[J]. 安徽理工大学学报(自然科学版), 2008, 28(4): 58-61. [46]徐敬尧. 煤炭生物降解转化新菌种基因工程的构建研究[D]. 安徽理工大学, 2009. [47]Jiang F, Li Z, Lv Z, et al. The biosolubilization of lignite by Bacillussp. Y7 and characterization of the soluble products[J]. Fuel, 2013, 103(12): 639-645. [48]邵雪嫚, 徐敬尧, 张明旭. 紫外诱变白腐菌酶活性及褐煤降解的研究[J]. 煤炭技术, 2016, 35(3): 295-297. [49]韩娇娇, 张涛, 林青, 等. 新疆低阶煤溶煤菌的分离与鉴定[J]. 新疆农业科学, 2017, 54(6): 1130-1136. [50]Yang Y, Yang J S, Li B Z, et al. An esterase from Penicillium decumbens P6 involved in lignite depolymerization[J]. Fuel, 2018, 214: 416-422. [51]孙艳芳. 降解风化煤菌株的筛选以及液态地膜功效的研究[D]. 内蒙古农业大学, 2019. [52]李建涛, 刘向荣, 杨杰, 等. 光-氧氧化预处理褐煤微生物降解效果提升的原因[J]. 煤炭转化, 2020, 43(1): 47-55. [53]李建涛, 刘向荣, 皮淑颖, 等, 煤的微生物转化研究进展[J]. 西安科技大学学报, 2017, 37(1): 106-120. [54]陶秀祥, 尹苏东, 周长春. 低阶煤的微生物转化研究进展[J]. 煤炭科学技术, 2005, 33(9): 63-67. [55]赵国俊, 郭红玉. 绿孢链霉菌对不同煤阶煤的降解转化[J]. 煤炭转化, 2020, 43(3): 40-45. [56]苏现波, 陈鑫, 夏大平, 等. 白腐真菌对不同煤阶煤的降解作用研究[J]. 河南理工大学学报(自然科学版), 2013, 32(3): 281-284. [57]Sudheer P D V N, David Y, Chae C G, et al. Advances in the biological treatment of coal for synthetic natural gas and chemicals[J]. Korean Journal of Chemical Engineering, 2016, 33(10): 1-14. [58]柳丽芬, 阳卫军, 成莹, 等. 鹤岗风化煤的微生物降解研究[J]. 大连理工大学学报, 1996, (4): 66-70. [59]李俊旺, 张明旭. 煤样预处理对义马煤生物降解的影响[J]. 煤炭科学技术, 2009, 37(1): 125-127. [60]石开仪. 白腐真菌Hypocrea lixii AH对抚顺长焰煤及其模型化合物生物液化机理研究[D]. 中国矿业大学, 2011. [61]袁红莉, 陈文新, 木村真人. 褐煤风化过程中微生物群落的演替[J]. 微生物学报, 1998, (6): 411-416. [62]王学民, 王英, 王力. 微生物的分离及其培养条件对溶煤效果的影响[J]. 洁净煤技术, 2006, (2): 75-78. [63]张昕, 林启美, 赵小蓉. 风化煤的微生物转化:Ⅰ菌种筛选及转化能力测定(待续)[J]. 腐植酸, 2002(3): 18-23. [64]冯晓霄, 杨红梅, 张涛, 等. 新疆低阶煤微生物转化菌种的选育及转化能力测定[J]. 新疆农业科学, 2014, 51(3): 511-516. [65]赵帅伟, 潘结南. 不同来源微生物的溶煤效果分析[J]. 中国煤炭, 2014, 40(11): 84-87. [66]Romanowska I, Strzelecki B, Bielecki S. Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020[J]. Fuel Processing Technology, 2015, 131: 430-436. [67]Akimbekov N, Digel I, Qiao X H, et al. Lignite biosolubilization by Bacillus sp. RKB 2 and characterization of its products[J]. Geomicrobiology Journal, 2020, 37(3): 255-261. [68]尹苏东, 陶秀祥. 微生物溶煤研究进展[J]. 洁净煤技术, 2005, (4): 34-38. [69]Sekhohola L M, Igbinigie E E, Keith C A. Biological degradation and solubilisation of coal [J]. Biodegradation, 2013, (24): 305-318. [70]Ghani M J, Rajoka M I, Akhtar K. Investigations in fungal solubilization of coal: Mechanisms and significance[J]. Biotechnology and Bioprocess Engineering: BBE, 2015, 20(4): 634-642 . [71]Gao T G, Jiang F, Yang J S, et al. Biodegradation of leonardite by an alkali-producing bacterial community and characterization of the degraded products[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2581-2590. [72]Selvi A V, Banerjee R, Ram L C, et al. Biodepolymerization studies of low rank Indian coals[J]. World Microbiol Biotechnol, 2009, 25(10): 1713-1720. [73]汪少洁. 白腐菌降解转化低阶煤的试验及机理研究[D]. 华中科技大学, 2008. [74]Feng X, Sun J H, Xie Y H. Degradation of Shanxi lignite by Trichoderma citrinoviride[J]. Fuel, 2021, 291(6): 1-9. [75]Kwiatos N, Jędrzejczak-Krzepkowska M, Strzelecki B, et al. Improvement of efficiency of brown coal biosolubilization by novel recombinant Fusarium oxysporum laccase[J]. AMB Express, 2018, 8(1):1-9. [76]Polman J K, Breckenridge C R, Stoner D L, et al. Biologically derived value-added products from coal [J]. Applied Biochemistry & Biotechnology, 1996, 37(3): 249-255. [77]Yin S D, Tao X X, Shi K Y, et al. The role of surfactants in coal biosolubilisation [J]. Fuel Processing Technology, 2011, 92(8): 1554-1559. [78]王静. 微生物降解宝鸡麟游长焰煤的实验研究[D]. 西安科技大学, 2016. [79]Haider R, Ghauri M A, Sanfilipo J R, et al. Fungal degradation of coal as a pretreatment for methane production[J]. Fuel, 2013, 104: 717-725. [80]康红丽, 刘向荣, 赵顺省, 等. 4种细菌降解内蒙古赤峰褐煤的实验研究[J]. 煤炭技术, 2019, 38(10): 130-133. [81]Laborda F, Fernandez M, Luna N, et al. Study of the mechanisms by which microorganisms solubilize and /or liquefy Spanish coals[J]. Fuel Processing Technology, 1997, 52(1): 95-107. [82]石开仪, 李志, 陈鹏. 云芝菌对褐煤液化产物的13C NMR分析[J]. 煤炭转化, 2016, 39(3): 67-71. [83]Dong L H, Yuan Q, Yuan H L. Changes of chemical properties of humic acids from crude and fungal transformed lignite[J]. Fuel, 2006, 85(17): 563-567. [84]栾白, 高同国, 姜峰, 等. 微生物降解褐煤产生的黄腐酸对大豆种子萌发及主要抗氧化酶活性的影响[J]. 大豆科学, 2010, 29(4): 607-610. [85]高同国, 姜峰, 杨金水, 等.低阶煤降解微生物菌群的分离及降解产生的黄腐酸特性研究[J]. 腐植酸, 2011, (2): 6-10. [86]Liu X Y , Liu S Y, Cheng Y C, et al. Decrease in hydrophilicity and moisture readsorption of lignite: effects of surfactant structure[J]. Fuel, 2020, 273: 1-8. [87]Xia Y C, Yang Z L, Zhang R, et al. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: an experimental and molecular dynamics simulation study. Fuel, 2019, 239: 145-152. [88]Liu X Y, Liu S Y, Fan M Q, et al. Calorimetric study of the wettability properties of low-rank coal in the presence of CTAB. J Therm Anal Calorim 2017, 130(3): 2025-2033. [89]Xu C H, Wang D M, Wang H T, et al. Experimental investigation of coal dust wetting ability of anionic surfactants with different structures. Process Saf Environ 2019, 121: 69-76. [90]Fakoussa R M, Frost P J. In vivo-decolorization of coal-derived humic acids by laccase excreting fungus Trametes versicolor[J]. Applied Microbiology & Biotechnology, 1999, 52(1): 60-65. [91]Itoh S, Suzuki T. Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability[J]. Agricultural and Biological Chemistry, 1972, 36(12): 2233-2235. [92]陈玉琪. 微生物生长曲线中生长量测定方法的比较[J]. 轻工科技, 2020, 36(4): 7-8. [93]Shi K Y, Yin S D, Tao X X, et al. Quantitative measurement of coal bio-solubilization by ultraviolet-visible spectroscopy[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2013, 35(15): 1456-1462. [94]Shin H J, Lee H H, Yang J W. Quantitative assay of biosolubilized coal by UV-spectrophotometry[J]. Biotechnology Techniques, 1995, 9(5): 329-332. [95]Shi K Y, Tao X X, Yin S D, et al. Bio-liquefaction of Fushun lignite: characterization of newly isolated lignite liquefying fungus and liquefaction products[J]. Procedia Earth & Planetary Science, 2009, 1(1): 627-633. [96]毕鑫, 路福平, 杜连祥. 白腐菌产木素过氧化物酶发酵条件的优化[J]. 天津科技大学学报, 2003, 18(1): 12-16. [97]Ye J P, Zhang P Y, Zhang G M, et al. Biodesulfurization of high sulfur fat coal with indigenous and exotic microorganisms[J]. Journal of Cleaner Production, 2018, 197: 562-570. [98]王英, 王力, 王学民. 微生物液化褐煤的溶煤方式和工艺条件研究[J]. 煤炭转化, 2006, 29(1): 19-22. [99]Xu J, Liu X R, Song C L, et al. Biodesulfurization of high sulfur coal from Shanxi: Optimization of the desulfurization parameters of three kinds of bacteria[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 42(18): 1-19. [100]Sabar M A, Ali M I, Fatima N, et al. Degradation of low rank coal by Rhizopus oryzae isolated from a Pakistani coal mine and its enhanced releases of organic substances[J]. Fuel, 2019, 253: 257-265. [101]Liu T, Hou J H, Peng Y L. Biodesulfurization from the high sulfur coal with a newly isolated native bacterium, Aspergillus sp. DP06[J]. Environmental Progress and Sustainable Energy, 2016, 36: 595-599. [102]Lee M, Fountain J C. The Effectiveness of surfactants for remediation of organic pollutants in the unsaturated zone[J]. Journal of Soil Contamination, 1999, 8(1): 39-62. [103]Volkering F, Breure A M, Andel J G V, et al. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons[J]. Applied and Environmental Microbiology, 1995, 61(5): 1699-1705. [104]Zhang M J, Hu T T, Ren G M, et al. Research on the effect of surfactants on the biodesulfurization of coal[J]. Energy & Fuels, 2017, 31(8): 8116-8119. [105]Chen Y, Xu G, Albijanic B. Evaluation of SDBS surfactant on coal wetting performance with static methods: Preliminary laboratory tests[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(23): 2140-2150. [106]王永娟, 孟庆宇, 周安宁, 等. 优选菌株对神府煤的生物转化方式研究[J]. 应用化工, 2014, 43(9): 1576-1579. [107]杨杰, 刘向荣, 徐云龙. 多噬香鞘氨醇单胞菌降解陕西神府褐煤的工艺条件及产物研究[J]. 煤炭转化, 2021, 44(2): 1-10. [108]赵晓燕, 吴晓青, 周红姿, 等. 侧耳木霉T9对褐煤的生物降解作用[J]. 福建农业学报, 2016, 31(4): 415-418. [109]Mishra S, Akcil A, Panda S, et al. Biodesulphurization of Turkish lignite by Leptospirillum ferriphilum: effect of ferrous iron, span-80 and ultrasonication[J]. Hydrometallurgy, 2018, 176: 166 -175. [110]Ra H W, Yoon S M, Mun T Y, et al. Influence of surfactants and experimental variables on the viscosity characteristics of coal water mixtures[J]. Korean Journal of Chemical Engineering, 2018, 35(5): 1219-1224. [111]Das D, Dash U, Meher J, et al. Improving stability of concentrated coal-water slurry using mixture of a natural and synthetic surfactants[J]. Fuel Processing Technology, 2013, 113: 41-51. [112]Kang H L, Liu X R, Zhang Y W, et al. Bacteria solubilization of Shenmu lignite: Influence of surfactants and characterization of the biosolubilization products[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(10): 1162-1180. [113]Shi K Y, Tao X X, Hong F F, et al. Mechanism of oxidation of low rank coal by nitric acid[J]. Journal of Coal Science and Engineering (China), 2012, 18(4): 396-399. [114]徐云龙, 刘向荣, 李建涛, 等. 两种细菌降解内蒙古褐煤过程及液相产物分析[J]. 煤炭转化, 2017, 40(6): 34-40. [115]赵玮钦, 马骁, 侯彬彬, 等. 紫外-微波复合诱变选育溶煤菌株及其溶煤产物分析[J]. 湖南科技大学学报(自然科学版), 2018, 33(1): 84-91. [116]Xiao L, Li Y Y, Liao Y S, et al. Bioconversion of lignite humic acid by white-rot fungi and characterization of products[J]. 3 Biotech, 2018, 8(5): 1-6. [117]孔祥雷, 陈军, 谢冬梅, 等. 褐煤低温热解特性的实验研究[J]. 承德石油高等专科学校学报, 2018, 20(4): 36-39. [118]侯彩霞, 张帅, 梁英华, 等. 碱酸处理对褐煤结构的影响[J]. 煤炭转化, 2016, 39(3): 19-22. [119]石晨, 刘向荣, 胡雪华. 友好戈登氏菌降解内蒙古白音华褐煤的工艺条件探究[J]. 应用化工, 2021, 1-11. [120]王俊宏, 常丽萍, 谢克昌. 西部煤的热解特性及动力学研究[J]. 煤炭转化, 2009, 32(3): 1-5. [121]张肖阳, 周滨选, 安东海, 等.升温速率对准东褐煤热解特性及煤焦孔隙结构的影响[J]. 煤炭学报, 2019, 44(2): 604-610. [122]Wang Z Y, Cheng Y P, Qi Y X , et al. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption[J]. Powder Technology, 2019, 350, 15-25. [123]张占存. 煤的吸附特征及煤中孔隙的分布规律[J]. 煤矿安全, 2006, 37(9): 1-3. [124]周三栋, 刘大锰, 蔡益栋, 等. 低阶煤吸附孔特征及分形表征[J]. 石油与天然气地质, 2018, 39(2): 373-383. [125]马永元. 表面酸液改性作用下的煤体瓦斯吸附特性[J]. 矿业安全与环保, 2018, 45(6): 25-28. [126]胡雪华, 刘向荣, 赵顺省, 等. 蜡样芽孢杆菌降解山西浑源褐煤工艺条件的优化[J]. 煤炭转化, 2019, 42(1): 64-72.
﹀
|
中图分类号: |
TQ536
|
开放日期: |
2024-06-24
|