- 无标题文档
查看论文信息

论文中文题名:

 单/双咪唑类离子液体的合成及抑制新疆低阶煤自燃性能研究    

姓名:

 宋长磊    

学号:

 18213067006    

保密级别:

 保密(3年后开放)    

论文语种:

 chi    

学科代码:

 081702    

学科名称:

 工学 - 化学工程与技术 - 化学工艺    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工艺    

研究方向:

 离子液体的合成与性能研究    

第一导师姓名:

 刘向荣    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-22    

论文答辩日期:

 2021-06-06    

论文外文题名:

 The synthesis lor='red'>of monocationic and dicationic imidazolium based ionic liquids and their inhibiting effects on spontaneous combustion lor='red'>of Xinjiang low rank coal    

论文中文关键词:

 咪唑类离子液体 ; 新疆低阶煤 ; 自燃 ; 抑制能力 ; 分子结构    

论文外文关键词:

 Imidazolium based ionic liquids ; Xinjiang low rank coal ; Spontaneous combustion ; Inhibition ability ; Molecular structure    

论文中文摘要:

低阶煤属于易自燃煤种,在开采和使用过程面临着严峻的火灾安全问题,因此低阶煤的自燃是亟待解决的难题。近年来,学者们提出了许多煤自燃阻化技术,其中利用阻化剂被认为是最有效的方法,离子液体具有低蒸气压和良好的热稳定性,是一种新型绿色的煤自燃阻化剂。本文设计并合成了3种单咪唑类和3种双咪唑类离子液体,比较了其抑制新疆低阶煤自燃的能力,并研究了离子液体对煤样的结构和性质的影响,分析了离子液体抑制煤自燃的机理。

主要工作如下:

(1) 单/双咪唑类离子液体合成的工艺条件研究和结构表征

合成了3种单咪唑类离子液体[Bmim][F] (a), [Bmim][CF3COO] (b)和[Bmim][BF4] (c),和3种双咪唑类离子液体[C4(mim)2][F]2 (aa), [C4(mim)2][CF3COO]2 (bb)和[C4(mim)2][BF4]2 (cc)。研究了搅拌速度、反应温度和反应时间对6种离子液体产率的影响,其中反应时间对离子液体的产率影响最大,得到合成6种离子液体的最佳搅拌转速为600-700 rpm,最佳反应温度为60-70 ℃,最佳反应时间为14-24 h,在此条件下离子液体的产率较高。利用1H NMR、13C NMR、19F NMR和FTIR对合成的6种离子液体的结构进行表征,发现6种离子液体的核磁共振图谱中H、C、F吸收峰的位置和数量与理论值相同,且红外光谱中均出现了对应官能团的吸收峰,说明合成的6种离子液体与预期的结构相一致。

(2) 离子液体处理前后煤样的自燃过程研究

借助热重和差热实验研究了离子液体处理前后煤样的自燃过程,发现经6种离子液体处理后,煤样的着火点(T3)、最大失重速率点(T4)和燃尽点(T5)均提高20 ℃以上,自燃过程的总放热值降低3.66-6.72 kJ•g-1,表明6种离子液体对煤自燃均有较好的抑制能力,且抑制自燃能力大小顺序为c>b>a、cc>bb>aa、cc>c、bb>b、aa>a,说明双咪唑型阳离子抑制煤自燃能力强于单咪唑型阳离子,三种阴离子的抑制能力大小为[BF4]- >[CF3COO]- >[F]-

对离子液体处理前后的煤样进行工业分析、元素分析、热值分析、润湿性分析和孔隙结构分析,结果表明:经6种离子液体处理后,煤中的水分、灰分、氢含量和硫含量降低,碳含量和热值升高,且煤的亲水性变弱,比表面积增大,平均孔径变小,中孔数量增多。

(3) 离子液体处理前后煤样的分子结构及阻燃机理研究

采用XRD和FTIR技术研究了离子液体处理前后煤样的微晶结构和分子结构参数的变化,结果表明:6种离子液体处理后,煤样的芳香层间距(d002)减小,平均微晶直径(La)、平均微晶高度(Lc)和芳香层数(N)值均增大,且煤样的Hal/H,fa和I值均增大,而A(CH2)/A(CH3)、DOC和‘C’值均减小,说明6种离子液体均能破坏煤中的烷基、烷基两侧的官能团和含氧官能团,使煤中的脂肪链变短,且破坏能力强弱顺序与其抑制煤自燃的能力相同。

6种离子液体中,cc抑制煤自燃的能力最强,采用核磁共振和红外光谱对原煤和cc处理后煤样进行表征,发现原煤的芳香骨架以萘为主,cc处理后煤样的芳香骨架以蒽和菲为主,原煤和cc处理后煤样中的脂肪族结构以-CH2和-CH3形式存在,含氧官能团主要以羟基(-OH)、醚氧基(C-O)、羧基(-COOH)和羰基(C=O)等形式存在,且原煤中的脂肪族和含氧官能团较丰富。借助ChemDraw和gNMR软件构建并优化,最终得到了原煤和cc处理后煤样的分子模型,从模型可直观看到,离子液体通过破坏煤中的-OH、-CH2、-COOH等官能团抑制煤的自燃。

论文外文摘要:

Low rank coal is easily to spontaneous combustion, which is faced with severe fire problems in the process lor='red'>of mining. Therefore, the spontaneous combustion lor='red'>of low rank coal is a difficult problem to be solved. In recent years, numerous technologies have been proposed by scholars to inhibit the coal spontaneous combustion, among them, spraying inhibitors are considered to be the most effective method. Ionic liquids which have low vapor pressure and high thermal stabilities, are a new inhibitor lor='red'>of coal spontaneous combustion. In this paper, three monocationic and three dicationic imidazolium based ionic liquids were designed and synthesized. The inhibition abilities on spontaneous combustion lor='red'>of Xinjiang low rank coal lor='red'>of six ionic liquids were compared. The effects lor='red'>of ionic liquids on structure and properties lor='red'>of coal samples were studied, and the inhibition mechanisms lor='red'>of ionic liquids were analyzed.

The main work is as follows:

(1) The synthesis conditions and structural characterization lor='red'>of monocationic and dicationic imidazolium based ionic liquids.

Three imidazolium based ionic liquids containing [Bmim][F] (a), [Bmim][CF3COO] (b), [Bmim][BF4] (c), and three dicationic imidazolium based ionic liquids including [C4(mim)2][F]2 (aa), [C4(mim)2][CF3COO]2 (bb), [C4(mim)2][BF4]2 (cc). were synthesized. The effects lor='red'>of stirring speed, reaction temperature and reaction time on the yield lor='red'>of six kinds lor='red'>of ionic liquids were studied, especially the reaction time have the greatest effect on the yield lor='red'>of ionic liquids. The optimum stirring speed for the synthesis lor='red'>of six kinds lor='red'>of ionic liquids was 600-700 rpm, the optimal reaction temperature was 60-70 ℃, the optimal reaction time was 14-24 h. The 1H NMR, 13C NMR, 19F NMR and FTIR spectra lor='red'>of six kinds lor='red'>of ionic liquids were obtained by NMR and FTIR technologies. It was found that the positions and numbers lor='red'>of H, C and F absorption peaks in the NMR spectra lor='red'>of the six synthesized ionic liquids were all the same as the theoretical value, and the characteristic functional groups lor='red'>of the corresponding structures all appeared in the FTIR spectra, which indicated that the six synthesized ionic liquids were consistent with the expected structures.

(2) Study on spontaneous combustion process lor='red'>of coal samples before and after treated by ionic liquids.

The spontaneous combustion process lor='red'>of coal samples before and after treated by thermogravimetry and differential scanning calorimetry experiments. It indicated that the ignition points (T3), maximum mass loss rate points (T4), and burnout points (T5) lor='red'>of coal samples treated by six kinds lor='red'>of ionic liquids all increased over 20 ℃, and the total heat release value decreased by 3.66-6.72 kJ•g-1. The results showed that all six synthesized ionic liquids have good inhibition on coal spontaneous combustion and the relationships lor='red'>of inhibition abilities among them were cc>c, bb>b, aa>a, c>b>a, cc>bb>aa, cc>bb>c>aa>b>a, indicating that the inhibition abilities on coal spontaneous combustion lor='red'>of dicationic imidazolium based ionic liquids were stonger than that lor='red'>of those monocationic imidazolium based ionic liquids, and the order lor='red'>of inhibition abilities among three anions was [BF4]->[CF3COO]->[F]-.

The analyses lor='red'>of proximate, ultimate, heat value, wettability and pore structure lor='red'>of coal samples showed that the water, ash, hydrogen and sulfur content in coal have been reduced, carbon content and heat value have been increased, wettability have became weaker, average pore size have been decreased, specific surface area and the number lor='red'>of mesopores have been increased after treated by six kinds lor='red'>of ionic liquids.

(3) Study on molecular structure lor='red'>of coal samples before and after treated by ionic liquids and the mechanisms lor='red'>of inhibiting coal spontaneous combustion.

XRD and FTIR technologies were used to study the changes lor='red'>of microcrystalline structure and molecular structure parameters lor='red'>of coal samples. The results showed that the aromatic layer spacing (d002) decreased, the average microcrystalline diameter (La), the average microcrystalline height (Lc) and the number lor='red'>of aromatic layers (N) lor='red'>of coal samples increased after six ionic liquids treatments. Moreover, the Hal/H, fa and I, A(CH2)/A(CH3), DOC and 'C' lor='red'>of coal samples all increased, indicating that the six kinds lor='red'>of ionic liquids can destroy the alkyl group, the functional groups on both sides lor='red'>of the alkyl group and the oxygen-containing functional groups in coals, and the aliphatic chains also became shorter. The orders lor='red'>of destroying abilities among six kinds lor='red'>of ionic liquids were the same as the abilities lor='red'>of inhibiting coal spontaneous combustion.

Among six kinds lor='red'>of ionic liquids, cc has the strongest inhibition ability on coal spontaneous combustion. The structure parameters lor='red'>of aromatic skeleton and functional groups lor='red'>of raw coal and cc-tr were obtained by NMR and FTIR technologies. The aromatic skeleton lor='red'>of raw coal and cc-tr were mainly naphthalene and anthracene, phenanthrene, respectively. The aliphatic structure lor='red'>of raw coal and cc-tr existed in the form lor='red'>of -CH2 and - CH3, the oxygen-containing functional groups mainly existed in the form lor='red'>of hydroxyl (-OH), ether oxygen (C-O), carboxyl (-COOH) and carbonyl (C=O), the aliphatic and oxygen-containing functional groups in raw coal were rich. With the help lor='red'>of ChemDraw and gNMR slor='red'>oftwares, the molecular models lor='red'>of raw coal and cc-tr were constructed and optimized. It can be seen that ionic liquids inhibited spontaneous combustion lor='red'>of Xinjiang low rank coal mainly by destroying -OH, -CH2, -COOH groups in coals.

参考文献:

[1]能源生产总量及消费总量[DB/OL]. 国家统计局官网http://www.stats.gov.cn/.

[2]全球及中国煤炭行业产量及能源结构分析[DB/OL]. 中国产业信息网http://www.chyxx.com/.

[3]矿井火灾的原因、分类及特点[DB/OL]. 安全管理网http://www.safehoo.com/item/458984.aspx.

[4]Cheng W M, Hu X M, Xie J, et al. An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties[J]. Fuel, 2017, 210: 826-835.

[5]Kong B, Li Z H, Yang Y L, et al. A review on the mechanism, riskevaluation, and prevention of coal spontaneous combustion in China[J]. Environmental Science and Pollution Research, 2017, 24(30): 23453-23470.

[6]高志才. 极易自燃煤层综放面采空区自然发火预测技术研究[D]. 西安: 西安科技大学, 2009.

[7]Lu W, Cao Y J, Tien J C. Method for prevention and control of spontaneouscombustion of coal seam and its application in mining field[U]. International Journal of Mining Science and Technology, 2017, 27(5): 839-846.

[8]Wang L Y, Xu Y L, Jiang S G, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal[J]. Safety Science, 2012, 50(7): 1528-1534.

[9]Shao Z L, Jia X Y, Zhong X X, et al. Detection, extinguishing, monitoring of a coal fire in Xinjiang, China[J]. Environmental Science and Pollution Research, 2018(25): 26603-26616.

[10]Zhang W Q, Jiang S G, Wu Z Y, et al. Influence of imidazolium-based ionic liquids on coal oxidation[J]. Fuel, 2018, 217: 529-535.

[11]Li Q W , Xiao Y , Zhong K Q , et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel, 2020, 275: 117981.

[12]Tang Y B. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal[J]. Journal of the Energy Institute, 2018, 91(5): 639-645.

[13]Qi X Y, Wei C X, Li Q Z, et al. Controlled-release inhibitor for preventing the spontaneous combustion of coal[J]. Natural Hazards, 2016, 82(2): 891-901.

[14]Xi Z L, Sun X T. Effectiveness of thermoplastic powder to retard self-heating and spontaneous combustion of coal[J]. Combustion Science and Technology, 2016, 188(8): 1331-1344.

[15]Qiao L, Deng C B, Dai F W, et al. Experimental study on a metal-chelating agent inhibiting spontaneous combustion of coal[J]. Energy & Fuels, 2019, 33(9): 9232-9240.

[16]Tang Y B. Inhibition effect of phosphorus flame retardants on the fire disasters induced by spontaneous combustion of coal[J]. Journal of Spectroscopy, 2017: 1-10.

[17]Wang D M, Dou G L, Zhong X X, et al. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal[J]. Fuel, 2014, 117: 218-223.

[18]邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016, 44(10): 1-7.

[19]Bai Z J , Wang C P , Deng J , et al. Effects of ionic liquids on the chemical structure and exothermic properties of lignite[J]. Journal of Molecular Liquids, 2020, 309:113019.

[20]Wang K, Ding C N, Jiang SS. Application of the addition of ionicliquids using a complex wetting agent to enhance dust control efficiency during coal mining[J]. Process Safety and Environmental Protection, 2019, 122(2): 13-22.

[21]Huang G S, Lin W C, He P, et al. Thermal decomposition of imidazolium-based ionic liquid binary mixture: Processes and mechanisms[J]. Joumal of Molecular Liquids, 2018, 272: 37-42.

[22]Cummings J, Shah K, Rob A, et al. Physicochemical interactions of ionicquids with coal; The viability of ionic liquids for pre-treatments in coal liquefaction[J]. Fuel, 2015, 143: 244-252.

[23]戚绪尧. 煤中活性基团的氧化及自反应过程[D]. 徐州: 中国矿业大学, 2011.

[24]Niu Z Y, Liu G J, Yin H, et al. Investigation of mechanism and kinetics ofnon-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR[J]. Fuel, 2016, 172(15): 1-10.

[25]Wang D M, Xin H H, Qi X Y, et al. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163: 447-460.

[26]Zhang Z Q, Kang Q N, Yun T, et al. Density functional theory investigation of possible structures of radicals in coal undergoing O2 chemisorption at ambienttemperature[J]. Energy & Fuel, 2017, 31: 953-958.

[27]Chen B, Diao Z J, Lu H Y. Using the reaxff reactive force field for moleculardynamics simulations of the spontaneous combustion of coal with the hatcher coalmodel[J]. Fuel, 2014, 116: 7-13.

[28]仲晓星, 王德明, 徐永亮. 煤氧化过程中的自由基变化特性[J]. 煤炭学报, 2010, 35(6): 960-963.

[29]Wang C P, Xiao Y, Li Q W, et al. Free radicals, apparent activation energyand functional groups during low-temperature oxidation of Jurassic coal in Northern Shaanxi[J]. International Journal of Mining Science and Technology, 2018, 28: 469-475.

[30]Li D J, Xiao Y, Lü H F, et al. Effects of 1-butyl-3-methylimidazolium tetrafluoroborate on the exothermic and heat transfer characteristics of coal during low-temperature oxidation[J]. Fuel, 2020, 273: 117589.

[31]Wang K, Deng J, Zhang Y N, et al. Kinetics and mechanisms of coal oxidationmass gain phenomenon by TG-FTIR and in-situ IR analysis[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132: 591-598.

[32]石婷, 邓军, 王小芳, 等. 煤自燃初期的反应机理研究[J]. 燃料化学学报, 2004, 45(6): 652-657.

[33]杨漪, 邓军, 张嬿妮, 等. 煤氧化特性的STA-FTIR实验研究. 煤炭学报, 2018, 43(4): 1031-1040.

[34]Li P F, Shao H, Jiang S G, et al. Experimental study on the inhibitory effectsand mechanisms of crystalliferous water-containing mineral salts[J]. Combustion Science and Technology, 2019, 191: 403-418.

[35]Xu Y L, Wang L Y, Tian N, et al. Spontaneous combustion coal parameters for the Crossing-Point Temperature (CPT) method in a Temperature-Programmed System (TPS)[J]. Fire Safety Journal, 2017, 91: 147-154.

[36]Slovak V, Taraba B. Urea and CaCl2, as inhibitors of coal low-temperature oxidation[J]. Journal of Thermal Analysis and Calorimetry, 2012, 110: 363-367.

[37]Zhang W Q, Jiang S G, Wu Z Y, et al. Influence of imidazolium-based ionic liquids on coal oxidation[J]. Fuel, 2018, 217: 529-535.

[38]Wang D M, Dou G L, Zhong X X, et al. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal[J]. Fuel, 2014, 117: 218-223.

[39]Li Z H, Kong B, Wei A Z, et al. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method[J]. Environmental Science and Pollution Research, 2016, 23(23): 23593-23605.

[40]Dou G L, Wang D M, Zhong X X, et al. Effectiveness of catechin and poly (ethylene glycol) at inhibiting the spontaneous combustion of coal[J]. Fuel Processing Technology, 2014, 120: 123-127.

[41]王兰云. 含氧取代咪唑类离子液体影响煤结构及其氧化性质的实验研究[J]. 煤炭学报, 2012, 37(7): 1190-1194.

[42]Yang Y, Tsai Y T, Zhang Y N, et al. Inhibition of spontaneous combustion for different metamorphic degrees of coal using Zn/Mg/AI-CO2 layered double hydroxides[J]. Process Safety and Environmental Protection, 2018, 113: 401-412.

[43]邓军,杨漪,唐凯. 线性P(NIPA-CO-SA)水凝胶制备及温敏性能门[J].煤炭学报, 2014, 39(1): 154-160.

[44]邓军, 杨漪, 唐凯. 温敏性水凝胶制备及灭火性能研究[J]. 中国矿业大学学报, 2014, 43(1): 1-7.

[45]Dou G L, Jiang Z W. Sodium humate as an effective inhibitor of low-temperature coal oxidation[J]. Thermochimica Acta, 2019, 673: 53-59.

[46]Qiao L, Deng C B, Dai F W, et al. Experimental study on a metal-chelating agent inhibiting spontaneous combustion of coal[J]. Energy & Fuels, 2019, 33(9): 9232-9240.

[47]Painte P C, Cetiner R, Pulati N, et al. Dispersion of liquefaction catalysts in coal using ionic liquids[J]. Energy & Fuels, 2010, 24(5): 3086-3092.

[48]Pulati N, Sobkowiak M, Mathews J P, et al. Low-temperature treatment of Illino is No.6 coal in ionic liquids[J]. Energy & Fuels, 2012, 26(5): 3548-3552.

[49]Lei Z P, Wu L, Zhang Y Q, et al. Microwave-assisted extraction of Xianfeng coal in 1-butyI-3-methyl-imidazolium chloride[J]. Fuel, 2012, 95(1): 630-633.

[50]Lei Z P, Wu L, Zhang Y Q, et al. Effect of noncovalent bonds on the successive sequential extraction of Xianfeng coal[J]. Fuel Processing Technology, 2013, 111(4): 118-122.

[51]Lei Z P, Zhang S F, Wu L, et al. Study on mild hydrogenation of Xianfeng coal in ionic liquid[J]. Joumal of Fuel Chemistry Technology, 2013, 41(8): 922-927.

[52]Lei Z P, Cheng L L, Zhang S F, et al. Dissolution performance of coals in ionic liquid I-butyl-3-methyl-imidazolium chloride[J]. Fuel Processing Technology, 2015, 129: 222-226.

[53]张艳秋. 煤在1-丁基-3-甲基咪唑氯盐作用下的转化研究[D]. 马鞍山: 安徽工业大学, 2013.

[54]王兰云, 蒋曙光, 吴正艳, 等. 离子液体抑制煤炭自燃的新设想[J]. 煤矿安全, 2009, 40(8): 90-92.

[55]张卫清, 蒋曙光, 吴征艳, 等. 离子液体对煤中氢键反应活性的影响[J]. 中国矿业大学学报, 2013, 42(2): 200-205.

[56]Wang L Y, Xu Y L, Jiang S G, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal[J]. Safety Science, 2012, 50(7): 1528-1534.

[57]Cui F S, Bin L W, Shu C M, et al. Inhibiting effect of imidazolium-based ionic liquids on the spontaneous combustion characteristics of coal[J]. Fuel, 2018, 217: 508-514.

[58]Cui C B, Jiang S G, Wang K, et al. Effects of ionic liquid concentration on coal low-temperature oxidation[J]. Energy Science & Engineering, 2019, 7(5): 2165-2179.

[59]Xi X, Jiang S G, Zhang W Q, et al. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal[J]. Fuel, 2019, 244: 176-183.

[60]邓军, 白祖锦, 肖旸, 等. 离子液体抑制煤自燃的研究进展煤矿安全[J]. 煤炭学报, 2017, 48(10): 38-42.

[61]Deng J, Bai Z J, Xiao Y, et al. Effects on the activities of coal microstructure and oxidation treated by imidazolium-based ionic liquids[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133: 453-463.

[62]Deng J, Bai Z J, Xiao Y, et al. Thermogravimetric analysis of the effects of four ionic liquids on the combustion characteristics and kinetics of weak caking coal[J]. Journal of Molecular Liquids, 2019, 277: 876-88.

[63]Deng J, Bai Z J, Xiao Y, et al. Effects of imidazole ionic liquid on macroparameters and microstructure of bituminous coal during low-temperature oxidation[J]. Fuel, 2019, 246: 160-168.

[64]Bai Z , Wang C , Deng J . Analysis of thermodynamic characteristics of imidazolium-based ionic liquid on coal[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(4): 1957-1965.

[65]封易成, 牟德华. 离子液体酶法微波辅助提取山楂有机酸工艺优化及成分分析[J]. 食品研究与开发, 2019, 5(10): 87-95.

[66]王昊迪. 离子液体的性质及研究进展[J]. 当代化工研究, 2019, 3(1): 121-122.

[67]张雷林. 防治煤自燃的凝胶泡沫及特性研究[D]. 中国矿业大学, 2014.

[68]王忠华. 离子液体研究与发展[J]. 乙醛醋酸化工, 2018, 10(9): 20-25.

[69]徐超, 潘耀辉. 1-乙基-3-甲基咪唑硫酸乙酯离子液体的合成工艺[J]. 安徽化工, 2018, 44(2): 55-56.

[70]Cummings J, Shah K, Atkin R, Moghtaderi B. Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction[J]. Fuel, 2015, 143: 244-252.

[71]Zhang J, Liu J J, Zuo Y. Preparation of thermo-responsive poly(ionic liquid)s-based nanogels via one-step cross-linking copolymerization[J]. Molecules, 2015, 20 (9): 43-50.

[72]常宝, 乌云. 双咪唑离子液体[C6(mim)2][InCl3-Br]2催化合成二苯甲烷的研究[J]. 广东化工, 2018, 45(5): 26-27.

[73]郭冰草, 高喜平, 肖保才, 等. 烯丙基哌啶类离子液体的合成与物化性能研究[J]. 化学推进剂与高分子材料, 2009, 7(6): 51-53.

[74]刘红霞, 徐群. 微波法合成烷基咪唑类离子液体[J]. 化学试剂, 2006(10): 581-582.

[75]李英, 段瑞娟, 武朋飞, 等. 两种咪唑离子液体的合成及方法比较[J]. 现代化工, 2018, 38 (8): 77-80.

[76]蒋云霞, 徐百灵, 陈丽娜, 等. 含联苯基团的咪唑类离子液体的微波合成[J]. 吉林化工学院学报, 2018, 35(7): 53-56.

[77]Pengfei G , Jingyi Y , Maye P E E , et al. Denitrification of coal tar diesel fraction by phosphate imidazolium based polymeric ionic liquids[J]. China Petroleum Processing & Petrochemical Technology, 2018, 10(2): 135-143.

[78]刘维伟, 胡松, 陈文. 功能型离子液体的合成表征及CO2吸收性能[J]. 化工学报, 2012, 63(1): 139-145.

中图分类号:

 TD752    

开放日期:

 2024-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式