论文中文题名: | CO2驱替煤层CH4非线性渗流机制 及演化规律研究 |
姓名: | |
学号: | 18120089019 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | CO2驱替煤层CH4和CO2封存技术 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-01-09 |
论文答辩日期: | 2022-12-08 |
论文外文题名: | Study on nonlinear gas seepage mechanism and evolution law of coal seam CH4 displaced by CO2 |
论文中文关键词: | |
论文外文关键词: | Mine gas ; Gas extraction ; competitive adsorption ; Carbon dioxide ; Seepage displacement |
论文中文摘要: |
我国不仅煤炭资源丰富,而且拥有丰富的煤层气(瓦斯)资源。煤层气资源的开发利用既能有效降低矿井瓦斯灾害事故,减小排放对环境的污染,也能推进我国能源转型,实现“2030碳达峰和2060碳中和”的远景目标。我国煤层瓦斯压力高,渗透率低,气体吸附性强,常规瓦斯预抽措施效率低。CO2驱替煤层CH4技术是当前的研究热点之一。注入煤体的CO2包含“渗流-扩散-吸附”过程,煤体中CH4呈现“解吸-扩散-渗流”过程,本文针对CO2驱替煤层CH4过程,从孔道内气体运移特征、竞争吸附特性和气体分布特征等角度展开分析,研究了CO2驱替煤层CH4非线性渗流机制及演化规律,并基于渗流特征从驱替“稳定性、能力和效果”三方面开展了CO2渗流驱替煤层CH4演化规律研究,以期为CO2驱替煤层CH4技术提供理论基础。 本文采用理论分析、实验研究和现场试验等方法,对孔道内单组分CO2/CH4气体运移特征及影响因素、多组分气体竞争吸附规律、不同渗透性煤体单组分CO2/CH4气体渗流规律、CO2渗流驱替煤层CH4理论、现场试验效果评价等方面展开系统研究,取得主要成果如下: (1)单组分(100% CO2+0% CH4、0% CO2+100% CH4)气体流量与压力梯度变化曲线特征可分为两个阶段:低流速或低压力梯度段呈非线性渗流特征,随着流速或压力梯度的增加,仍然存在非线性特征,但逐渐向线性渗流特征转变;根据CO2/CH4在孔道内的分布特征,分析了粘滞阻力、边界层厚度、体相-边界流体相互作用力及影响因素,构建了基于动态阻力梯度的气体非线性渗流数学表达式,通过理论流量值与实验值的对比分析,验证了压力梯度与动态阻力梯度的表征式,实现了不同压力梯度煤体内CO2与CH4运移难易程度的定量表征。 (2)煤对气体的吸附特性及气体可压缩性,决定了孔道内气体组分的分布特征,改变了不同区域(孔壁周围、孔道中线)气体的动力粘度系数,影响气体在孔道内的渗流过程,煤体孔道内气体组分分布特征引起不同区域气体动力粘度系数的变化是气体非线性渗流形成的直接原因;煤层渗透性及CO2驱替煤层CH4气体组分变化是影响气体流量与压力梯度曲线非线性偏离度的重要原因;煤层渗透性主要通过煤体孔隙结构特征影响曲线的非线性偏离度,是煤体的固有属性,而驱替过程中气体组分是通过改变孔道内气体动力粘度系数影响曲线的非线性偏离度。 (3)CO2驱替煤层CH4注气压力小于临界压力值时,孔道内二元气体CO2组分越大,气体渗流启动压力梯度值越大,压力梯度与流量曲线斜率增长越缓慢,流量增长滞后性越明显,曲线偏离度越高,非线性特征越显著;注气压力大于临界压力值时,压力梯度与流量曲线斜率趋于稳定,孔道内CO2气体组分越大,曲线斜率越小,偏离度越高,出口端气体流量越小;随着煤体渗透性的升高,气体渗流启动压力梯度越小,压力梯度与流量曲线斜率增长越快,气体流量增长越显著,曲线偏离度越低,线性段与非线性段临界压力值越小。 (4)基于分子动力学进行CO2渗流驱替煤层CH4能力理论分析,提出了分子碰撞频率和分子平均自由程两个表征驱替能力的指标,获得了影响指标的关键参数气体分压(气体组分);通过恒温条件下不同注入压力(大于临界压力值)CO2渗流驱替煤层CH4实验,获得了驱替比与驱替压力的线性关系,随驱替压力升高而减小;驱替效率随驱替压力升高而增大,通过增加驱替压力,可减小驱替比,增大驱替效率。 (5)CO2渗流驱替煤层CH4过程中,一方面,孔道内CO2与吸附态CH4发生竞争吸附或CO2与吸附态CH4分子碰撞发生动能传递(驱替能力),促进吸附态CH4解吸;另一方面,游离态CO2不断与孔道内解吸后的CH4发生分子碰撞,驱赶出煤层CH4,宏观表现为两种气体在孔道内的渗透能力,即流度。引入驱替相(CO2)与被驱替相(CH4)流度比来表征驱替稳定性,相同条件下CO2动力粘度值大于CH4,被驱替相和驱替相动力粘度比值小于1;基于CO2与CH4分子结构、气体物理特性及相同条件下分子平均自由程对比分析,发现同一尺度孔隙CH4渗流能力强于CO2;通过出口端气体流量、启动压力梯度及运移阻力判定煤体内CH4渗流能力强于CO2,驱替相渗透率与被驱替相渗透率比值小于1,说明驱替相与被驱替相的流度比小于1,波及效率高,能够形成稳定驱替,并通过现场试验考察孔CH4浓度变化对驱替稳定性进行了验证。 (6)提出了一种CO2渗流驱替煤层CH4抽采达标等效量化评估方法,并通过此方法对工程试验数据进行汇总计算,抽采期60天,K1和K3区域煤层可解吸瓦斯含量与半径呈类指数增长,K1和K3区域的有效达标驱替半径分别为15m和12m,驱替效率分别为20.52%、21.81%,波及效率分别为60%和48%。此外,综合评估此次煤层注CO2渗流驱替CH4试验有效达标驱替半径为9m,驱替效率为23.95%,波及效率为36%。 |
论文外文摘要: |
China is not only rich in coal resources, but also rich in coalbed methane resources. The development and utilization of gas resources can not only effectively reduce mine gas disaster accidents and reduce environmental pollution caused by emissions, but also promote China’s energy transformation and realize the vision goal of “2030 carbon peak and 2060 carbon neutralization”. China’s coal seam has high gas pressure, low permeability, strong gas adsorption, and low efficiency of conventional gas pre-drainage measures. CO2 displacement of coal seam CH4 technology is one of the current research hotspots. The CO2 injected into the coal body contains the process of “ seepage-diffusion-adsorption ”, and the CH4 in the coal seam presents the process of “ desorption-diffusion-seepage ”. In this paper, the process of CH4 displacement by CO2 in coal seam is analyzed from the perspectives of gas migration characteristics, competitive adsorption characteristics and gas distribution characteristics in the channel. The nonlinear seepage mechanism and evolution law of CH4 in coal seam by CO2 displacement are studied. Based on the seepage characteristics, the evolution law of CH4 in coal seam by CO2 seepage displacement is studied from three aspects of “ stability, ability and effect ”, in order to provide the basis for the technology of CH4 displacement by CO2 in coal seam. In this paper, theoretical analysis, experimental research and field test methods are used to systematically study the migration characteristics and influencing factors of single-component CO2/CH4 gas in the channel, the competitive adsorption law of multi-component gas, the gas seepage law of coal with different permeability, the theory of CO2 seepage displacement CH4, and the evaluation of field test results. The main results are as follows : (1)The characteristics of gas flow and pressure gradient curves of single component ( 100 % CO2 + 0 % CH4, 0 % CO2 + 100 % CH4 ) can be divided into two stages : low flow rate or low pressure gradient section shows nonlinear seepage characteristics. With the increase of flow rate or pressure gradient, there are still nonlinear characteristics, but they are becoming less and less obvious, and gradually show linear seepage characteristics. According to the distribution characteristics of CO2/CH4 in the channel, the viscous resistance, the thickness of the boundary layer, the action resistance of the bulk fluid and the boundary fluid and the influencing factors are analyzed. The mathematical model of gas nonlinear seepage based on dynamic resistance gradient is constructed. Through the comparative analysis of the theoretical calculation flow value and the experimental value, the characterization formulas of pressure gradient and dynamic resistance gradient are verified, and the quantitative characterization of the difficulty of CO2 and CH4 migration in coal with different pressure gradients is realized. (2)The adsorption characteristics of coal to gas and the compressibility of gas determine the distribution characteristics of gas components in the pores, change the dynamic viscosity coefficient of gas in different regions ( around the pore wall and in the middle line of the pores ), and affect the seepage process of gas in the pores. The change of gas dynamic viscosity coefficient in different regions caused by gas composition distribution in coal pores is the direct cause of gas nonlinear seepage. The permeability of coal seam and the gas composition change of CO2 displacement coal seam CH4 are the important reasons that affect the nonlinear deviation of gas flow and pressure gradient curve. The permeability of coal seam mainly affects the nonlinear deviation of the curve through the pore structure characteristics of coal which is the inherent property of coal body. The gas composition in the displacement process affects the nonlinear deviation of the curve by changing the gas dynamic viscosity coefficient in the channel. (3)When the gas injection pressure of CO2 displacement coal seam CH4 is less than the critical pressure value, the larger the CO2 gas component in the binary gas in the channel, the slower the slope of the pressure gradient and flow curve increases, the more obvious the hysteresis of flow growth, and the more significant the nonlinear characteristics. When the injection pressure is greater than the critical pressure value, the slope of the pressure gradient and flow curve tends to be stable. The larger the CO2 gas composition in the channel, the smaller the slope of the curve, the higher the deviation, and the smaller the gas flow at the outlet. With the increase of coal permeability, the slope of pressure gradient and flow curve increases faster, the gas flow increases more significantly, and the critical pressure of displacement pressure in nonlinear and nonlinear sections decreases. (4)Based on the theoretical analysis of the ability of CO2 flooding to displace CH4 by molecular dynamics, two indexes of molecular collision frequency and molecular mean free path were proposed to characterize the displacement ability, and the key parameters affecting the indexes, temperature and gas partial pressure ( component concentration ), were obtained. Through the experimental analysis of CH4 flooding by CO2 under different injection pressures ( higher than the critical pressure ), the linear relationship between displacement ratio and displacement pressure is determined, which decreases with the increase of displacement pressure. The displacement efficiency increases with the increase of displacement pressure. By increasing the displacement pressure, the displacement ratio can be reduced and the displacement efficiency can be increased. (5)In the process of CO2 flooding coal seam CH4 mass transfer, on the one hand, the competitive adsorption of CO2 and adsorbed CH4 in the channel or the collision kinetic energy transfer ( displacement ability ) between CO2 and adsorbed CH4 molecules promotes the desorption of adsorbed CH4. On the other hand, the free CO2 continuously collides with the desorbed CH4 in the channel, and drives out the CH4 in the coal seam. The macroscopic performance is the permeability of the two gases in the channel, that is, mobility. The mobility ratio of the displacement phase ( CO2 ) to the displaced phase ( CH4 ) is introduced to characterize the displacement stability. Under the same temperature and pressure conditions, the dynamic viscosity of CO2 is greater than that of CH4, and the dynamic viscosity ratio of the displaced phase to the displaced phase is less than 1. Based on the comparative analysis of CO2 and CH4 molecular structure, gas physical properties and molecular mean free path under the same conditions, it is found that the seepage capacity of CH4 in the same scale pore is stronger than that of CO2. Through the gas flow rate, starting pressure gradient and migration resistance at the outlet end, it is determined that the seepage capacity of CH4 in coal is stronger than that of CO2, and the ratio of displacement phase permeability to displacement phase permeability is less than 1, indicating that the mobility ratio of displacement phase to displaced phase is less than 1, and the sweep efficiency is high, which can form stable displacement. The displacement stability was verified by field test of CH4 concentration change in the hole. (6)An evaluation method of CH4 equivalent standard effect of CO2 seepage displacement coal seam is proposed, and the field data are aggregated and calculated by this method. The desorption gas content and radius of K1 and K3 coal seams increase exponentially in 60 days of extraction period. The effective standard displacement radius of K1 and K3 are 15m and 12m respectively, the displacement efficiency are 20.52% and 21.81% respectively, and the sweep efficiency is 60% and 48%, respectively. In addition, it is comprehensively evaluated that the effective standard displacement radius of the CO2 seepage displacement CH4 test is 9m, the displacement efficiency is 23.95%, and the sweep efficiency is 36%. |
参考文献: |
[1] 袁亮.中国煤矿瓦斯治理理论与技术[C]. 安徽省科学技术协会.2010年安徽省科协年会—煤炭工业可持续发展专题研讨会论文集. 安徽省科学技术协会: 安徽省科学技术协会学会部, 2010. [2] 国家安全生产监督管理总局. 煤矿安全规程[M]. 煤炭工业出版社, 2016. [4] 王伟, 李昱, 李贤功. 2010-2018年煤矿瓦斯事故时空耦合关联分析[J]. 煤矿安全, 2020, 51(05): 177-182. [6] 方君实. 煤层气“十三五”规划解读[J]. 化工管理, 2017(01): 51-52. [12] 袁亮, 薛生. 煤层瓦斯含量法确定保护层开采消突范围的技术及应用[J]. 煤炭学报, 2014, 39(09): 1786-1791. [13] 刘应科. 远距离下保护层开采卸压特性及钻井抽采消突研究[J]. 煤炭学报, 2012, 37(06): 1067-1068. [14] 王耀锋, 何学秋, 王恩元, 等. 水力化煤层增透技术研究进展及发展趋势[J]. 煤炭学报, 2014, 39(10): 1945-1955. [15] 邵长跃, 潘鹏志, 赵德才, 等. 流量对水力压裂破裂压力和增压率的影响研究[J]. 岩土力学, 2020(07): 1-12. [16] 王刚, 范酒源, 汪文瑞, 等. 水力割缝辅助定向压裂煤体的割缝间距模型研究[J]. 采矿与安全工程学报, 2020, 37(03): 622-631. [17] 段康廉, 冯增朝, 赵阳升, 等. 低渗透煤层钻孔与水力割缝瓦斯排放的实验研究[J]. 煤炭学报, 2002(01): 50-53. [18] 杨仁树, 苏洪. 爆炸荷载下含预裂缝的裂纹扩展实验研究[J]. 煤炭学报, 2019, 44(02): 482-489. [19] 张永民, 蒙祖智, 秦勇, 等. 松软煤层可控冲击波增透瓦斯抽采创新实践—以贵州水城矿区中井煤矿为例[J]. 煤炭学报, 2019, 44(08): 2388-2400. [21] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变射孔破岩及裂隙扩展力学机理[J]. 煤炭学报, 2018, 43(11): 3154-3168. [22] 黎力, 梁卫国, 李治刚, 等. 注热CO2驱替增产煤层气试验研究[J]. 煤炭学报, 2017, 42(08): 2044-2050. [24] 杨宏民, 王兆丰, 任子阳. 煤中二元气体竞争吸附与置换解吸的差异性及其置换规律[J]. 煤炭学报, 2015, 40(07): 1550-1554. [25] 王向浩, 王延忠, 张磊, 等. 高、低煤阶CO2与CH4竞争吸附解吸置换效果分析[J]. 非常规油气, 2018, 5(03): 46-51. [28] 刘合, 王峰, 张劲, 等. 二氧化碳干法压裂技术—应用现状与发展趋势[J]. 石油勘探与开发, 2014, 41(4): 466-472. [29] 李珍宝. 液态CO2低温致裂及相变驱替促抽煤层CH4机制研究[D]. 西安: 西安科技大学, 2017. [30] 文虎, 李珍宝, 王振平, 等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J]. 煤炭学报, 2016, 41(11): 2793-2799. [31] 文虎, 李珍宝, 马砺, 等. 液态CO2溶浸作用下煤体孔隙结构损伤特性研究[J]. 西安科技大学学报, 2017, 37(02): 149-153. [34] 文虎, 樊世星, 马砺, 等. 低渗透性煤层井下低压液态CO2促抽瓦斯工程实践[J]. 西安科技大学学报, 2018, 38(04): 530-537. [36] 樊世星. 液态CO2压裂煤岩增透及裂缝形成机制研究[D]. 西安: 西安科技大学, 2019. [38] 袁亮. 低透气性煤层群无煤柱煤与瓦斯共采理论与实践[M]. 煤炭工业出版社, 2008. [43] 姚艳斌, 刘大锰. 华北重点矿区煤储层吸附特征及其影响因素[J]. 中国矿业大学学报, 2007(03): 308-314. [44] 郭海军. 煤的双重孔隙结构等效特征及对其力学和渗透特性的影响机制[D]. 徐州: 中国矿业大学, 2017. [45] 傅雪海, 秦勇, 张万红, 等. 基于煤层气运移的煤孔隙分形分类及自然分类研究[J]. 科学通报, 2005(S1): 51-55. [46] 桑树勋, 朱炎铭, 张时音, 等. 煤吸附气体的固气作用机理(Ⅰ)—煤孔隙结构与固气作用[J]. 天然气工业, 2005, 25(1): 13-15. [47] 琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报, 2005(02): 269-285. [48] 姚艳斌, 刘大锰. 煤储层孔隙系统发育特征与煤层气可采性研究[J]. 煤炭科学技术, 2006(03): 64-68. [50] 姚艳斌, 刘大锰, 汤达祯, 等. 华北地区煤层气储集与产出性能[J]. 石油勘探与开发, 2007(06): 664-668. [51] 姚艳斌, 刘大锰, 汤达祯, 等. 沁水盆地煤储层微裂隙发育的煤岩学控制机理[J]. 中国矿业大学学报, 2010, 39(001): 6-13. [52] 孟磊. 含瓦斯煤体损伤破坏特征及瓦斯运移规律研究[D]. 北京: 中国矿业大学, 2013. [55] 周世宁. 瓦斯在煤层中流动的机理[J]. 煤炭学报, 1990(1): 15-24. [56] 周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1999. [57] 孙培德. 煤层瓦斯流场流动规律的研究[J]. 煤炭学报, 1987(4): 74-82. [58] 孙培德. 变形过程中煤样渗透率变化规律的实验研究[J]. 岩石力学与工程学报, 2001, 20(s1): 1801-1804. [59] 王宏图, 杜云贵, 鲜学福, 等. 地球物理场中的煤层瓦斯渗流方程[J]. 岩石力学与工程学报, 2002, 21(5): 644-646. [60] 王宏图, 李晓红, 鲜学福, 等. 地电场作用下煤中甲烷气体渗流性质的实验研究[J]. 岩石力学与工程学报, 2004, 23(2): 303-306. [72] 姜永东, 阳兴洋, 鲜学福, 等. 应力场、温度场、声场作用下煤层气的渗流方程[J]. 煤炭学报, 2010, 35(03): 434-438. [73] 李波波, 李建华, 杨康, 等. 考虑水分影响的煤岩渗透率模型及演化规律[J]. 煤炭学报, 2019, 44(11): 3396-3403. [74] 荣腾龙, 周宏伟, 王路军, 等. 三向应力条件下煤体渗透率演化模型研究[J]. 煤炭学报, 2018, 43(07): 1930-1937. [75] 薛熠, 高峰, 高亚楠, 等. 采动影响下损伤煤岩体峰后渗透率演化模型研究[J]. 中国矿业大学学报, 2017, 46(03): 521-527. [76] 李波波, 高政, 杨康, 等. 考虑温度、孔隙压力影响的煤岩渗透性演化机制分析[J]. 煤炭学报, 2020, 45(02): 626-632. [78] 刘嘉. 页岩气多尺度运移特征与协同机理研究[D]. 徐州: 中国矿业大学, 2019. [81] 梁卫国, 贺伟, 阎纪伟. 超临界CO2致煤岩力学特性弱化与破裂机理[J]. 煤炭学报, 2022, 47(7): 2557-2568. [82] 梁卫国, 张倍宁, 贺伟, 等. 不同阶煤超临界CO2驱替开采CH4试验研究[J]. 煤炭学报, 2020, 45(01): 197-203. [83] 王磊, 梁卫国. 超临界CO2压裂下煤岩体裂缝扩展规律试验研究[J]. 煤炭科学技术, 2019, 47(02): 65-70. [84] 陈鹏, 孙可明, 张宇. 超临界CO2气爆非均质煤体破裂规律模拟研究[J]. 计算力学学报, 2021, 38(06): 770-778. [85] 牛庆合. 超临界CO2注入无烟煤力学响应机理与可注性试验研究[D]. 徐州: 中国矿业大学, 2019. [86] 周来, 冯启言, 秦勇. CO2和CH4在煤基质表面竞争吸附的热力学分析[J]. 煤炭学报, 2011, 36(08): 1307-1311. [87] 聂百胜, 何学秋, 王恩元. 煤的表面自由能及应用探讨[J]. 太原理工大学学报, 2000(04): 346-348. [90] 张涛. 低渗透油层提高采收率实验及理论研究[D]. 大庆: 大庆石油学院, 2009. [91] 李珍宝, 王凤双, 梁瑞, 等. 液态CO2驱替煤体CH4的渗流特性及机制分析[J]. 采矿与安全工程学报: 1-7. [92] 侯东升, 梁卫国, 张倍宁, 等. CO2驱替煤层CH4中混合气体渗流规律的研究[J]. 煤炭学报, 2019, 44(11): 3463-3471. [93] 梁卫国, 张倍宁, 黎力, 等. 注能(以CO2为例)改性驱替开采CH4理论与实验研究[J]. 煤炭学报, 2018, 43(10): 2839-2847. [96] 吴迪, 刘雪莹, 孙可明, 等. 热力耦合条件下超临界CO2驱替煤层CH4实验[J]. 煤田地质与勘探, 2019, 47(03): 85-90. [97] 杨宏民, 许东亮, 陈立伟. 注CO2置换/驱替煤中甲烷定量化研究[J]. 中国安全生产科学技术, 2016, 12(05): 38-42. [106] 刘静, 吴高峰, 郭强. 利用数值模拟技术评价沁水煤田沁县区深部煤层封存CO2的潜力[J]. 华北国土资源, 2017(06): 70-72. [107] 叶建平, 冯三利, 范志强. 沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J].石油学报, 2007, 28(4): 77-80. [109] 刘延锋, 李小春, 白冰. 中国CO2煤层储存容量初步评价[J]. 岩石力学与工程学报, 2005, 24(16): 2947-2952. [111] 周来. 深部煤层处置CO2多物理耦合过程的实验与模拟[D]. 徐州: 中国矿业大学, 2009. [116] 李珍宝, 王凤双, 魏高明, 等. 液态CO2溶浸无烟煤的氧化动力学特征[J]. 煤炭学报, 2020, 45(S1): 330-335. [118] 王惠民. 裂隙页岩热-湿-流-固多场耦合下的两相流工程理论研究[D]. 徐州: 中国矿业大学, 2020. [119] 张遵国. 煤吸附/解吸变形特征及其影响因素研究[D]. 重庆: 重庆大学, 2015. [120] 张松航. 煤储层气体运移特征和CO2-ECBM数值模拟研究[D]. 北京: 中国地质大学, 2011. [133] Scott D S, Dullien F A L. The flow of rarefied gases[J]. AIChE Journal. 1962(8): 113-117. [134] 中华人民共和国能源部. 中华人民共和国石油天然气行业标准[M]. 北京: 石油工业出版社, 1992. [135] 张群, 冯三利, 杨锡禄, 等. 试论我国煤层气的基本储层特点及开发策略[J]. 煤炭学报, 2001, 26(3): 230-235. [136] 付利, 申瑞臣, 屈平, 等. 基于煤层渗透率的钻井完井方式选择分析[J]. 中国煤层气, 2010, 7(5): 43-46, 17. [137] 傅雪海, 邢雪, 刘爱华, 等. 华北地区各类煤储层孔隙、吸附特征及试井成果分析[J]. 天然气工业, 2011, 31(12): 72-75. [138] 苏现波, 方文东. 煤储层的渗透性及其分级与分类[J]. 焦作工学院学报, 1998, 17(2): 94-99. [139] 王一兵, 田文广, 李五忠, 等. 中国煤层气选区评价标准探讨[J]. 地质通报, 2006, 25(9-10): 1104-1107. [140] 邵龙义, 侯海海, 唐跃, 等. 中国煤层气勘探开发战略接替区优选[J]. 天然气工业, 2015, 35(3): 1-11. [141] 康永尚, 孙良忠, 张兵, 等. 中国煤储层渗透率分级方案探讨[J]. 煤炭学报, 2017, 42(S1): 186-194. [142] 许延辉. 煤自燃特性宏观表征参数及测试方法研究[D]. 西安: 西安科技大学, 2014. [143] 吴俊. 煤微孔隙特征及其与油气运移储集关系的研究[J]. 中国科学(B辑化学生命科学地学), 1993(01): 77-84. [144] 江泽标, 彭鑫, 韦善阳, 等. 基于氮吸附、压汞联合试验的CO2致裂对煤岩孔隙的影响[J]. 安全与环境学报, 2021, 21(01): 101-108. [145] 吴俊, 金奎励, 童有德, 等. 煤孔隙理论及在瓦斯突出和抽放评价中的应用[J]. 煤炭学报, 1991(03): 86-95. [146] 陈新志, 蔡振云. 化工热力学[M]. 北京: 化学工业出版社, 2004: 256-288. [147] Myers A L. Thermodynamics of adsorption in porous materials[J]. AIChE, 2002, 48(1): 145-159. [148] 折文旭, 陈军斌. 纳米级页岩孔隙吸附厚度计算方法及其对比分析[J]. 西安石油大学学报(自然科学版), 2014, 29(04): 69-72+88+10. [149] 近藤精一. 吸附科学[M]. 李国希, 译. 北京: 化学工业出版社, 2006. [153] 张子戌, 刘高峰, 张小东, 等. CH4/CO2不同浓度混合气体的吸附-解吸实验[J]. 煤炭学报, 2009, 34(4): 551-555. [157] 程小蛟. 煤氧化自燃过程氡析出规律研究[D]. 西安: 西安科技大学, 2018. [159] 齐超. 页岩有机纳米孔隙中甲烷吸附与驱替的微观机理研究[D]. 华东: 中国石油大学, 2019. [160] 邓佳, 张奇, 王栋, 等. 压力驱动条件下页岩微纳米孔隙CO2/CH4竞争吸附特性[J]. 东北石油大学学报, 2021, 45(05): 109-116+12. [161] 孙志刚, 马炳杰, 李奋. 低渗透储层流体非线性渗流机理及特征分析[J]. 西南石油大学学报(自然科学版), 2019, 41(2): 109-117. [163] 齐荣荣. 页岩气多组分竞争吸附机理研究[D]. 北京: 中国石油大学, 2019. [164] 邓英尔, 阎庆来, 马宝岐. 界面分子力作用与渗透率的关系及其对渗流的影响[J]. 石油勘探与开发, 1998(02): 62-65+5+12. [165] 符五久, 何娟美. 混合气体输运系数的推导[J]. 大学物理, 2005(06): 31-35. [166] 丁巨成. 混合气体分子平均自由程的推证[J]. 泰山学院学报, 2003(03): 63-64. [167] 宋洪庆. 工程流体力学及环境应用[M]. 北京: 冶金工业出版社. 2016: 203-204. [168] 刘思广, 赵江. 非氧常规气体的渗透性能分析[J]. 中国包装, 2009, 29(01): 56-58. [169] 樊世星, 文虎, 程小蛟, 等. 井下高压(30MPa)液态CO2压裂增透煤岩成套装备研制与应用[J]. 煤炭学报, 2020, 45(S02): 12. [170] 文虎, 王振平, 马砺, 等. 矿用移动式液态二氧化碳防灭火装置[P]. 中国专利: 201020528535.3, 2011-04-20. [171] 沈雨浩. 淮南矿区潘集深部13-1煤煤层气资源潜力评价[D]. 淮南: 安徽理工大学, 2017. [172] 国家应急管理部, 国家发展和改革委员会, 国家能源局. 煤矿瓦斯抽采达标暂行规定[S]. 北京: 煤炭工业出版社,2011. |
中图分类号: | TD712 |
开放日期: | 2025-03-21 |