论文中文题名: | 基于生成对抗网络的图像修复技术研究 |
姓名: | |
学号: | 18207205041 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085208 |
学科名称: | 工学 - 工程 - 电子与通信工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 数字图像处理 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2021-06-21 |
论文答辩日期: | 2021-06-04 |
论文外文题名: | Research on Image Inpainting Technology Based on Generative Adversarial Network |
论文中文关键词: | |
论文外文关键词: | Image Inpainting ; Generative Adversarial Network ; Long Short Term Memory Network ; Attention Mechanism |
论文中文摘要: |
图像修复是利用合理的像素值填充原本图像中缺失或被遮挡区域的技术。传统的图像修复方法在针对修复区域结构复杂、包含强语义信息的图像时难以修复。而生成对抗网络通过生成器与判别器之间的对抗学习、相互优化,以此可以生成以假乱真的样本,该特性使得生成对抗网络非常契合图像修复,因此基于生成对抗网络的图像修复技术研究具有重要意义。 针对编码器采样时信息丢失的问题,本文使用空洞卷积代替普通卷积,以获得更大的感受野,减少信息丢失。为了稳定模型的训练,采用了谱归一化方法,以使得判别器满足Lipschitz连续。为解决目前修复方法中语义信息获取不足而导致修复细节不佳的问题,对现有编码器进行了改进,改进后的编码器从高层语义特征图中学习区域相似度,通过注意力转移网络将学习到的注意力转移到低级特征图中,指导低层修复,实现不同层次的特征修复。为改善现有的图像修复方法一次性修复、修复任务量大导致修复结果不连贯、清晰度低的问题,本文采用分步式修复方式,将整体修复任务看作是多个子任务的和,每一个子任务只负责其中的一部分,且均以上一个子任务为基础,最终通过长短记忆网络连接,完成整体修复任务。基于本文所改进的修复方法,分别在CelabA与ImageNet两个数据集中进行实验验证。 实验结果表明,本文所改进的图像修复方法能达到良好的修复效果。且与上下文编码器、具有上下文注意两种方法相比,改进方法在主观视觉评价与三种客观评价指标(峰值信噪比、结构性相似、平均绝对误差)下均取得了最优的修复效果。本文的研究成果可以丰富图像修复技术的研究,为图像修复技术发展提供理论参考,且在人脸去遮挡、文物修复、生物医学成像等方面具有一定的应用价值。 |
论文外文摘要: |
Image inpainting is a method to fill the missing or occluded areas in the original image with reasonable pixel values. Traditional image inpainting methods are difficult to repair the damaged image with complex structure and strong semantic information. The generative adversarial network can generate false data through the confrontation learning and mutual optimization between the generator and the discriminator, which makes the generative adversarial network very suitable for image inpainting. Therefore, the research on image inpainting technology based on generative adversarial network is of great significance. In order to solve the problem of information loss in down sampling, hole convolution is used instead of ordinary convolution to obtain larger receptive field and reduce information loss. In order to stabilize the training of the model, the spectral normalization method is used to make the discriminator satisfy Lipschitz continuity. In order to solve the problem of poor repair details caused by insufficient semantic information acquisition in current repair methods, an improved encoder is proposed. The encoder learns region similarity from high-level semantic feature graph, and transfers the learned attention to low-level feature graph through attention transfer network to guide low-level repair and realize feature repair at different levels. In order to improve the existing image inpainting methods, such as one-time inpainting, large amount of inpainting tasks lead to incoherent results and low definition, this paper adopts the step-by-step inpainting method, and regards the whole inpainting task as the sum of several subtasks, each subtask is only responsible for a part of them, and is based on the above subtasks, and finally connected through the long short term memory Network, the overall repair results were composed. Based on the improved repair method, the repair models are tested in two datasets of CelabA and Imagenet. The experimental results show that the improved image inpainting technology can achieve the purpose of good image inpainting. Compared with the context coder and the method with context attention, the improved method achieves the best repair effect under the subjective visual evaluation and three objective evaluation indexes (peak signal-to-noise ratio, structural similarity and average absolute error). The research results of this paper can enrich the research of image inpainting technology, provide theoretical reference for the development of image inpainting technology, and have certain application value in face occlusion, cultural relic restoration, biomedical imaging and so on. |
参考文献: |
[1] 宋孝忠,张群. 煤岩显微组分组图像自动识别系统与关键技术[J].煤炭学报, 2019, 44(10): 3085-3097. [2] 高惠琳. 基于卷积神经网络的军事图像分类[J]. 计算机应用研究,2017, 34(11): 323-325. [3] 段乃侠. 基于多媒体图像技术的招贴信息自动分类方法研究[J]. 自动化与仪器仪表, 2019, 39(07): 18-21. [21] Oliveira M, Brian B, Richard M, et al. Fast digital image inpainting[C]//VIIP 2001:261-266. |
中图分类号: | TP391 |
开放日期: | 2021-06-22 |