论文中文题名: | 深埋煤层群下煤层综放面顺槽围岩动力破坏机理与支护技术 |
姓名: | |
学号: | 21204228091 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085900 |
学科名称: | 工学 - 工程 - 土木水利 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山岩体力学与支护 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-14 |
论文答辩日期: | 2024-06-01 |
论文外文题名: | Dynamic failure mechanism and support technology of surrounding rock in fully mechanized top-coal caving face under deep coal seam group |
论文中文关键词: | |
论文外文关键词: | Deep burial ; Coal seam group ; fully mechanized caving face ; Dynamic damage of surrounding rock ; Numerical simulation ; Support design ; Pressure relief |
论文中文摘要: |
针对深埋近距离煤层群开采愈发增多,导致顺槽围岩处于非对称受力状态,造成顺槽围岩控制难度逐步增加的问题。开展深埋煤层群下煤层顺槽围岩动力破坏机理及支护技术研究对下煤层综放面安全高效回采具有重要工程应用价值。本文以陕西焦坪矿区某矿下煤层224综放面为工程背景,采用理论分析、室内试验、数值模拟以及现场试验等多种手段,探究深埋煤层群下煤层综放面顺槽围岩动力破坏机理,提出下煤层顺槽围岩支护技术。主要内容与结论如下: (1)通过对下煤层综放面现场观测及资料收集,系统阐述了深埋煤层群下煤层224综放面的工程地质状况。研究表明:深埋煤层群下煤层224综放面顺槽围岩动力破坏的影响因素主要包括:开采深度、岩性及岩层倾角、地应力场、巷道形状与布置、开采方式、采动应力、地下水等方面。并完成了下煤层224综放面原始地应力分布情况现场实测工作,得出了初始主应力大小及方向。 (2)完成了不同围压下完整煤岩以及裂隙煤岩三轴压缩破坏全过程试验,同时开展了声发射监测试验及核磁共振试验。结果表明:在三轴压缩作用下,完整煤岩和裂隙煤岩的力学性能及主破裂角度均随着围压的增大而增大,破坏方式均由局部剪切破坏转变成整体剪切破坏,但裂隙煤岩的破坏形式是从预制裂隙尖端处起裂,沿加载方向延伸至加载面,最终与预制裂隙贯通发生失稳破坏。完整煤岩在压密阶段、弹性阶段基本没有声发射活动产生,但裂隙煤岩在弹性阶段出现少量的声发射活动。当进入弹塑性阶段和峰后破坏阶段时,完整煤岩和裂隙煤岩的声发射振铃计数均出现剧增。在一定倾角范围内,声发射振铃计数与裂隙倾角呈正相关。核磁共振试验结果表明:裂隙倾角在一定范围内,随着裂隙倾角的增加,裂隙煤岩破坏程度呈现先增大后减小的趋势。由于围压的存在,抑制了试样内部孔隙的发展,导致裂隙煤岩破坏后内部孔隙尺寸减小,其破碎程度降低。 (3)完成了不同冲击气压作用下完整煤岩和裂隙煤岩SHPB加载试验,结果表明:随着冲击气压的增大,完整煤岩和裂隙煤岩的强度、动弹性模量及应变率均增大。预制裂隙对试样的强度及破坏形式影响较大,完整煤岩动态抗压强度明显大于裂隙煤岩动态抗压强度。随着裂隙倾角的增大,裂隙煤岩动态抗压强度呈现先减小后增大趋势,当裂隙倾角为45°时,裂隙煤岩的动态抗压强度最小。完整煤岩破坏形式为劈裂拉伸破坏,裂隙煤岩破坏形式为拉剪复合型破坏。随着冲击气压的增大,试样破坏后的破碎块尺寸减小,当裂隙倾角为45°时,裂隙煤岩的平均粒径和破碎度尺寸最小。冲击荷载作用下,煤岩内部裂隙发育和扩展主要受能量的传递和耗散影响,应变率与破碎耗散能密度呈正相关,而裂隙煤岩的破碎耗散能密度随着裂隙倾角的增加呈先增大后减小,其中45°裂隙煤岩破坏程度最严重。同时构建了裂隙煤岩动态本构模型,结合试验数据验证了模型的合理性。 (4)通过弹塑性理论以及滑移场理论推导出上煤层开采造成的底板破坏深度计算公式,结合该矿3-2煤的地质条件分别计算出底板破坏深度为14.71m和12.30m。通过对上煤层开采进行数值模拟,得出应力分布特征及底板最大塑性区破坏范围为17.5m,从而确定下煤层综放面顺槽采用内错式布置。之后基于“强支+卸压”的设计原则,完成了224综放面顺槽支护参数设计。采用FLAC3D模拟对224综放面支护参数进行了合理性评价,研究了224综放面顺槽掘进和回采过程中、邻近顺槽掘进影响下、以及不同冲击位置作用下的围岩变形规律,制定了综放面卸压的方案。结果表明:顺槽支护参数设计合理,围岩变形满足安全生产的要求。 (5)完成了224综放面顺槽围岩变形监测方案设计及现场实测工作。结果表明:224综放面初次来压步距为34.7m,动载系数为2.67。周期来压步距为21.93m,动载系数为1.77。来压明显,持续时间不长,且综放面支架承载能力仍有一定的富余。回采期间微震事件以微小事件和小事件为主。经过动力扰动后顺槽围岩变形仍处于安全值,无动力灾害发生,说明顺槽支护设计满足生产安全需求,支护方案合理有效。 |
论文外文摘要: |
Aiming at the increasing mining of deep-buried close coal seam group, which leads to the asymmetric stress state of down-tunnel perimeter rock, causing the difficulty of down-tunnel perimeter rock control to increase gradually. It is of great value to research the dynamic damage mechanism and support the technology of the lower coal seam of the deeply buried coal seam group, which is of great value to the safe and efficient mining of the lower coal seam. This paper takes the 224 fully mechanized caving face of the lower coal seam in a mine in the Jiao Ping mining area of Shaanxi Province as the engineering background, and adopts various means such as theoretical analysis, indoor test, numerical simulation, and on-site test, etc., to investigate the mechanism of dynamic damage of the perimeter rock in the down-track of the fully mechanized caving face of the lower coal seam in a group of deep-embedded coal seams, and to put forward the technology of supporting the perimeter rock of the down-track in the lower stratified layer. The main contents and conclusions are as follows: (1) Through on-site observation and data collection of the lower coal seam face, the engineering geological condition of the 224 fully mechanized caving face in the lower coal seam of the Deeply Buried Coal Seam Group was systematically elaborated. The study shows that the influencing factors of the dynamic damage of the surrounding rocks in the lower coal seam 224 fully mechanized caving face of the deep-embedded coal seam group mainly include: mining depth, lithology and inclination angle of rock strata, ground stress field, shape and arrangement of the roadway, mining method, mining stress, and groundwater, etc. The study has also completed the study of the engineering geology of the lower coal seam 224 fully mechanized caving face of the deep-embedded coal seam group. We also completed the field measurement of the original ground stress distribution in the 224 fully mechanized caving face of the lower coal seam and obtained the initial principal stress size and direction. (2) The whole process of triaxial compression damage test of intact and fractured coal rock under different pressures was completed, and acoustic emission monitoring test and nuclear magnetic resonance (NMR) test were carried out at the same time. The results show that under triaxial compression, the mechanical properties and main rupture angle of both intact and fissured coal rock increase with the increase of the peripheral pressure, and the destructive mode changes from local shear damage to overall shear damage, but the destructive form of the fissured coal rock starts from the tip of the prefabricated fissure, extends to the loading surface along the loading direction, and ultimately destabilizes by penetrating with the prefabricated fissure. There is no acoustic emission activity generated in the compaction and elasticity stages of intact coal rock, but a small amount of acoustic emission activity occurs in the elasticity stage of fissured coal rock. When entering the elastic-plastic and post-peak damage stages, the acoustic emission ringing counts of both intact and fissured coal rocks increased dramatically. Within a certain inclination range, the acoustic emission ringing counts are positively correlated with the fissure inclination. The results of the NMR test show that within a certain range of fissure inclination angles, the damage degree of fissured coal rock shows a tendency to increase and then decrease with the increase of fissure inclination angle. Due to the existence of the surrounding pressure, the development of the internal pores of the specimen is inhibited, which leads to the reduction of the internal pore size after the destruction of the fissured coal rock and the reduction of its crushing degree. (3) The SHPB loading test of intact and fissured coal rock under different impact air pressure was completed, and the results show that the strength, dynamic elastic modulus, and strain rate of coal rock increase with the increase of impact air pressure. The prefabricated fissure has a greater influence on the strength and damage form of coal rock, and the dynamic compressive strength of intact coal rock is larger than that of fissured coal rock. With the increase of fissure inclination angle, the dynamic compressive strength of fissured coal rock shows the trend of decreasing first and then increasing, and it is the smallest when the fissure inclination angle is 45°. The damage form of intact coal rock is split tensile damage, and the damage form of fissured coal rock is tensile-shear composite damage. With the increase of impact air pressure, the size of the broken block after the destruction of the specimen decreases, in which the average particle size and the size of the brokenness of the cleft coal rock with a cleft inclination angle of 45° are the smallest. Under the impact load, the development and expansion of internal cracks are mainly affected by energy transfer and dissipation, and the strain rate is positively correlated with the crushing dissipation energy density, while the crushing dissipation energy density of the fissured coal rock increases and then decreases with the increase of the fissure inclination angle, and the 45° fissured coal rock has the most serious damage degree. The dynamic intrinsic model of the fractured coal rock was constructed, and the reasonableness of the model was verified with the experimental data. (4) The calculation formula of floor failure depth caused by upper coal seam mining is derived from elastic-plastic theory and slip field theory. Combined with the geological conditions of 3-2 coal in this mine, the floor failure depth is calculated to be 14.71 m and 12.30 m respectively. Through the numerical simulation of the upper coal seam mining, it is concluded that the stress distribution characteristics and the maximum plastic zone failure range of the floor are 17.5 m, to determine the inner staggered arrangement of the lower coal seam fully mechanized caving face. Based on the design principle of ' strong support + pressure relief ', the design of supporting parameters of 224 fully mechanized caving face is completed. FLAC3D simulation was used to evaluate the rationality of the support parameters of 224 fully mechanized caving face. The deformation law of surrounding rock under the influence of roadway excavation and mining, the influence of adjacent roadway excavation, and different impact positions were studied, and the pressure relief scheme of a fully mechanized caving face was formulated. The results show that the design of supporting parameters is reasonable, and the deformation of the surrounding rock meets the requirements of safe production. (5) Completed the design of the deformation monitoring program and field measurement of 224 fully mechanized caving face. The results show that: the initial pressure step of the 224 fully mechanized caving face is 34.7m, and the dynamic load coefficient is 2.67. The periodic pressure step is 21.93m, and the dynamic load coefficient is 1.77. The pressures are obvious, but they lasted for a short time, and there is still a certain surplus of load-bearing capacity of the support of the consolidation face. There is still a certain amount of surplus in the load-bearing capacity of the surface. The microseismic events during the mining period are mainly small events and minor events. After power disturbance, the deformation of the peripheral rock of the trench is still at a safe value, and no power disaster occurs, which indicates that the design of the support of the trench meets the demand for production safety, and the support program is reasonable and effective. |
参考文献: |
[1] 夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展[J]. 岩石力学与工程学报, 2021, 40(03): 448-475. [2] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(05): 1283-1305. [3] 姜耀东, 赵毅鑫. 我国煤矿冲击地压的研究现状: 机制、预警与控制[J]. 岩石力学与工程学报, 2015, 34(11): 2188-2204. [4] 邱治强, 高明忠, 谢晶, 等. 2400m埋深地下实验室洞群布置模式优化研究[J].岩土工程学报, 2016, 38(S2): 250-254. [5] 布霍依诺,李玉生译.矿山压力和冲击地压[M]. 北京: 煤炭工业出版社, 1985. [11] 王淑坤, 齐庆新, 曾永志. 我国煤岩冲击倾向研究的进展[J]. 煤矿开采, 1998, 8(03): 29-31+63. [12] 中华人民共和国行业标准编写组. GB/T25217-2010煤的冲击倾向性分类及指数的测定方法[S].北京: 中国标准出版社,2010. [13] 章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报, 1987, 6(03): 197-204. [14] 李玉生. 冲击地压机理及其初步应用[J]. 中国矿业学院学报, 1985, 14(03): 42-48. [15] 齐庆新, 刘天泉, 史元伟,等. 冲击地压的摩擦滑动失稳机理[J]. 矿山压力与顶板管理, 1995, 12(Z1): 174-177+200. [16] 窦林名, 陆菜平, 牟宗龙, 秦玉红, 姚精明. 煤岩体的强度弱化减冲理论[J]. 河南理工大学学报(自然科学版), 2005, 24(03): 169-175. [17] 窦林名, 陆菜平, 牟宗龙, 等. 冲击矿压的强度弱化减冲理论及其应用[J]. 煤炭学报, 2005, 30(06): 690-694. [18] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(08): 2091-2098. [19] 朱丽媛, 潘一山, 李忠华, 等. 深部矿井冲击地压、瓦斯突出复合灾害发生机理[J]. 煤炭学报, 2018, 43(11): 3042-3050. [20] 潘立友, 孙刘伟, 范宗乾. 深部矿井构造区厚煤层冲击地压机理与应用[J]. 煤炭科学技术, 2013, 41(09): 126-128+137. [21] 李东, 姜福兴, 陈洋, 舒凑先, 田昭军, 王永, 王维斌. 深井富水工作面“动—静”应力效应诱发冲击地压机理研究[J]. 岩土工程学报, 2018, 40(09): 1714-1722. [22] 尹万蕾, 潘一山, 李忠华. 矩形断面巷道冲击地压机理研究[J]. 岩土工程学报, 2018, 40(06): 1135-1142. [23] 姜耀东, 潘一山, 姜福兴, 窦林名, 鞠杨. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报, 2014, 39(02): 205-21. [24] 姜耀东, 赵毅鑫, 何满潮, 彭苏萍. 冲击地压机制的细观实验研究[J]. 岩石力学与工程学报, 2007, 26(05): 901-907. [26] 王崧玮, 曹安业, 王华, 等. 急倾斜特厚煤层“错动—夹持”型冲击地压机理[J]. 采矿与安全工程学报, 2022, 39(04): 711-719+769. [27] 鞠文君, 李文洲. 急倾斜特厚煤层水平分段开采老顶断裂力学模型[J]. 煤炭学报, 2008, 33(06): 606-608. [28] 王家臣, 杨胜利, 李良晖. 急倾斜煤层水平分段综放顶板“倾倒-滑塌”破坏模式[J]. 中国矿业大学学报, 2018, 47(06): 1175-1184. [29] 王正义. 急倾斜特厚煤层水平分段开采夹持型冲击失稳机理研究[D]. 中国矿业大学, 2019. [30] 张杰, 孙建平, 何义峰, 等. 近距离煤层底板应力分布规律及巷道布局研究[J/OL]. 煤炭科学技术,1-13[2024-04-06]. [31] 朱涛, 张百胜, 冯国瑞, 等. 极近距离煤层下层煤采场顶板结构与控制[J]. 煤炭学报,2010, 35(02):190-193. [32] 孟浩. 近距离煤层群下位煤层巷道布置优化研究[J]. 煤炭科学技术,2016, 44(12): 44-50. [33] 张艳丽, 解盘石, 伍永平. 急倾斜煤层重复采动回采巷道变形破坏机理与支护技术研究[J]. 煤炭工程, 2020, 52(02): 91-95. [34] 李树刚, 丁洋, 安朝峰, 等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报, 2016, 33(05): 904-910. [35] 曾宇, 白瑶, 李鹏辉, 等. 采空区下近距离煤层回采巷道应力分布规律研究[J]. 矿业研究与开发, 2023, 43(02): 88-94. [36] 李杨,任玉琦,王楠, 等. 采空区垮落顶板形态及其演化特征[J]. 煤炭学报,2021, 46(12): 3771-3780. [37] 郭瑞, 张勇, 陈庆港. 动静载荷下深部开挖巷道围岩变形破坏特征及支护优化[J]. 煤炭技术, 2022, 41(12): 81-85. [38] 黄庆享, 韩金博. 浅埋近距离煤层开采裂隙演化机理研究[J]. 采矿与安全工程学报,2019, 36(04): 706-711. [39] 王新丰, 何毅, 陆明远, 等. 开挖卸荷扰动深部巷道围岩变形破坏特征研究[J]. 中国安全科学学报, 2021, 31(08): 83-90. [40] 彭高友,高明忠,吕有厂, 等. 深部近距离煤层群采动力学行为探索[J]. 煤炭学报, 2019, 44(07): 1971-1980. [41] 赵洪宝, 程辉, 吉东亮, 等. 近距离煤层回采巷道非对称性破坏机理与演化规律研究[J]. 中国矿业大学学报, 2021, 50(06): 1029-1040+1050. [42] 赵洪宝, 程辉, 王磊, 等. 非静水压力条件下巷道围岩偏应力场分布特征与围岩破坏规律[J]. 煤炭学报, 2021, 46(02): 370-381. [43] 丁自伟, 李帅, 张杰, 等. 近距离煤层回采巷道非对称破坏机理及其控制[J]. 采矿与安全工程学报,2024, 41(02): 242-254. [53] 范育青, 汪华君, 刘玉成, 赵明洲, 王昌琪. 近距离煤层下煤层回采巷道支护设计[J]. 煤矿安全, 2016, 47(02): 212-215. [54] 李中伟. 近距离煤层下分层大断面切巷支护技术研究[J]. 煤炭工程, 2017, 49(11): 41-44. [55] 李中伟, 张剑, 周建新, 等. 极近距离煤层下分层巷道布置方位及支护技术研究[J]. 煤炭工程, 2018, 50(11): 48-50. [56] 杨建辉, 郭延华, 杨万斌. 下分层回采巷道锚梁支护技术研究[J]. 煤炭学报, 2000,25(02): 155-159. [57] 冯晓斌, 吴帅. 厚煤层下分层综放缩面回撤通道围岩控制[J]. 煤炭科学技术, 2021, 49(S2): 71-77. [58] 于洋, 神文龙, 高杰. 极近距离煤层下位巷道变形机理及控制[J]. 采矿与安全工程学报, 2016, 33(01): 49-55. [59] 徐军见. 近距离煤层下位外错巷道变形机理及控制技术[J]. 矿业安全与环保, 2020, 47(04): 88-92. [60] 张忠温, 吴吉南, 范明建, 等. 近距离煤层采空区下巷道支护技术研究与应用[J]. 煤炭工程, 2015, 47(02): 37-40. [61] 石增荣. 近距离煤层开采下巷道支护技术研究[J]. 煤炭科学技术, 2017, 45(08): 153-158. [62] 南存全, 王玉成, 商佳新, 于永江. 近距离煤层下回采巷道支护技术[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(05): 550-554. [63] 王琦, 刘寄婷, 江贝, 等. 极近距离煤层开采无煤柱自成巷控制方法研究[J]. 采矿与岩层控制工程学报, 2024, 6(01): 22-37. [64] 赵立克, 王阁, 张学启, 等. 极近距离煤层下伏回采巷道围岩控制技术研究[J]. 煤炭技术, 2024, 43(01): 56-60. [65] 朱润生. 极近距离煤层回采巷道合理位置确定与支护技术[J]. 煤炭科学技术, 2012, 40(04): 10-13+17. [66] 尚福建, 连传杰, 王海平, 艾金旺. 近距离煤层采空区下回采巷道锚网索梁支护技术[J]. 煤矿安全, 2016, 47(02): 151-154. [74] 李祥春, 聂百胜, 何学秋. 振动诱发煤与瓦斯突出的机理[J]. 北京科技大学学报, 2011, 33(02): 149-152. [75] 张广辉, 欧阳振华, 李宏艳, 等. 深部高瓦斯煤层冲击地压发生机理研究[J]. 煤矿安全, 2016, 47(06): 41-44. [76] 杨永杰, 王德超, 李博, 等. 煤岩三轴压缩损伤破坏声发射特征[J]. 应用基础与工程科学学报,2015, 23(01): 127-135. [78] 李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究[J]. 岩石力学与工程学报, 2017, 36(12): 2872-2883. [79] 刘晓辉, 薛洋, 郑钰等. 冲击荷载下煤岩破碎过程能量释放研究[J]. 岩石力学与工程学报,2021, 40(S2): 3201-3211. [80] 朱兆祥, 徐大本, 王礼立. 环氧树脂在高应变率下的热粘弹性本构方程和时温等效性[J]. 宁波大学学报(理工版), 1988, 10(01): 58-68. [81] 凌天龙, 刘殿书, 梁书锋, 等. 花岗岩损伤型黏弹性动态本构模型研究[J]. 矿业科学学报, 2019, 4(05): 403-409. [82] 王礼立, 蒋昭镳, 陈江瑛. 材料微损伤在高速变形过程中的演化及其对率型本构关系的影响[J]. 宁波大学学报(理工版),1996, 18(03): 47-55. [83] 胡时胜, 王道荣. 冲击载荷下混凝土材料的动态本构关系[J]. 爆炸与冲击, 2002, 22 (03): 242-246. [84] 陶俊林, 李奎. 水泥砂浆的一个热粘弹性率型损伤本构模型[J]. 爆炸与冲击, 2011, 31(03): 268-273. |
中图分类号: | TD353 |
开放日期: | 2025-06-14 |