题名: | 改性镁渣基充填胶凝材料的研发及应用研究 |
作者: | |
学号: | 21103077018 |
保密级别: | 保密(2年后开放) |
语种: | chi |
学科代码: | 0819 |
学科: | 工学 - 矿业工程 |
学生类型: | 博士 |
学位: | 工学博士 |
学位年度: | 2024 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 固废处置与充填开采 |
导师姓名: | |
导师单位: | |
提交日期: | 2025-01-08 |
答辩日期: | 2024-12-05 |
外文题名: | Research on the development and application of modified magnesium slag-based filling cementitious materials |
关键词: | |
外文关键词: | Modified magnesium slag ; Coal fired solid waste ; Solid waste cementitious materials ; Hydration kinetics ; Cemented backfill |
摘要: |
煤炭和冶金是我国国民经济的支柱行业,为国家能源安全和材料发展战略提供了关键支持。典型的煤炭基地聚集了采煤、煤电和冶金产业集群,然而随着大量冶炼镁-煤基固废的排放与堆存,区域经济和社会的可持续发展面临着严峻的挑战。本文围绕“镁渣多级改性、改性镁渣基胶凝材料研发、胶结充填材料特性、煤-电-冶联合工程应用”技术体系开展了系统研究。研究成果可有效缓解“煤-电-冶”工业固废排放、地表沉陷带来的生态环境保护压力,助力我国“双碳”目标,丰富全固废充填开采技术体系,对区域生态环境保护和煤-电-冶产业高质量发展都将起到良好的推动作用。 研究以镁渣活性低、释放有害气体等缺陷为切入点,提出镁渣多级改性技术,使其具备资源化利用基础;再以改性镁渣协同煤电固废开发新型全固废胶凝材料,重点针对胶凝材料的性能优化、水化过程、水化产物演化和协同作用等开展研究;最终验证新型胶凝材料在矿山充填中应用效果。主要工作和结论如下: (1)研究使用4种优化剂对镁渣进行源头改性,优化剂C和D效果不明显,优化剂A和B可有效提高镁渣中β-C2S的相对含量,且其随优化剂含量和改性时间的增加而增加,当β-C2S超过70%后,即可避免粉化。源头改性镁渣强度增长源于β-C2S的水化反应,随着改性效果的提升,S-MMS中的水化硅酸钙凝胶和Ca(OH)2显著增多。在相同的条件下,优化剂B的改性效果优于优化剂A。中试生产的S-MMS冷却后呈桃核状,结构稳定,相比一般镁渣的净浆强度和活性指数分别提高了685%和20.72%以上。 (2)镁渣研磨或遇水后迅速释放NH3、CO和H2S,逸气源于渣中残留硅铁以及在炼镁过程中硅铁对C、N和S的富集作用。研究提出了高温通气氧化和湿法陈化后端改性镁渣(B-MMS)技术。高温通气氧化可使B-MMS浆体逸气量降低50%∼95%以上,当温度为500∼700 ℃、通气速率为200∼400 mL/min、保温时间≮1 h时效果最佳。湿法陈化使气体释放量小幅降低,但伴随着强度劣化。当陈化湿度≯6%,陈化时间≯7 d时,强度和逸气量可达到相对平衡。中试利用镁渣余热氧化-湿法陈化复合后端改性使B-MMS浆体的逸气量降低90%以上,28 d的强度和S-MMS无显著差异。 (3)使用改性镁渣协同煤电固废研发了一种全固废胶凝材料(M·C)。M·C的28 d强度可达7.7∼25.2 MPa,3 d强度和凝结时间由MMS和DG含量控制。膨胀性满足GB/T 2938中Ex≤0.6%的要求,安定性合格。MMS(以β-C2S为主)溶解水化生成C-S-H和CH为M·C提供了基础强度和高碱性环境。FA、CFS和DG的加入为体系提供了新的反应源,在DG的作用下FA和CFS中的活性Si、Al基物质反应生成AFt。FA和CFS中的玻璃体在碱性条件下解聚形成[AlO4]5−和[SiO4]4−,与Ca2+、OH−和SO42−聚合生成大量C-S(A)-H和AFt,同时加速MMS的水化反应。FA和CFS的作用机制基本一致,当FA和CFS同时存在时会形成元素互补和物化协同作用,促进体系水化进程。 (4)M·C的水化放热过程分为初始溶解、诱导、加速、减速和缓慢反应五个阶段。DG能加快M·C早期的水化放热过程,FA和CFS在早期时不利于M·C的水化。基于Krstulovic-Dabic模型分析M·C的水化动力学过程,其主要由NG,I和D三个阶段控制。I和D阶段的速率远低于NG阶段,NG阶段主要受MMS中β-C2S反应影响。FA和CFS的含量会显著影响I过程的出现和结束。M·C早期电阻率变化曲线和水化放热过程高度重合,综合M·C在不同温度下的水化放热过程和28天的电阻率测试观察到FA和CFS之间具有积极地复合作用。 (5)系统研究了M·C胶结风积沙(MFPBA)和胶结煤矸石充填材料(MFPBC)的性能。在流动方面,受矸石大颗粒影响,MFPBC的流动波动性较大,MFPBA的流动均匀性更好,整体均满足一般充填采矿的需求;在力学方面,MFPBA和MFPBC养护28 d的强度分别为4.03∼10.16 MPa和3.12∼5.88 MPa。充填体的水弱化系数呈指数增长,14 d以后在富水条件下具有更好的耐久性。在环境方面,充填料浆累计7 d的逸气量满足《煤炭安全规程》2024中的相关规定。MFPB在不同龄期、配比和pH等条件下的浸出结果差异小,各项污染指标溶解扩散水平低。综合说明MFPB流动和力学性能适用范围广,配比调整灵活,整体环境风险性小,具备广泛适用性。 (6)建立了改性镁渣工业化生产工艺,改性镁渣质地坚硬,逸气量降低了95%以上,28 d平均活性指数超过85%。依托蒙西水泥厂生产系统建立了改性镁渣基胶凝材料生产示范,规范了原料质检、生产、等级划分、成品检验和运输等。以麻黄梁和常兴煤矿为工程背景,依托煤矿现有充填工艺及设备进行了工业试验。两种不同的充填材料具有后期强度高以及环境友好等特点,井下各项性能优于实验室水平。最终形成了“改性镁渣生产→胶凝材料生产→充填应用”产业链式应用示范。 |
外文摘要: |
Coal and metallurgy are the pillar industries of China's national economy, providing key support for national energy security and materials development strategies. Typical coal bases gather clusters of coal mining, coal power and metallurgy industries, however, with the emission and stockpiling of large quantities of smelting magnesium-coal-based solid wastes, the sustainable development of the regional economy and society is facing serious challenges. This paper carries out a systematic research on the technical system of “multi-stage modification of magnesium slag, research and development of modified magnesium slag-based cementitious materials, characteristics of cementitious filling materials, and joint engineering application of coal-electricity-metallurgy”. The research results can effectively alleviate the “coal-electricity-metallurgy” industrial solid waste emissions, surface subsidence brought about by the pressure of ecological environmental protection, help China's “double carbon” goal, enrich the whole solid waste filling mining technology system, the regional ecological environmental protection and coal, electricity and metallurgy industry will play a good role in promoting the high-quality development of the industry. It will play a good role in promoting the regional ecological environmental protection and high-quality development of coal, power and metallurgical industry. This study takes the defects of magnesium slag, such as low activity and release of harmful gases, as the entry point, and proposes the multistage modification technology of magnesium slag, so that it has the basis of resource utilization; Then, a new type of all solid waste cementitious material was developed by using modified magnesium slag combined with coal and electricity solid waste, focusing on the performance optimization of cementitious materials, hydration process, hydration product evolution and synergistic effect to carry out research; Finally verify the application effect of the new cementitious materials in mine filling. The main work and conclusions are as follows: (1) The study used four optimizers to source-modify magnesium slag; optimizers C and D were not effective, and optimizers A and B could effectively increase the relative content of β-C2S in magnesium slag, which increased with the increase of optimizer content and modification time, and chalking could be avoided when β-C2S exceeded 70%. The strength growth of source-modified magnesium slag originated from the hydration reaction of β-C2S, and the hydrated calcium silicate gel and Ca(OH)2 in S-MMS increased significantly with the modification effect. Under the same conditions, the modification effect of Optimizer B was better than that of Optimizer A. The pilot-produced S-MMS was peach-core shaped and structurally stable after cooling, and the net slurry strength and activity index increased by more than 685% and 20.72%, respectively, compared with that of normal magnesium slag. (2) Magnesium slag rapidly releases NH3, CO and H2S after grinding or contacting water, and the fugitive gas originates from the residual ferrosilicon in the slag and the enrichment of C, N and S by ferrosilicon in the process of magnesium refining. The study proposes a high-temperature aeration oxidation and wet aging back-end modified magnesium slag (B-MMS) technology. High-temperature aeration oxidation reduces the B-MMS slurry fugitive gas by more than 50% to 95%, and the best effect is achieved when the temperature is 500-700 ℃, the aeration rate is 200-400 mL/min, and the holding time is ≮1 h. The gas release of B-MMS slag is reduced by the high-temperature aeration oxidation, which is the most effective. Wet aging resulted in a small reduction in gas release, but was accompanied by strength deterioration. When the aging humidity ≯6% and aging time ≯7 d, the strength and fugitive air volume can reach relative equilibrium. Pilot tests using magnesium slag waste heat oxidation-wet aging composite back-end modification reduced the fugacity of B-MMS slurry by more than 90%, and there was no significant difference between the strength and S-MMS at 28 d. The strength and fugacity of B-MMS slurry at 28 d were not significantly different. (3) An all-solid-waste cementitious material (M·C) was developed using modified magnesium slag synergized with coal power solid waste. The 28 d strength of M·C could reach 7.7-25.2 MPa, and the 3 d strength and setting time were controlled by the content of MMS and DG. The expansion meets the requirement of Ex≤0.6% in GB/T 2938, and the stability is qualified. MMS (mainly β-C2S) dissolves and hydrates to generate C-S-H and CH to provide the base strength and high alkaline environment for M·C. The addition of FA, CFS and DG provides a new reaction source for the system, and the reactive Si and Al-based substances in FA and CFS react to generate AFt in the action of DG. The FA and CFS react to form AFt in the action of DG. Under alkaline conditions, the vitrinite in FA and CFS depolymerized to form [AlO4]5- and [SiO4]4-, which polymerized with Ca2+, OH- and SO2-4 to form a large amount of C-S(A)-H and AFt, and at the same time accelerated the hydration of MMS. The mechanisms of FA and CFS are basically the same, and when FA and CFS are present at the same time, elemental complementation and physical-chemical synergism will be formed to promote the hydration process of the system. (4) The hydration exothermic process of M·C is divided into five stages: initial dissolution, induction, acceleration, deceleration and slow reaction. DG accelerates the hydration exothermic process of M·C in the early stage, and FA and CFS are unfavorable to the hydration of M·C in the early stage. Based on the Krstulovic-Dabic model to analyze the hydration kinetics of M·C, it is mainly controlled by the three stages of NG, I and D. The rate of I and D stages is much lower than that of NG, and the NG stage is mainly affected by the reaction of β-C2S in the MMS, and the content of FA and CFS significantly affects the emergence and the end of I. The resistivity curves of the early stage and the hydration exothermic process of M·C highly coincide. The early resistivity change curve of M·C and the hydration exothermic process are highly coincident, and the combination of the hydration exothermic process of M·C at different temperatures and the 28-day resistivity test observed that there is a positive compounding effect between FA and CFS. (5) The performance of M·C cemented windblown sand (MFPBA) and cemented gangue filling material (MFPBC) was systematically studied. In terms of flow, affected by large gangue particles, the flow volatility of MFPBC is larger, and the flow uniformity of MFPBA is better, and the whole meets the needs of general filling and mining; in terms of mechanics, the strengths of MFPBA and MFPBC after 28 d of maintenance are 4.03-10.16 MPa and 3.12-5.88 MPa, respectively. The water weakening coefficients of the filled bodies increased exponentially, and they had better durability under water-rich conditions after 14 d. The water weakening coefficients of the filled bodies increased exponentially. In terms of environment, the gas release of the filling slurry for a cumulative period of 7 d met the relevant regulations in Coal Safety Regulation 2024. The leaching results of MFPB under different ages, ratios and pH conditions have small differences, and the dissolved diffusion levels of various pollution indicators are low. The synthesis shows that MFPB has a wide range of flow and mechanical properties, flexible ratio adjustment, low overall environmental risk, and wide applicability. (6) The industrialized production process of modified magnesium slag has been established, and the modified magnesium slag has a hard texture, the amount of gas release has been reduced by more than 95%, and the average activity index of 28 d is more than 85%. Relying on the production system of Mengxi Cement Plant, a production demonstration of modified magnesium slag-based cementitious materials has been established to standardize the quality inspection of raw materials, production, grading, inspection and transportation of finished products. Taking Mahuangliang and Changxing coal mines as engineering background, industrial tests were carried out relying on their existing filling technology and equipment. The two different filling materials are characterized by high late-strength as well as environmental friendliness, and the downhole performance is better than the laboratory level. Finally, the industrial chain application demonstration of “modified magnesium slag production → cementitious material production → filling application” was formed. |
参考文献: |
[1] 国家统计局. 国家数据—能源消费总量[EB/OL]. [2023-07-04]. https://data.stats.gov.cn/easyquery.htm?cn=C01. [2] 申艳军, 杨博涵, 王双明, 等. 黄河几字弯区煤炭基地地质灾害与生态环境典型特征[J]. 煤田地质与勘探, 2022, 50(06): 104-117. [16] 黄从运, 柯劲松, 张明飞, 等. 镁渣替代石灰石配料烧制硅酸盐水泥熟料[J]. 新世纪水泥导报, 2005(05): 27-28+9. [17] 赵海晋, 李辉. 镁渣代替部分石灰石生产熟料及水泥的实践[J]. 新世纪水泥导报, 2007(06): 9-12. [20] 彭小芹, 王开宇, 李静, 等. 镁渣的活性激发及镁渣砖制备[J]. 重庆大学学报, 2013, 36(03): 48-52+58. [22] 中国镁业网. 皮江法炼镁[EB/OL]. [2023-07-04]. http://chinamagnesium.org/index.php?v=listing&cid=102. [24] 李宪军, 张树元, 王芳芳. 镁渣废弃物再利用的研究综述[J]. 混凝土, 2011, 262(8): 97-100+124. [26] 嵇鹰, 陈冠君, 李霞. 镁渣冷却速率对其物化性能的影响[J]. 硅酸盐通报, 2015, 34(1): 36-42. [27] 张文生, 张江涛, 叶家元, 等. 硅酸二钙的结构与活性[J]. 硅酸盐学报, 2019, 47(11): 1663-1669. [29] 崔自治, 倪晓, 孟秀莉. 镁渣膨胀性机理试验研究[J]. 粉煤灰综合利用, 2006(06): 8-11. [31] 崔自治, 杨维武, 张冬平. 镁渣火山灰活性试验研究[J]. 宁夏工程技术, 2007(2): 160-163. [32] 崔自治, 杨建森. 镁渣活化措施试验研究[J]. 宁夏大学学报(自然科学版), 2008(3): 229-231. [33] 李咏玲, 戈甜, 程芳琴. 不同处理方式对镁渣理化特性的影响[J]. 无机盐工业, 2016, 48(3): 52-55. [34] 嵇鹰, 李亚芳, 杨康, 等. 急冷镁渣水泥胶凝材料的性能[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(2): 277-283. [35] 段丽萍. 炽热镁渣激冷水合产物分形特征研究[D]. 太原理工大学, 2015. [36] 姬克丹. 炽热镁渣激冷水合反应动力学的研究[D]. 太原理工大学, 2016. [37] 肖力光, 雒锋, 黄秀霞. 利用镁渣配制胶凝材料的机理分析[J]. 吉林建筑工程学院学报, 2009, 26(5): 1-5. [38] 肖力光, 雒锋, 王淑娟. 镁渣胶凝材料强度影响因素的研究[J]. 建筑材料学报, 2011, 14(5): 680-684. [39] 唐洋洋, 李林波, 王超, 等. 镁渣资源化利用新进展[J]. 现代化工, 2020, 40(12): 63-67. [40] 张旭. 金属镁渣在水泥生产中的应用实践[J]. 水泥技术, 2023(1): 62-67+73. [41] 强玉琴, 周应庆, 彭嘉选, 等. 镁渣大比例替代石灰石生产熟料的生产实践[J]. 水泥工程, 2020(5): 32-36. [42] 詹学斌, 孟祥金. 利用镁渣代替部分原料配料煅烧熟料[J]. 水泥, 1997(6): 8-9. [43] 昝和平, 赵海晋, 高建荣, 等. 镁渣配料煅烧水泥熟料的动力学研究[J]. 武汉理工大学学报, 2007(5): 38-42. [44] 霍冀川, 卢忠远, 石荣铭, 等. 镁渣配料煅烧硅酸盐水泥熟料的研究[J]. 重庆环境科学, 2000(1): 54-56+22. [45] 高建荣, 李文宇, 芋艳梅, 等. 利用多种工业废渣复配制备胶凝材料的实验研究[J]. 无机盐工业, 2021, 53(2): 77-80. [46] 崔自治, 张晓龙, 李姗姗. 镁渣用作水泥基活性掺合料的研究与展望[J]. 混凝土, 2014(11): 78-80. [47] 彭小芹, 王开宇, 龚明非, 等. 镁渣硅酸盐水泥的性能[J]. 土木建筑与环境工程, 2011, 33(6): 140-144. [48] 邓军平, 陈新年, 郭一萍. 镁渣和矿渣对复合水泥性能的影响[J]. 西安科技大学学报, 2008, 28(4): 735-739. [49] 杨富刚, 刘永军, 刘喆, 等. 碱性活化剂对镁渣基复合脱硫剂脱硫效果的影响[J]. 环境工程, 2021, 39(1): 106-110+160. [50] 牛欣欣. 不同养护制度下粉煤灰免烧砖抗冻性研究[J]. 粉煤灰综合利用, 2018(5): 93-95+98. [51] 毛嘉. 镁还原渣制备硅钙镁复合肥工艺应用基础研究[D]. 太原理工大学, 2016. [52] 田玉明, 周少鹏, 陈战考, 等. 镁渣对刚玉-莫来石复相陶瓷显微结构及性能的影响[J]. 中国陶瓷, 2014, 50(1): 18-21+25. [53] 肖力光, 雒锋, 王思宇, 等. 镁渣节能墙体材料的研究[J]. 新型建筑材料, 2011, 38(7): 21-23. [54] 朱宝贵, 张长森, 毕飞, 等. 工业固体废弃物制备混凝土膨胀剂的研究进展[J]. 硅酸盐通报, 2016, 35(12): 4044-4047+4053. [55] 刘仓, 金亮, 陈航超, 等. 粉煤灰资源化提取研究进展[J]. 煤炭工程, 2021, 53(S1): 127-133. [56] 姜龙. 燃煤电厂粉煤灰综合利用现状及发展建议[J]. 洁净煤技术, 2020, 26(4): 31-39. [57] 李琴, 杨岳斌, 刘君, 等. 我国粉煤灰利用现状及展望[J]. 能源研究与管理, 2022(1): 29-34. [60] 张慧爱, 王自卫. 炉渣微粉掺合料对胶凝材料性能的影响研究[J]. 混凝土, 2022(7): 114-116+120. [61] 张云飞, 姚华彦, 扈惠敏, 等. 燃煤电厂炉渣综合利用现状分析[J]. 中国资源综合利用, 2020, 38(11): 72-74+104. [66] 刘小杰, 李建鹏, 吕庆, 等. 脱硫石膏综合利用的现状与展望[J]. 化工环保, 2017, 37(6): 611-615. [67] 高志刚, 王靖宇, 罗纯仁, 等. 我国脱硫石膏的综合利用现状与展望[J]. 工业安全与环保, 2024, 50(1): 103-106. [68] 张灵芝, 李蒙, 李洪义, 等. 脱硫石膏与聚谷氨酸配施对盐碱化土壤的改良效果[J]. 水土保持通报, 2023, 43(6): 115-125. [69] 刘凤利, 白建侠, 刘俊华, 等. 微胶囊/脱硫石膏相变储能复合材料的制备与性能[J]. 复合材料学报, 2024, 41(8): 4171-4179. [70] 庞博, 程坤, 王玉凯. 矿山胶结充填发展现状及展望[J]. 现代矿业, 2015, 31(11): 28-30+33. [71] 刘浪, 方治余, 张波, 等. 矿山充填技术的演进历程与基本类别[J]. 金属矿山, 2021(3): 1-10. [72] 温震江. 钢渣协同矿渣制备超细尾砂充填胶结料及应用研究[D]. 北京科技大学, 2022. [73] 李夕兵, 黄麟淇, 周健, 等. 硬岩矿山开采技术回顾与展望[J]. 中国有色金属学报, 2019, 29(9): 1828-1847. [74] 杨科, 赵新元, 何祥, 等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报, 2022, 47(12): 4201-4216. [75] 缪协兴, 巨峰, 黄艳利, 等. 充填采煤理论与技术的新进展及展望[J]. 中国矿业大学学报, 2015, 44(3): 391-399+429. [76] 张吉雄, 缪协兴, 郭广礼. 矸石(固体废物)直接充填采煤技术发展现状[J]. 采矿与安全工程学报, 2009, 26(4): 395-401. [77] 冯光明, 孙春东, 王成真, 等. 超高水材料采空区充填方法研究[J]. 煤炭学报, 2010, 35(12): 1963-1968. [78] 王方田, 刘超, 郝文华, 等. 超高水材料充填减灾减损绿色开采理论与技术进展及展望[J]. 金属矿山, 2023(5): 14-30. [79] 贾凯军, 冯光明. 煤矿超高水材料充填开采技术及其展望[J]. 煤炭科学技术, 2012, 40(11): 6-9+23. [80] 吴少康, 张俊文, 徐佑林, 等. 煤矿高水充填材料物理力学特性研究及工程应用[J]. 采矿与安全工程学报, 2023, 40(4): 754-763. [81] 张吉雄, 张强, 周楠, 等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报, 2022, 47(12): 4167-4181. [82] 王双明, 刘浪, 朱梦博, 等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报, 2024, 49(1): 152-171. [83] 周华强, 侯朝炯, 孙希奎, 等. 固体废物膏体充填不迁村采煤[J]. 中国矿业大学学报, 2004(2): 30-34+53. [84] 李永亮, 路彬, 杨仁树, 等. 煤矿连采连充式胶结充填采煤技术与典型工程案例[J]. 煤炭学报, 2022, 47(3): 1055-1071. [85] 梁志强. 新型矿山充填胶凝材料的研究与应用综述[J]. 金属矿山, 2015(6): 164-170. [86] 刁桂芝. 硅酸盐水泥与铝酸钙水泥复合性能和水化机理的研究[D]. 中国建筑材料科学研究院, 2005. [87] 李林香, 谢永江, 冯仲伟, 等. 水泥水化机理及其研究方法[J]. 混凝土, 2011(6): 76-80. [88] 国家统计局. 中国统计年鉴—2022[EB/OL]. [2023-10-15]. http://www.stats.gov.cn/sj/ndsj/2022/indexch.htm. [89] 杨楠, 李艳霞, 赵盟, 等. 水泥熟料生产企业CO2直接排放核算模型的建立[J]. 气候变化研究进展, 2021, 17(1): 79-87. [90] 刘丹丹. 高水速凝材料水化硬化机理研究[D]. 中国矿业大学, 2015. [91] 董越. 多固废资源在金川矿山充填采矿中协同综合利用研究[D]. 北京科技大学, 2019. [92] 冯光明. 超高水充填材料及其充填开采技术研究与应用[D]. 中国矿业大学, 2009. [96] 吴蓬, 吕宪俊, 胡术刚, 等. 粒化高炉矿渣胶凝性能活化研究进展[J]. 金属矿山, 2012(10): 157-161. [99] 满慎刚, 倪文, 祝丽萍. 矿渣及赤泥制备矿山充填胶结剂对煤矿安全管理的促进[J]. 中国煤炭, 2013, 39(11): 120-123+129. [100] 任昂, 冯国瑞, 郭育霞, 等. 粉煤灰对煤矿充填膏体性能的影响[J]. 煤炭学报, 2014, 39(12): 2374-2380. [103] 何荣军, 张丽, 王毅, 等. 邢台煤矿粉煤灰膏体充填材料的试验研究[J]. 矿业安全与环保, 2014, 41(3): 27-30. [104] 郭振兴, 李刚, 赵帅, 等. 新阳煤矿矸石粉煤灰充填开采技术[J]. 煤炭科学技术, 2013, 41(S2): 43-45. [105] 董猛, 李江山, 陈新, 等. 煤系固废基绿色充填材料制备及其性能研究[J]. 煤田地质与勘探, 2022, 50(12): 75-84. [109] Viet P V, 王东. 热电厂炉渣作为煤矿膏体充填材料的配比试验研究[J]. 中国安全生产科学技术, 2018, 14(1): 49-55. [110] 郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1): 28-39. [113] 孙晓刚, 赵英良, 邢军, 等. 碱激发高炉矿渣-粉煤灰制备充填胶凝材料[J]. 金属矿山, 2016(11): 189-192. [114] 常悦, 薛利国, 李燕, 等. 碳酸盐激发胶凝材料性能优化及其在铅锌矿尾砂胶结充填中的应用[J]. 有色金属工程, 2022, 12(9): 128-135. [122] 林宗寿. 水泥工艺学[M]. 2 版. 武汉: 武汉理工大学出版社, 2017. [130] 李祖仲, 关羽, 赵红艳, 等. 碱-盐复合激发煤气化粗渣的水泥胶砂强度特性[J]. 材料科学与工程学报, 2019, 37(1): 119-125+137. [131] 董文辰, 康德君, 王立久. 粉煤灰混凝土中粉煤灰的火山灰效应综述[J]. 国外建材科技, 2004(3): 28-31. [136] 张增起. 水泥—矿渣复合胶凝材料水化动力学模型研究[D]. 清华大学, 2018. [137] 杨纪光. 某金矿合理级配尾砂膏体充填体强度研究与试验[J]. 有色金属(矿山部分), 2019, 71(6): 82-88. [140] 李勖晟, 童立元, 刘松玉, 等. 电石渣-高炉矿渣胶凝材料碳化后力学性质与微观特性[J]. 科学技术与工程, 2023, 23(21): 9233-9243. [142] 刘志超, 王发洲, 胡曙光. 固碳胶凝材料研究进展[J]. 硅酸盐学报, 2023, 51(5): 1234-1245. [143] 冯修吉. 应用量子化学算法研究硅酸二钙的结构与性能[J]. 混凝土世界, 2011(6): 16-19. [144] 李亚娇, 鱼郑, 鞠恺, 等. 粉煤灰基膏体充填脱氨方法研究综述[J]. 煤炭科学技术, 2023, 51(6): 265-274. [145] 任磊, 马玉亮, 贾阳杰, 等. 精炼镁渣的性能分析及应用[J]. 无机盐工业, 2021, 53(06): 164-170. [146] 彭博, 阚雪艳. 氨气爆炸极限分析单位之间转换及报警器简介分析[J]. 中国石油和化工标准与质量, 2019, 39(22): 131-132. [147] 狄跃忠, 董维维, 彭建平, 等. 以硅铁为还原剂制取金属锂的工艺优化[J]. 过程工程学报, 2009, 9(5): 910-915. [148] 高颖, 王伟赫, 陈萌, 等. 钢渣体积膨胀行为及改性方法研究进展[J]. 科学技术与工程, 2021, 21(33): 14040-14048. [149] 其乐木格, 李静. 遇水反应危险化学品的事故特点及应急处置对策[J]. 安全, 2006(05): 33-36. [156] 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12): 3833-3845. [173] Giergiczny Z. Fly ash and slag[J]. Cement and Concrete Research, 2019, 124: 105826. |
中图分类号: | TD823.7 |
开放日期: | 2027-01-08 |