- 无标题文档
查看论文信息

题名:

 链间作用力及链取向对聚合物导热及介电性能调控研究    

作者:

 王芳    

学号:

 22213225041    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085600    

学科:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 材料与化工    

研究方向:

 导热绝缘聚合物复合材料    

导师姓名:

 周文英    

导师单位:

 西安科技大学    

提交日期:

 2025-06-12    

答辩日期:

 2025-06-03    

外文题名:

 Regulation of Thermal Conductivity and Dielectric Properties in Polymers via Interchain Force and Chain Orientation    

关键词:

 聚合物复合材料 ; 本征导热率 ; 链间作用力 ; 介电性能 ; 储能密度    

外文关键词:

 Polymer composite material ; Intrinsic thermal conductivity ; Interchain force ; Dielectric properties ; Energy storage density    

摘要:

随着微电子技术的快速发展,电子元器件和集成电路的体积日益缩小与运行频率及功率密度的不断提升之间的矛盾导致单位面积的热流密度急剧飙升,温升造成的及时散热问题已成为制约电子器件发展及服役寿命的关键因素。为确保电子元器件的长期可靠稳定运行,开发综合性能优异的高导热绝缘复合材料至关重要。导热聚合物复合材料因具备良好的电绝缘和力学性能、稳定的化学性能、设计自由度大、易加工且成本低等优势,在微电子、电气绝缘、航空航天、太阳能等领域获得广泛应用。然而,当前导热聚合物复合材料面临着热导率(k)与介电强度(Eb)之间难以协同调控及同步提升的问题,严重限制了其在功率电子及高压电力绝缘设备等领域的应用。通过提高无序聚合物的分子链的结构有序性来实现本征导热性能的提升策略,不仅能同步提高k和Eb,还能保留其他优异性能,是解决当前导热聚合物复合材料面临难题的关键。

基于分子链间非共价作用及链取向调控聚合物链构象与空间排布的策略可构建多尺度有序结构,为声子传递提供高速通道,同步引入陷阱和抑制载流子迁移,实现解耦调控和同步提升k和Eb的目标。研究聚焦于三类链间作用力(金属-有机配位作用、π-π作用、偶极-偶极静电作用)与静电纺丝对聚合物结构及导热与绝缘强度的影响机制,实现对k和Eb性能的调控。研究内容包括:

(1) 以三价铬离子(Cr3⁺)、二价镉离子(Cd2+)和二价铜离子(Cu2+)为金属离子源调控聚乙烯醇(PVA)分子链结构的研究。结果发现,PVA的羟基与Cr3+、Cd2+、Cu2+的空轨道能够形成配位键,诱导分子链围绕金属离子做定向紧密排列,形成局部有序结构而促进声子传递。低离子含量下配位网络构建了连续的声子传输通道,过高含量则会引入界面缺陷与声子散射位点,导致热导率下降。当金属离子含量为1%时,k的排序为0.814 (Cr3+/PVA) > 0.685 (Cu2+/PVA) > 0.554 (Cd2+/PVA) >0.225 (PVA) W/(m·K)。离子调控的导热PVA依然保留了良好介电性能与高场击穿强度。

(2) 以含芳香环的聚醚酰亚胺(PEI)为对象,通过溶液流延法(SC-PEI)、静电纺丝高温压制(HP-PEI)工艺分别制备了PEI薄膜。研究发现,HP-PEI在150 °C能承受的最大Eb为400 MV/m,较SC-PEI的350 MV/m提升了14.3%,储能密度(Ue)达到2.71 J/cm3,相比SC-PEI (1.32 J/cm3)的提高了108%。HP-PEI的k值达0.68 W/(m·K),相比SC-PEI (0.21 W/(m·K))提高了223.8%;红外热成像与COMSOL模拟进一步证实良好的散热性能。HP-PEI的k和Eb的同步提升源于纺丝诱导分子链取向与π-π堆叠作用协同构筑多尺度有序结构,声子传输路径得到优化。为了进一步提高k和Eb,在PEI中引入氮化硼纳米片(BNNS)后,1% BNNS/PEI的Eb和Ue分别达575 MV/m和4.76 J/cm3,k值高达0.77 W/(m·K),归因于高导热绝缘BNNS片层有效阻挡载流子迁移,抑制电树枝的生长,BNNS协同PEI基体的有序结构进一步促进声子传递。

(3) 将PEI与聚酰亚胺(PI)共混,利用醚键(C-O-C)与酰亚胺基团(C=O、C-N-C)间的偶极-偶极作用诱导分子链紧密堆砌,通过静电纺丝-热压工艺制备PEI/PI共混膜。研究表明,4/6质量共混比下的PEI/PI薄膜在150 °C下的Eb达到625 MV/m,相比于纯PEI (400 MV/m)和纯PI (350 MV/m)得到显著提升,其Ue达到4.73 J/cm3,相比纯PEI (Ue=2.71 J/cm3)和纯PI (Ue=2.12 J/cm3)分别提高了73.3%和123.2%,且η保持在67%以上。PEI/PI膜的k值为0.86 W/(m·K),相比同等条件制备的PEI (0.68 W/(m·K))的提高了26.8%。k和Eb协同提升归因于静电纺丝诱导链取向与偶极作用诱导的多尺度有序分子链结构同步促进声子传递及抑制载流子输运。引入1% BNNS-PEI/PI的Eb和Ue分别为825 MV/m和5.79 J/cm3,k值0.98 W/(m·K),BNNS抑制漏导电流与电树枝化,减少声子散射,进一步提升了Eb和k。

该研究揭示了“链间非共价键与分子链取向对声子/载流子传输”的协同调控规律,为面向柔性电子、航空航天等极端环境的高性能导热材料的设计与制备提供了解决方案。

外文摘要:

With the rapid advancement of microelectronics technology, the continuous miniaturization of electronic components and integrated circuits, coupled with increasing operating frequencies and power densities, has resulted in a dramatic rise in heat flux density per unit area. Thermal issues arising from localized temperature elevation have emerged as a critical bottleneck limiting both the development and operational lifespan of electronic devices. To ensure long-term reliability and stability of electronic components, the development of thermally conductive insulating composites with superior comprehensive performance is imperative. Owing to their exceptional electrical insulation, mechanical robustness, chemical stability, design versatility, processability, and cost-effectiveness, thermally conductive polymer composites have found extensive applications in microelectronics, electrical insulation systems, aerospace engineering, and solar energy technologies. However, existing composites face significant challenges in achieving concurrent enhancement and synergistic optimization of thermal conductivity (k) and dielectric breakdown strength (Eb), severely limiting their utility in high-power electronics and high-voltage insulation systems. A promising strategy involves enhancing the intrinsic thermal conductivity of amorphous polymers by improving the structural ordering of molecular chains. This approach not only enables simultaneous improvement of k and Eb but also retains other advantageous material properties, thereby offering a viable solution to the current limitations of thermally conductive polymer composites.

Strategies utilizing non-covalent intermolecular interactions and chain alignment can regulate polymer chain conformation and spatial arrangement, thereby constructing multiscale ordered structures that establish efficient phonon transport pathways. Concurrently, the introduction of charge traps and suppression of carrier migration enable decoupled control and simultaneous enhancement of k and Eb. This dissertation systematically investigates the mechanistic effects of three intermolecular interaction types (metal-organic coordination, π-π stacking, and dipole-dipole interactions), combined with electrospinning technology, on polymer structural evolution and its resultant thermal and dielectric properties, with the objective of achieving precise regulation of k and Eb. The main contents are as follows:

(1) Polyvinyl alcohol (PVA) was selected as a model polymer to investigate the regulation of its molecular chain structure using trivalent chromium (Cr3+), divalent cadmium (Cd2+), and divalent copper (Cu2+) ions as coordination centers. Results showed that the hydroxyl groups of PVA can form coordination bonds with the vacant orbitals of Cr3+, Cd2+, and Cu2+, inducing the directional and compact arrangement of molecular chains around the metal ions and forming locally ordered structures that facilitate phonon transport. At low ion concentrations, the coordination network establishes continuous phonon transport pathways, whereas excessive ion loading introduces interfacial defects and phonon scattering sites, leading to reduced thermal conductivity. At a 1% metal ion concentration, the k was ranked as follows: 0.814 (Cr3+/PVA) > 0.685 (Cu2+/PVA) > 0.554 (Cd2+/PVA) > 0.225 (PVA) W/(m·K). The ion-modified thermally conductive PVA also retained good dielectric performance and high dielectric breakdown strength.

(2) Polyetherimide (PEI), containing aromatic rings, was used to prepare films via solution casting (SC-PEI) and electrospinning followed by hot pressing (HP-PEI). The results showed that the breakdown strength of HP-PEI at 150 °C increased to 400 MV/m compared to 350 MV/m for SC-PEI, and its energy storage density (Ue) reached 2.71 J/cm3, representing a 108% improvement over SC-PEI (1.32 J/cm3). The k of HP-PEI reached 0.68 W/(m·K), a 223.8% increase over SC-PEI (0.21 W/(m·K)). Infrared thermography and COMSOL simulations further confirmed the excellent heat dissipation performance. The simultaneous enhancement in k and Eb is attributed to the multiscale ordered structures formed through the synergistic effect of chain orientation induced by electrospinning and π-π stacking between polymer chains. Furthermore, the incorporation of boron nitride nanosheets (BNNS) significantly enhanced properties. At 1 wt% BNNS loading, the PEI composite exhibited an Eb of 575 MV/m and Ue of 4.76 J/cm3, with k increasing to 0.77 W/(m·K), attributed to BNNS’s high thermal conductivity and insulating nature, which effectively blocks charge carrier migration, suppresses leakage current and electrical treeing, and promotes phonon transport in cooperation with the ordered polymer matrix.

(3) A PEI/polyimide (PI) blend was prepared using electrospinning-hot pressing, leveraging the dipole-dipole interactions between ether bonds (C-O-C) and imide groups (C=O, C-N-C) to induce compact molecular chain stacking. The PEI/PI film with a 4:6 blend ratio exhibited an Eb of 625 MV/m at 150 °C, significantly higher than pure PEI (400 MV/m) and pure PI (350 MV/m). The Ue reached 4.73 J/cm3, which represents improvements of 73.3% and 123.2% over pure PEI (2.71 J/cm3) and pure PI (2.12 J/cm3), respectively, with an efficiency (η) above 67%. The k of the PEI/PI film reached 0.86 W/(m·K), a 26.8% increase compared to HP-PEI under the same conditions (0.68 W/(m·K)). The synergistic enhancement of k and Eb is attributed to the electrospinning-induced chain orientation and dipole-dipole interactions forming multiscale ordered molecular structures that simultaneously promote phonon transport and suppress charge carrier movement. Incorporation of 1 wt% BNNS further elevated Eb and Ue to 825 MV/m and 5.79 J/cm³, respectively, with k reaching 0.98 W/(m·K), due to the BNNS’s ability to suppress leakage current and electrical treeing and reduce phonon scattering, thereby further enhancing both Eb and k.

This study elucidates the synergistic regulatory mechanism of non-covalent intermolecular interactions and polymer chain alignment in modulating phonon and charge carrier transport dynamics, offering critical insights for developing high-performance thermally conductive materials applicable to flexible electronics, aerospace systems, and other extreme-environment technologies.

参考文献:

[1] 周文英, 党智敏, 丁小卫, 等. 聚合物基导热复合材料[M]. 北京: 国防工业出版社, 2017: 72-88.

[2] Guo Y Q, Ruan K P, Shi X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: a review[J]. Composites Science and Technology, 2020, 193: 108134.

[3] Xu X, Zhou J, Chen J. Thermal transport in conductive polymer-based materials[J]. Advanced Functional Materials, 2020, 30(8): 1904704.

[4] 周文英, 王芳, 杨亚亭, 等. 本征导热聚合物研究: 机理、结构与性能及应用[J]. 化学进展, 2023, 35(07): 1106-1122.

[5] Lv G, Zhu J. Intrinsic Thermal Conductivity of Molecular Engineered Polymer[J]. Advanced Functional Materials, 2025: 2420708.

[6] 周文英, 王蕴, 曹国政, 等. 本征导热高分子的研究进展[J]. 复合材料学报, 2021, 38(7):2038-2055.

[7] Henry A. Thermal transport in polymers[J]. Annual review of heat transfer, 2014, 17.

[8] 孙旸子, 佟忠正. 本征型导热绝缘聚合物材料的研究进展[J]. 材料开发与应用, 2023, 38(01): 98-108.

[9] 杨绍丁. 界面氢键作用对石墨烯/聚乙烯醇复合材料导热性能影响的分子模拟研究[D]. 北京: 北京化工大学, 2023.

[10] 蔡忠龙, 黄元华, 杨光武. 超拉伸聚乙烯的弹性模量和导热性能[J]. 高分子学报, 1997(3): 331-342.

[11] Mishra D, Pradhan S S, GS S, et al. Capacity building of thermal conductivity in polymers and their composites: a short review of the effect of various fillers in their composites[J]. Journal of Macromolecular Science, Part B, 2025, 64(2): 227-246.

[12] Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28.

[13] 温变英, 崔云超. 聚合物本征导热研究进展[J]. 高分子材料科学与工程, 2022, 38(07): 175-182.

[14] 潘东楷, 宗志成, 杨诺. 纳米尺度热物理中的声子弱耦合问题[J]. 物理学报, 2022, 71(08): 284-288.

[15] Wei X F, Wang Z, Tian Z T, et al. Thermal transport in polymers: a review[J]. Journal of Heat Transfer, 2021, 143(7): 072101.

[16] Luo D C, Huang C L, Huang Z. Decreased thermal conductivity of polyethylene chain influenced by short chain branching[J]. Journal of Heat Transfer, 2018, 140(3): 031302.

[17] Yang M, Ren W, Guo M, et al. High‐energy‐density and high efficiency polymer dielectrics for high temperature electrostatic energy storage: a review[J]. Small, 2022, 18(50): 2205247.

[18] Alexis L, Lee J, Alvarez G A, et al. Significantly enhanced thermal conductivity of h-BN/PTFE composites: a comprehensive study of filler size and dispersion[J]. ACS Applied Materials & Interfaces, 2024, 16(22): 29042-29048.

[19] Wang X, Li H, Zhang Y, et al. Thermal conductivity of composites with heterogeneous fillers under effects of interface thermal resistance[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125840-125853.

[20] Lin Y, Li P, Liu W, et al. Application-driven high-thermal-conductivity polymer nanocomposites[J]. ACS nano, 2024, 18(5): 3851-3870.

[21] Du Y K, Shi Z X, Dong S, et al. Recent progress in fabrication and structural design of thermal conductive polymer composites[J]. Chinese Journal of Polymer Science, 2024, 42(3): 277-291.

[22] Wu X, Zhang X, Yan X, et al. A review: From the whole process of making thermal conductive polymer, the effective method of improving thermal conductivity[J]. Journal of Polymer Science, 2024, 62(11): 2410-2442.

[23] Guo Y, Ruan K, Wang G, et al. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption[J]. Science Bulletin, 2023, 68(11): 1195-1212.

[24] Dong Y, Yu H, Feng Y, et al. Structure, properties and applications of multi-functional thermally conductive polymer composites[J]. Journal of Materials Science & Technology, 2024.

[25] Lu X H, Liu J, Shu C, et al. Densifying conduction networks of vertically aligned carbon fiber arrays with secondary graphene networks for highly thermally conductive polymer composites[J]. Advanced Functional Materials, 2025, 35(11): 2417324.

[26] Chen Q, Yang K, Feng Y, et al. Recent advances in thermal-conductive insulating polymer composites with various fillers[J]. Composites Part A: Applied Science and Manufacturing, 2024, 178: 107998.

[27] Tan J, Zhang Y. Thermal conductive polymer composites: recent progress and applications[J]. Molecules, 2024, 29(15): 3572.

[28] He L, Dou Z, Zhang Y, et al. Modelling effective thermal conductivity in polymer composites: a simple cubic structure approach[J]. Composites Science and Technology, 2024, 252: 110592.

[29] Li Y T, Liu W J, Shen F X, et al. Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: A comparative study[J]. Composites Part B: Engineering, 2022, 238: 109907.

[30] Lee Y S, Kim N R, Park S K, et al. Effects of high-temperature thermal reduction on thermal conductivity of reduced graphene oxide polymer composites[J]. Applied Surface Science, 2024, 650: 159140.

[31] Raji S, Prabhakaran K. Fire-resistant layered carbon composite panels from used cotton cloth for thermal insulation and EMI shielding applications[J]. Current Applied Physics, 2025.

[32] Wang Z, Su J, Wang J, et al. Unification of thermal conductivity, electrical insulation, and electromagnetic shielding: A bulk thermal conductive polymer from solid waste[J]. Chemical Engineering Journal, 2024, 498: 155065.

[33] Sun Z, Yu H, Chen C, et al. Core-sheath smart polymer fiber composites with high elasticity and thermal conductivity[J]. Composites Science and Technology, 2024, 252: 110610.

[34] Duan Y, Yu H, Zhang F, et al. Preparation technologies for polymer composites with high-directional thermal conductivity: A review[J]. Nano Research, 2024, 17(11): 9796-9814.

[35] Wu Z H, Xu C, Ma C Q, Liu Z B, Cheng H M, Ren W C. Synergistic effect of aligned grapheme nanosheets in grapheme foam for high-performance thermally conductive composites[J]. Advanced Materials, 2019, 31(19): 1900199.

[36] Chen C, Wang H, Xue Y, et al. Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nano silica/AgNWs nanocomposites[J]. Composites Science and Technology, 2016, 128: 207-214.

[37] Kim K, Ju H, Kim J. Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement[J]. Composites Science and Technology, 2016, 123: 99-105.

[38] Ryu S, Oh H W, Kim J. A study on the mechanical properties and thermal conductivity enhancement through TPU/BN composites by hybrid surface treatment (mechanically and chemically) of boron nitride[J]. Materials Chemistry and Physics, 2019, 223: 607-612.

[39] Ren L, Li Q, Lu J, et al. Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 561-569.

[40] Yao Y, Zhu X, Zeng X, et al. Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites[J]. ACS applied materials & interfaces, 2018, 10(11): 9669-9678.

[41] Gholivand H, Fuladi S, Hemmat Z, et al. Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes[J]. Journal of Applied Physics, 2019, 126(6).

[42] Cao Y, Weng M, Mahmoud M H H, et al. Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1253-1267.

[43] Yu J, Huang X, Wang L, et al. Preparation of hyperbranched aromatic polyamide grafted nanoparticles for thermal properties reinforcement of epoxy composites[J]. Polymer Chemistry, 2011, 2(6): 1380-1388.

[44] Shanker A, Li C, Kim G H, et al. BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications[J]. Science Advances, 2017, 3(7): e1700342.

[45] Bai L, Zhao X, Bao R Y, et al. Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film[J]. Journal of Materials Science, 2018, 53: 10543-10553.

[46] Wen B, Ma L, Zou W, et al. Enhanced thermal conductivity of poly (lactic acid)/alumina composite by synergistic effect of tuning crystallization of poly (lactic acid) crystallization and filler content[J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 6328-6338.

[47] Zheng Y, Khodadadi J M. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader[J]. Energy and Fuels, 2018, 32: 11253-11260.

[48] Song X, Wang Y, Ru X, et al. High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films[J]. Chinese Journal of Polymer Science, 2020, 38: 1418-1425.

[49] Zhang T, Liu J, Cahill D G. Thermal conductivity in the radial direction of deformed polymer fibers[J]. ACS Macro Letters, 2016, 5: 646-650.

[50] Wu Y F, Luo T F. Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers[J]. Journal of Applied Physics, 2012, 112: 94304-94308.

[51] Aradhana R, Mohanty S, Nayak S K. Novel electrically conductive epoxy/reduced graphite oxide/silica hollow microspheres adhesives with enhanced lap shear strength and thermal conductivity[J]. Composites Science and Technology, 2019, 169: 86-94.

[52] Su Y, Li J J, Weng G J. Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitsa resistance and graphene-graphene contact resistance[J]. Carbon, 2018, 137: 222-233.

[53] Wang Z, Wu Z, Weng L, et al. A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects[J]. Advanced functional materials, 2023, 33(36): 2301549.

[54] Guiney L M, Mansukhani N D, Jakus A E, et al. Three-dimensional printing of cytocompatibility, thermally conductive hexagonal boron nitride nanocomposites[J]. Nano letters, 2018, 18(6): 3488-3493.

[55] Cao H, Gu S, Liu H, et al. Disordered graphite platelets in polypropylene (PP) matrix by spherical alumina particles: Increased thermal conductivity of the PP/flake graphite composites[J]. Composites Communications, 2021, 27: 100856.

[56] Ruan K, Shi X, Guo Y, et al. Interfacial thermal resistance in thermally conductive polymer composites: a review[J]. Composites Communications, 2020, 22: 100518.

[57] Li G, Zhu P, Huang L, Zhao, T, Sun R, Lu D D. Investigating the rheological and thermomechanical properties of SiO2/epoxy nanocomposites: Probing the role of silane coupling agent. International Conference on Electronic Packaging Technology. IEEE, 2014: 391-395.

[58] Dang T M L, Kim C Y, Zhang Y, et al. Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres[J]. Composites Part B: Engineering, 2017, 114: 237-246.

[59] Wan Y J, Li G, Yao Y M, et al. Recent advances in polymer-based electronic packaging materials[J]. Composites Communications, 2020, 19: 154-167.

[60] Zhang X, Zhang J, Zhang X, et al. Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC[J]. Composites Science and Technology, 2017, 150: 217-226.

[61] Chen H, Tian Z T. Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films[J]. Applied Physics Letters, 2015, 107(7): 73111.

[62] Zhou X, Zhan T Z, et al. Densely interconnected porous BN frameworks for multifunctional and isotopically thermal conductive polymer composites[J]. Advance Function. Materials, 2018, 28(29): 1801205.

[63] Lu C, Chiang S W, Du H, et al. Thermal conductivity of electrospinning chain aligned polyethylene oxide (PEO). Polymer, 2017,115: 52-59

[64] Huang Y F, Wang Z G, Yu W C, et al. Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecular weight polyethylene bulk material[J]. Polymer, 2019, 180: 121760.

[65] Yoshihara S, Ezaki T, Nakamuraa M, et al. Enhanced thermal conductivity of thermoplastics by lamellar crystal alignment of polymer matrices[J]. Macromolecular Chemistry and Physics, 2012, 213(21): 2213-2219.

[66] Shen S, Henry A, Tong J, et al. Polyethylene nanofibers with very high thermal conductivities[J]. Nature nanotechnology, 2010, 5(4): 251-255.

[67] Kim Y, Yeo H, You N H, et al. Highly thermal conductive resins formed from wide-temperature-range eutectic mixtures of liquid crystalline epoxies bearing diglycidyl moieties at the side positions[J]. Polymer Chemistry, 2017, 8(18): 2806-2814.

[68] Mehra N, Mu L, Zhu J. Developing heat conduction pathways through short polymer chains in a hydrogen bonded polymer system[J]. Composites Science and Technology, 2017, 148: 97-105.

[69] Zheng S, Mu L, Zhang S, et al. Metal coordination in polymer drives efficient phonon transfer through self-assembled microstructures[J]. Composites Science and Technology, 2024, 245: 110348.

[70] Chen G, Barriga R, Gutierrez G. Hydrogen bonds and heat diffusion in alpha-helices: a computational study[J]. Journal of Physical Chemistry B, 2021 118: 10025-10034.

[71] Yoon D, Lee H, Kim T, et al. Enhancing the thermal conductivity of amorphous polyimide by molecular-scale manipulation[J]. European Polymer Journal, 2023, 184: 111775.

[72] Shanker M, Eiche N, Huber P, et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer[J]. Nature communications, 2019, 10(1): 1-7.

[73] Li C G, Li Y, Gong C D, et al. High thermal conductivity of liquid crystalline monomer poly(vinyl alcohol) dispersion films containing microscopic‐ordered structure[J]. Journal of Applied Polymer Science, 2021, 138(6): 49791.

[74] Li Y, Pan P, Liu C, et al. Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity[J]. Journal of Polymer Engineering, 2020: 40(7): 573-581.

[75] Ruan R C, Huang Z H, Sun D, et al. New insights into thermal conductivity of uniaxially stretched high density polyethylene films[J]. Polymer, 2018, 154: 42-47.

[76] Ying L, Chang G, Cheng G L, et al. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films[J]. Journal of Materials Science & Technology, 2021, 82: 250-256.

[77] Xu Y, Wang X X, Zhou J, et al. Molecular engineered conjugated polymer with high thermal conductivity[J]. Science Advances, 2018, 4(3): eaar3031.

[78] Shanker A, LI C, Kim G H, et al. High thermal conductivity in electrostatically engineered amorphous polymers[J]. Science Advances, 2017, 3(7): e1700342.

[79] Kato T, Naghara T, Agaur Y, et al. Relation between thermal conductivity and molecular alignment direction of free-standing film aligned with rubbing method[J]. Journal of Polymer Science Part B, 2005, 43(24): 3591-3599.

[80] Yang C, Zhou Y, Lu W. Development and perspectives of biobased thermal conductive polymer composites[J]. ACS Applied Polymer Materials, 2024, 6(21): 12914-12940.

[81] Trinh T E, Ku K, Yeo H. Thermal conductivity in side-chain liquid-crystal epoxy polymers: influence of mesogen structure[J]. Macromolecular Rapid Communications, 2024: 2400762.

[82] Mun H J, Cho H B, Chao Y H. High Quasi-isotropic thermal conductivity of polydimethylsiloxane nanocomposites with hexagonal-boron nitride microspheres and flakes[J]. ACS Applied Polymer Materials, 2024, 6(9): 5058-5069.

[83] Tarannum F, Danayat S, Nayal A, et al. Thermally expanded graphite polyetherimide composite with superior electrical and thermal conductivity[J]. Materials Chemistry and Physics, 2023, 298: 127404.

[84] Ngo I L. A comprehensive study on enhancing effective thermal conductivity of polymer composites with randomly distributed triple fillers[J]. International Journal of Thermal Sciences, 2024, 197: 108793.

[85] Zha J W, Wang F, Wan B. Polymer composites with high thermal conductivity: Theory, simulation, structure and interfacial regulation[J]. Progress in Materials Science, 2024: 101362.

[86] Hu J, Wei Z, Ge B, et al. AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion[J]. Journal of Materials Chemistry A, 2023, 11(20): 10727-10737.

[87] Liu Z, Fan X, Zhang J, et al. PBO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties[J]. Journal of Materials Science & Technology, 2023, 152: 16-29.

[88] Wang C, Li X, Liang S, et al. Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle[J]. Energy, 2023, 285: 129338.

[89] Chen Q, Feng J, Xue Y, et al. An engineered heterostructure trinity enables fire-safe, thermally conductive polymer nanocomposite films with low dielectric loss[J]. Nano-Micro Letters, 2025, 17(1): 1-19.

中图分类号:

 TB333    

开放日期:

 2026-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式