论文中文题名: |
松散介质内非饱和气相CO2渗流特性实验研究
|
姓名: |
杨淞
|
学号: |
19220214050
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085224
|
学科名称: |
工学 - 工程 - 安全工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
煤火灾害与防治
|
第一导师姓名: |
于志金
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
孙久政
|
论文提交日期: |
2022-06-20
|
论文答辩日期: |
2022-05-31
|
论文外文题名: |
Experimental study on seepage characteristics of unsaturated gas-phase CO2 in loose medium
|
论文中文关键词: |
松散介质 ; 液态 CO2 ; 相态变化 ; 非饱和气相 ; 渗流
|
论文外文关键词: |
Loose medium ; liquid CO2 ; phase change ; unsaturated gas phase ; seepage
|
论文中文摘要: |
︿
二氧化碳(CO2)防灭火技术,因其具有较好的大范围惰化降温效果,已成为多数煤矿防治采空区煤自燃的主要方法之一。其中以液态形式输送压注的 CO2 在进入采空区松散介质区域后,其运移物态主要是非饱和气相状态,而现有分析 CO2 在松散介质中的扩散运移规律以及预测惰化降温范围均是以饱和气相的物性条件进行的,导致技术应用存在参数设计不合理、效果不理想。为了解决上述问题,本文围绕松散介质内液态 CO2 泄放后的相态变化以及非饱和气相 CO2 的渗流特征进行实验研究,结果表明:
(1)基于采空区直注液态 CO2防灭火过程,自主搭建了 CO2泄放渗流测试平台,该装置可用于测试液态 CO2 直注过程中的相态变化以及渗流降温规律,同时可以对非饱和气相 CO2的渗流特性进行研究。
(2)利用液态 CO2泄放实验系统研究了直注过程中松散介质内液态 CO2的相态变化,发现液态 CO2 压入松散介质后瞬间相变形成了大量干冰以及非饱和气相 CO2,实验结果表明干冰扩散范围是松散介质内产生大幅温降的主要区域,随后给出了泄放量,粒径影响下的干冰运移速度计算公式。最后基于沿程压力损失,拟合得出了非饱和气相 CO2在射流方向上的压力计算模型。
(3)开展了不同非饱和气相 CO2渗流实验,研究了不同非饱和气相 CO2在各粒径介质下的流速-压降规律,分析了雷诺数,渗透系数 K,渗流状态转变流速等关键渗流参数的变化规律,同时基于非饱和气相 CO2 真实物性参数以及非达西方程建立了关于非饱和气相 CO2在松散介质中的渗流模型。
(4)基于液态 CO2 泄放实验以及非饱和气相 CO2 渗流模型,通过 COMSOL 软件自定义模块构建了模拟松散介质内非饱和气相 CO2 渗流的数值模型,得到了非饱和气相 CO2 运移过程中的压力以及温度等参数的变化特征,确定了压注口孔径以及介质粒径是影响其渗流传热行为的关键因素。
﹀
|
论文外文摘要: |
︿
Carbon dioxide (CO2) fire-fighting technology has become one of the main methods for preventing coal spontaneous combustion in gobs in most coal mines because of its good largescale inerting and cooling effect. However, after the CO2 transported and injected in liquid form enters the loose medium area of the goaf, its migration state is mainly in the unsaturated gas phase state, and the existing analysis of the diffusion and migration law of CO2 in the loose medium and the prediction of the range of inerting and cooling All of them are carried out under the physical properties of saturated gas phase, resulting in unreasonable parameter design and unsatisfactory effect in technical application. In order to solve the above problems, this paper
conducted an experimental study on the phase change of liquid CO2 in loose coal after the release and the seepage characteristics of unsaturated gas-phase CO2.The results shows :
Based on the process of direct injection of liquid CO2 in the goaf, a CO2 discharge seepage test platform was independently built. This device can be used to test the phase state change and seepage cooling law during the process of liquid CO2 direct injection. The seepage characteristics of gas phase CO2 were studied.
The phase change of liquid CO2 in the loose medium during the direct injection process was studied by using the liquid CO2 release experimental system. The diffusion range of dry ice is the main area where a large temperature drop occurs in the loose medium. Then, the calculation formula of dry ice transport velocity under the influence of flow rate and particle size is given. Finally, based on the pressure loss along the way, the pressure calculation model of unsaturated gas phase CO2 in the jet direction was obtained by fitting.
Conducted CO2 seepage experiments in different unsaturated gas phases, studied the flow rate-pressure drop laws of different unsaturated gas phase CO2 under various particle sizes, and analyzed key seepage parameters such as Reynolds number, permeability coefficient K, and seepage state transition flow rate. At the same time, a seepage model of unsaturated gas-phase CO2 in loose medium was established based on the real physical parameters of unsaturated gasphase CO2 and the non-Darcy equation.
Based on the liquid CO2 release experiment and the unsaturated gas-phase CO2 seepage model, a numerical model for simulating the unsaturated gas-phase CO2 seepage in the loose medium was constructed through the custom module of the COMSOL software, and the pressure during the unsaturated gas-phase CO2 migration process was obtained. As well as the changing characteristics of parameters such as temperature, it is determined that the pore size of the injection port and the particle size of the medium are the key factors affecting its seepage heat transfer behavior.
﹀
|
参考文献: |
︿
[1] 邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望 [J] 煤炭科学技术, 2016, 44(10): 1-7. [2] 马砺, 高宇, 杨宏曙.惰气技术在防治尾巷局部火灾中的应用 [J]. 煤矿安全, 2020,51(01): 145-149+155. [3] Qin B, Wang H, Yang J, et al. Large-area goaf fires: a numerical method for locating high temperature zones and assessing the effect of liquid nitrogen fire control [J]. Environmental Earth Sciences, 2016, 75(21): 1396. [4] 秦波涛, 张雷林. 防治煤炭自燃的多相凝胶泡沫制备实验研究 [J]. 中南大学学报 (自然科学版), 2013, 11: 4652-4657. [5] 邓军, 肖旸, 张辛亥, 等. 煤火灾害防治技术的研究与应用 [J]. 煤矿安全, 2012, 43(S1): 58-61. [6] 赵忠, 王海东, 刘永军. CO2 灭火技术在天祝煤矿的成功实践 [J]. 煤矿安全, 2005, 36(05): 15-17. [7] 蔡如法. 液态二氧化碳治理封闭火区实践 [J]. 中外企业家, 2011(6X): 132-133+141. [8] 祁文斌. 采空区滞留干冰防治遗煤自燃现场试验研究 [J]. 煤炭工程, 2013, 45(11): 83-86. [9] Martynov S, Brown S, Mahgerefteh H, et al. Modelling three-phase releases of carbon dioxide from high-pressure pipelines [J]. Process Safety and Environmental Protection, 2013, 92(01): 36-46. [10] 刘赛, 刘福义, 王刚, 等. 矿井采空区 CO2 防灭火技术发展展望 [J]. 煤炭技术, 2014, 33(06): 7-9. [11] 闫振汉, 喻健良, 闫兴清, 陈庆, 曹琦, 刘少荣. 密相 CO2管道泄漏失压过程热力学特性 [J]. 化工学报, 2019, 70(08): 3071-3077. [12] Witlox H W M, Harper M, Oke A. Modelling of discharge and atmospheric dispersion for carbon dioxide releases [J]. Journal of Loss Prevention in the Process Industries. 2009, 22(06): 795-802. [13] Yu Z, Yang S, Wen H, et al. Experimental investigation of the impact of liquid carbon dioxide injection on temperature in pulverized coal [J]. Greenhouse Gases: Science and Technology, 2020, 10(01): 147-159. [14] Porter M L, Plampin M, Pawar R, et al. CO2 leakage in shallow aquifers: A benchmark modeling study of CO2, gas evolution in heterogeneous porous media [J]. International Journal of Greenhouse Gas Control, 2015, 39: 51-61. [15] 于志金. 松散煤体内液态 CO2相变传热与传质过程研究 [D]. 西安科技大学, 2017. [16] 文虎. 煤自燃全过程实验模拟及高温区域动态变化规律的研究 [J]. 煤炭学报, 2004,29(6): 689-693. [17] 陈慧新. 非均质多孔介质渗流理论研究及应用 [D]. 中国科学院力学研究所, 2006. [18] 肖旸. 煤田火区煤岩体裂隙渗流的热-流-固多场耦合力学特性研究 [D]. 西安科技大学, 2013. [19] 刘曰武, 张大为, 陈慧新, 宫欣. 多井条件下煤层气不定常渗流问题的数值研究 [J]. 岩石力学与工程学报, 2005(10): 1679-1686. [20] 赵建会, 张辛亥. 矿用灌浆注胶防灭火材料流动性能的实验研究 [J]. 煤炭学报, 2015,40(02): 383-388. [21] 邓军, 徐精彩, 王洪权, 王春跃, 文虎. 新型复合胶体防灭火技术及应用 [J]. 煤矿安全,2001(12): 42-44. [22] 时虎, 袁兴友, 张永武, 崔洪义. FR-1 阻化泡沫材料的研发及在煤矿防灭火中的应用[J]. 煤矿现代化, 2010(01): 59-60. [23] 杨胜强, 张人伟, 邸志前, 张迎弟, 王春耀. 煤炭自燃及常用防灭火措施的阻燃机理分析 [J]. 煤炭学报, 1998(06): 62-66. [24] 武卫荣, 刘涛, 刘振辉, 路峰. 煤自燃阻化剂的研究进展 [J]. 应用化工, 2017, 46(02):356-359. [25] 康淑云. 我国煤炭行业煤化工产业发展现状及分析研究 [J]. 煤炭经济研究, 2015, 35(10): 32-40. [26] 康福钧. CO2灭火技术在忻州窑矿 8903 下工作面中的成功应用 [J]. 煤矿安全, 2006, (12): 24-26. [27] 程根银, 刘一帆, 司俊鸿. 姚桥矿 7271 工作面 CO2惰化技术参数优化 [J]. 华北科技学院学报, 2019, 16(04): 20-26. [28] 赵美成. 大流量气态 CO2防灭火技术在采空区自燃火灾治理中的应用 [J]. 煤矿安全,2021, 52(03): 122-126. [29] 王刚. 液态 CO2 灌注技术在矿井防灭火中的应用与分析 [J]. 煤炭科学技术, 2017,45(S1): 89-93. [30] 景巨栋, 康新荣, 李宁, 王吉鑫. 双巷直注液态二氧化碳防灭火技术 [J]. 能源与环保,2019, 41(12): 9-12. [31] 孙全吉, 闫红卫. 温庄矿采空区二氧化碳防灭火技术的应用 [J]. 煤, 2019, 28(09): 35-36+40. [32] 闫绍辉. 高河矿综放工作面 CO2防灭火技术应用 [J]. 山东煤炭科技, 2020, (10): 107-109+115. [33] 吴杨. 干冰相变防灭火系统在综放工作面的应用 [J]. 能源与节能, 2022, (02): 183-185. [34] 曾成隆, 鄯梦涛. 干冰灭火技术在二景煤矿的应用 [J]. 煤矿安全, 2018, 49(11): 125-127+131. [35] Qin Y, Guo W, Xu H, et al. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application [J]. Environmental Science and Pollution Research, 2021, 29(13): 19741-19751. [36] 张春华, 王继仁, 张子明, 等. 液态二氧化碳防灭火装备及其工程应用 [J]. 科技导报, 2013, 31(18): 44-48. [37] 安满林. 南屯矿 7321 超长综放面煤层自燃防治技术研究 [D]. 西安, 西安科技大学, 2006. [38] 刘业献. 液态 CO2 用于综放工作面自然发火治理的研究 [J]. 煤炭科学技术, 2014, 42(9): 119-122. [39] Liu W, Qin Y, Yang X, et al. Early extinguishment of spontaneous combustion of coal underground by using dry-ice's rapid sublimation: A case study of application[J]. Fuel, 2018, 217:544-552. [40] 曾成隆, 鄯梦涛. 干冰灭火技术在二景煤矿的应用 [J]. 煤矿安全, 2018, 49(11): 125-127+131. [41] 李士戎. 二氧化碳抑制煤炭氧化自燃性能的实验研究 [D]. 西安, 西安科技大学, 2008. [42] 马砺, 王伟峰, 邓军, 等. CO2 对煤升温氧化燃烧特性的影响 [J]. 煤炭学报, 2014, 39(S2): 397-404. [43] 雷柏伟, 吴兵, 王泽华. N2和 CO2抑制煤燃烧火焰特性对比试验研究 [J]. 安全与环境学报, 2017, 17(05): 1782-1787. [44] 马砺, 李珍宝, 邓军, 等. 常压下煤对 N2/CO2/CH4单组分气体吸附特性研究 [J]. 安全与环境学报, 2015, 15(02): 64-67. [45] 邵昊, 蒋曙光, 吴征艳, 等. 二氧化碳和氮气对煤自燃性能影响的对比试验研究 [J]. 煤炭学报, 2014, 39(11): 2244-2249. [46] 邬剑明, 王彦凯, 吴玉国等. 一种模拟煤矿采空区注 CO2防灭火的测试装置 [P]. 2015-01-14. [47] 于志金, 杨淞, 谷雨, 邓军. 松散煤体内液态二氧化碳相变换热试验研究 [J]. 中国安全科学学报, 2020, 30(06): 98-105. [48] 邵昊, 蒋曙光, 吴征艳等. 采空区注二氧化碳防灭火的数值模拟研究 [J]. 采矿与安全工程学报, 2013, 30(01): 154-158. [49] Yu Z, Yang S, Gu Y, et al. Numerical approach of liquid carbon dioxide injection in crushed coal and its experimental validation [J]. International Journal of Energy Research, 2020, 45(2): 2070-2084. [50] 郝朝瑜, 王继仁, 黄戈等. 基于惰化降温耦合作用的采空区低温 CO2注入位置研究 [J]. 中国安全生产科学技术, 2015, 11(9): 17-23. [51] 王国旗, 邓军, 张辛亥等. 综放采空区二氧化碳防灭火参数确定 [J]. 辽宁工程技术大学学报, 2009, 28(02): 169-172. [52] 景巨栋. 羊场湾煤矿液态二氧化碳防灭火技术研究 [D]. 徐州, 中国矿业大学, 2019.[53] 曹磊. 大倾角煤层二氧化碳防灭火采空区流场分布规律模拟研究 [D]. 成都, 四川师范大学, 2015. [54] 喻健良, 郭晓璐, 闫兴清, 等. 工业规模 CO2 管道泄放过程中的压力响应及相态变化[J]. 化工学报, 2015, 66(11): 4327-4334. [55] 喻健良, 郑阳光, 闫兴清, 等. 工业规模 CO2 管道大孔泄漏过程中的射流膨胀及扩散规律 [J]. 化工学报, 2017, 68(06): 2298-2305. [56] Guo X, Yan X, Yu J, et al. Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline [J]. Applied Energy, 2016, 183:1279-1291. [57] Guo X, Yan X, Yu J, et al. Pressure responses and phase transitions during the release of high-pressure CO2 from a large-scale pipeline [J]. Energy, 2016, 118(01), 1066-1078. [58] Guo, Xiaolu, Yan, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline [J]. Applied Energy, 2016. [59] Woolley R M, Fairweather M, Wareing C J, et al. Experimental measurement and reynolds-averaged Nnavier-Stokes modelling of the near-field structure of multi-phase CO2, jet releases [J]. International Journal of Greenhouse Gas Control, 2013, 18(07): 139-149. [60] Koeijer G D, Borch J H, Jakobsenb J, et al. Experiments and modeling of two-phase transient flow during CO2 pipeline depressurization [J]. Energy Procedia, 2009, 1(01):1683-1689. [61]刘振翼, 周轶,黄平, 等. CO2管线泄漏扩散小尺度实验研究 [J]. 化工学报, 2012, 63(05): 1651-1659. [62] Wareing C J, Fairweather M, Falle S A E G, et al. Modelling ruptures of buried high pressure dense phase CO2, pipelines in carbon capture and storage applications-Part I. Validation [J]. International Journal of Greenhouse Gas Control, 2015, 42:701–711. [63] Wareing C J, Fairweather M, Falle S A E G, et al. Modelling ruptures of buried highpressure dense-phase CO2, pipelines in carbon capture and storage applications-Part II. A full-scale rupture [J]. International Journal of Greenhouse Gas Control, 2015, 42: 712-728. [64] 喻健良, 刘少荣, 闫兴清, 等. CO2埋地管道泄漏区土壤形貌及温度场研究 [J]. 安全与环境工程, 2019, 26(05): 167-174. [65] 刘正刚. 小规模 CO2埋地管道介质泄漏扩散特性研究 [D]. 大连, 大连理工大学, 2015. [66] Okamoto H, Gomi Y. Empirical research on diffusion behavior of leaked gas in the ground[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(05): 31-540. [67] Battistelli A, Ceragioli P, Marcolini M. Injection of acid gas mixtures in sour oil reservoirs: analysis of Near-Wellbore processes with coupled modelling of well and reservoir flow [J]. Transport in Porous Media, 2011, 90(01): 233-251. [68] André L, Azaroual M, Menjoz A. Numerical simulations of the thermal impact of supercritical CO2, Injection on Chemical Reactivity in a Carbonate Saline Reservoir [J]. Transport in Porous Media, 2010, 82(01): 247-274. [69] 马恒, 王晓琪, 齐消寒, 等. 松散破碎岩石中气体渗流影响因素实验研究 [J]. 中国安全生产科学技术, 2019, 15(08): 26-32. [70] 吴国光, 张永建, 王光友, 等. 松散煤体中空气渗流规律的试验研究 [J]. 煤炭科学技术, 2009, 37(08): 42-45. [71] 徐佳. 汝箕沟煤田火区多孔介质渗流规律研究 [D]. 西安, 西安科技大学, 2011. [72] 梁杰. 埋地输气管道泄漏量估算及扩散特性研究 [D]. 青岛, 中国石油大学(华东),2019. [73] 韩光洁. 埋地燃气管道泄漏量计算及扩散规律研究 [D]. 重庆, 重庆大学, 2014. [74] 刘晓赫. 埋地管道泄漏天然气在土壤中的扩散规律研究 [D]. 重庆, 重庆大学, 2017. [75] 林杨,刘杨,胡雪, 等. CO2 在非均质多孔介质中的气窜与运移 [J]. 石油化工高等学校学报, 2010, 23(02): 43-46. [76] 郭彪, 侯吉瑞, 于春磊, 等. CO2在多孔介质中扩散系数的测定 [J]. 石油化工高等学校学报, 2009, 22(04): 38-40. [77] Perera M S A, Ranjith P G, Choi S K, et al. A parametric study of coal mass and cap rock behaviour and carbon dioxide flow during and after carbon dioxide injection [J]. Fuel, 2013, 106(02):129-138. [78] Basirat F, Sharma P, Fagerlund F, et al. Experimental and modeling investigation of CO2 flow and transport in a coupled domain of porous media and free flow [J]. International Journal of Greenhouse Gas Control, 2015, 42(05): 461-470. [79] 毕名娟. 低渗透煤层气藏非达西渗流规律研究 [D]. 阜新, 辽宁工程技术大学, 2019. [80] 邓英尔, 谢和平, 黄润秋, 等. 低渗透空隙-裂隙介质气体非线性渗流运动方程 [J]. 四川大学学报(工程科学版), 2006(04): 1-4. [81] 郭红玉, 苏现波. 煤储层启动压力梯度的实验测定及意义 [J].天然气工业, 2010, 30(06): 52-54+127. [82] 张先敏, 同登科. 低渗透煤层气非线性流动分析 [J]. 工程力学, 2010,27(10): 219-223. [83] Wang C , Li Z P , Li H , et al. A new method to calculate the productivity of fractured horizontal gas wells considering non-Darcy flow in the fractures [J]. Journal of Natural Gas Science & Engineering, 2015, 26:981-991. [84] 余为, 李强, 黄伟, 等. 破碎岩体中的气体渗流规律研究 [J]. 燕山大学学报, 2007(04): 317-321. [85] 缪协兴, 刘卫群, 陈占清. 采动岩体渗流与煤矿灾害防治 [J]. 西安石油大学学报 (自然科学版), 2007(02): 74-77+177-178 [86] 李广悦, 丁德馨, 张志军, 等. 松散破碎介质中气体渗流规律试验研究 [J]. 岩石力学与工程学报, 2009, 28(04): 791-798. [87] Yao Y, Li G, Qin P. Seepage features of high-velocity non-Darcy flow in highly productive reservoirs [J]. Journal of Natural Gas Science & Engineering, 2015, 27:1732-1738. [88] Vuong A T, Ager C, Wall W A. Two finite element approaches for Darcy and Darcy–Brinkman flow through deformable porous media-Mixed method vs. NURBS based (isogeometric) continuity [J]. Computer Methods in Applied Mechanics & Engineering, 2016, 305:634–657. [89] 闫振汉, 喻健良, 闫兴清, 等. 密相 CO2 管道泄漏失压过程热力学特性 [J]. 化工学报,2019, 70(08): 3071-3077. [90] 陈善乐. 综放工作面采空区渗流场域及渗透系数研究 [D]. 2015. [91] 施建勇, 赵义. 气体压力和空隙对垃圾土体气体渗透系数影响的研究 [J]. 岩土工程学报, 2015, 37(04): 586-593. [92] Peng D Y, Robinson D B. A new two-constant equation of state [J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(01): 92-94. [93] Wareing C J, Woolley R M, Fairweather M, et al. A composite equation of state for the modeling of sonic carbon dioxide jets in carbon capture and storage scenarios [J]. Aiche Journal, 2013, 59(10): 3928-3942. [94] Padua A, Wakeham W A, Wilhelm J. The viscosity of liquid carbon dioxide [J]. International Journal of Thermophysics, 1994, 15(05): 767-777.
﹀
|
中图分类号: |
TD752.2
|
开放日期: |
2023-06-23
|