- 无标题文档
查看论文信息

论文中文题名:

 基于GNSS的InSAR对流层延迟校正方法研究    

姓名:

 邱梁才    

学号:

 21210061025    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081601    

学科名称:

 工学 - 测绘科学与技术 - 大地测量学与测量工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 InSAR数据处理与应用    

第一导师姓名:

 陈鹏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Research on Tropospheric Delay Correction Method for InSAR Based on GNSS    

论文中文关键词:

 InSAR ; GNSS ; 对流层延迟校正 ; BPNN ; 多源数据融合    

论文外文关键词:

 InSAR ; GNSS ; Tropospheric delay correction ; BPNN ; Multi-source data fusion    

论文中文摘要:

对流层延迟一直被认为是影响重轨合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)对地观测精度的重要因素之一。由于对流层的水汽含量丰富且变化复杂,因此很难准确地表示雷达信号在穿过对流层时所受到的延迟。目前学者们已经提出了多种基于不同角度的对流层延迟校正方法,但是这些方法仍然存在着一定的局限性。基于自身相位的校正方法没有考虑大气的实际运动特征,可能会使得校正后的干涉图变得更差。基于外部辅助数据的校正方法会受其时空分辨率的影响,以及因辅助数据自身估算大气延迟存在偏差而受限。现有的基于机器学习的延迟校正方法受地形和位置的影响较大,因此区域普适性不高。针对现存的这些问题,本文以全球导航卫星系统(Global Navigation Satellite System, GNSS)地面站点的对流层延迟数据为基础,分别探讨了两种InSAR对流层延迟校正方法。此外,还对比了全球尺度下几种常见的对流层延迟数据的时空变化特征,并分析了它们在InSAR对流层延迟校正中的可用性。本文的主要研究工作如下:

(1)针对GNSS只能提供站点位置的高质量对流层延迟数据,与干涉图像素在空间上不匹配的问题,提出一种基于GNSS和反向传播神经网络(Back Propagation Neural Network, BPNN)的对流层延迟数据空间预测方法,并将该方法应用于美国洛杉矶地区进行校正效果验证。该方法以GNSS站点天顶总延迟(Zenith Tropospheric Delay,ZTD)数据为基础,以区域地形和位置信息为空间预测因子,预测了2021年42张干涉图对应的对流层延迟图。实验表明:GNSS+BPNN方法较常规空间插值方法的均方根误差(Root Mean Square Error, RMSE)下降幅度超过90%,92.86%的干涉图校正后标准差出现了下降,平均下降幅度为52.03%。与GACOS方法相比,季节校正效果更加明显,校正性能更加稳定。尤其是在夏季和冬季,性能明显优于GACOS方法。

(2)为了确定全球尺度下几种常见对流层延迟数据在InSAR延迟校正中的可用性,本文分析了2015-2022年全球GNSS、ERA5、MERRA2估算的对流层延迟变化特征,并估算了2022年夏季和冬季(相对于北半球)的MODIS对流层湿延迟(Zenith Wet Delay, ZWD)。然后,以美国西部为例对比了各数据之间的差异,同时探讨了美国西海岸2022年12月下旬的极端天气对各数据估算InSAR对流层延迟的影响。结果表明:GNSS ZTD与地形高度呈现显著的负指数函数关系,而ZWD则并不明显。ERA5和MERRA2的ZWD在空间上基本与GNSS ZWD保持一致。此外,经过对比发现ERA5在出现一次ZWD波峰之后数据会出现异常。而MODIS数据往往高估了ZWD,并且在极端水汽期间数据容易被污染,导致其可用性不高。

(3)针对局部地区GNSS站点稀疏且分布不均,直接使用GNSS ZTD预测InSAR对流层延迟时误差较大的问题,提出基于GNSS融合多源数据的InSAR对流层延迟校正方法。利用GNSS ZTD与地形之间的函数关系分离垂直分层延迟和湍流混合延迟,并分别对两部分进行建模,在此基础之上进一步通过BPNN融合ERA5和MERRA2数据,以获取最终的InSAR对流层延迟产品。选取2022年夏威夷岛的干涉图对该方法的延迟校正性能进行对比验证。结果表明:使用融合后的延迟数据的校正效果较其他几种方法效果更加显著,标准差平均下降2.85 rad,平均标准差下降为42.47%。此外,融合后的数据在湍流混合延迟占据主导地位或延迟信号和形变信号混合时都能有较好的校正表现。

论文外文摘要:

Tropospheric delay has long been recognized as one of the key factors affecting the accuracy of ground observation using interferometric synthetic aperture radar (InSAR). Due to the abundant and complex variations in water vapor content within the atmosphere, accurately representing the delay experienced by radar signals as they pass through the troposphere is challenging. Various methods for tropospheric delay correction based on different perspectives have been proposed by scholars, but these methods still have certain limitations. The correction method based on the phase of the interferogram itself does not consider the actual motion characteristics of the troposphere, which may result in a worse interferogram after correction. Correction methods based on external auxiliary data are affected by their spatiotemporal resolution and are limited by biases in the estimation of tropospheric delay from the auxiliary data. The existing machine learning-based delay correction methods are significantly influenced by terrain and location, thus resulting in limited regional applicability. To address these existing issues, this paper explores two InSAR tropospheric delay correction methods based on the data from global navigation satellite system (GNSS) ground stations. Additionally, the spatiotemporal variation characteristics of several common atmospheric delay data on a global scale are compared, and their availability in InSAR tropospheric delay correction is analyzed. The primary research content of this paper are as follows:

(1) Aiming at the problem that GNSS can only provide high-quality tropospheric delay data at site locations, which does not match the pixels of the interferogram in space, a spatial prediction method for tropospheric delay data based on GNSS and back propagation neural network (BPNN) is proposed. This method is applied to validate the correction effect in the Los Angeles area of the United States. Utilizing the zenith tropospheric delay (ZTD) data from GNSS stations as the basis and regional terrain and location information as spatial prediction factors, the method predicts tropospheric delay maps corresponding to 42 interferograms in 2021. The experiment demonstrates that the GNSS+BPNN method reduces the root mean square error (RMSE) by over 90% compared to conventional spatial interpolation methods. Furthermore, 92.86% of interferograms exhibit a decrease in standard deviation after correction, with an average reduction of 52.03%. Compared to the GACOS method, the seasonal correction effect of GNSS+BPNN method is more pronounced, and the correction performance is notably more stable. Particularly during summer and winter, its performance exhibits a significant improvement over that of the GACOS method.

(2) To determine the availability of several common tropospheric delay data at global scales for InSAR delay corrections, this paper analyzes the tropospheric delay change characteristics estimated by global GNSS, ERA5, and MERRA2 from 2015 to 2022, and estimates the MODIS tropospheric wet delay (ZWD) in the summer and winter of 2022 (relative to the Northern Hemisphere). Subsequently, differences among these datasets are compared using the example of the western United States, while investigating the impact of extreme weather events in late December 2022 on the estimation of InSAR tropospheric delay. The findings reveal a substantial inverse exponential correlation between GNSS ZTD and terrain altitude, whereas the correlation between ZWD and terrain is less pronounced. The spatial distribution of ZWD from ERA5 and MERRA2 generally corresponds well with that from GNSS. Moreover, ERA5 exhibits anomalous changes following the occurrence of a ZWD peak.  In contrast, MODIS data often overestimate the ZWD, with data severely contaminated during periods of extremely high water vapor content, leading to low usability.

(3) In response to the problem posed by the sparse and uneven distribution of GNSS stations in local regions, coupled with the significant errors incurred when directly utilizing GNSS ZTD for InSAR tropospheric delay prediction, we propose an InSAR tropospheric delay correction method based on GNSS fusion of multi-source data. We separates the vertical stratified delay (VSD) and turbulent mixing delay (TMD) by leveraging the functional relationship between GNSS ZTD and terrain, and models them separately. Additionally, we employ BPNN to fuse ERA5 and MERRA2 data to further enhance the accuracy of InSAR tropospheric delay estimation. We validate the correction performance of our method using interferograms from the Hawaiian Islands in the summer of 2022. The results indicate that the correction effect using fused delay data is more significant compared to other methods, with an average decrease in standard deviation of 2.85 rad and an average percentage decrease in standard deviation of 42.47%. Furthermore, our fused data exhibits better correction performance in scenarios dominated by turbulent mixed delays or when delay signals are mixed with deformation signals.

参考文献:

[1] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717–1733.

[2] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the landers earthquake mapped by radar interferometry: 6433[J]. Nature, 1993, 364(6433): 138–142.

[3] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报 (信息科学版), 2022, 47(6): 887–897.

[4] 许才军, 熊维, 刘传金. 利用大地测量观测资料研究青藏高原三维地壳形变及地震危险性评估进展[J]. 武汉大学学报 (信息科学版), 2023, 48(7): 997–1009.

[5] Atzori S, Monterroso F, Antonioli A, et al. Automatic seismic source modeling of InSAR displacements[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 123: 103445.

[6] Ren C, Wang Z, Taymaz T, et al. Supershear triggering and cascading fault ruptures of the 2023 Kahramanmaraş, Türkiye, earthquake doublet[J]. Science, 2024, 383(6680): 305–311.

[7] Galetto F, Bagnardi M, Acocella V, et al. Noneruptive Unrest at the Caldera of Alcedo Volcano (Galápagos Islands) Revealed by InSAR Data and Geodetic Modeling[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3365–3381.

[8] Sigmundsson F, Parks M, Hooper A, et al. Deformation and seismicity decline before the 2021 Fagradalsfjall eruption: 7927[J]. Nature, 2022, 609(7927): 523–528.

[9] Sigmundsson F, Parks M, Geirsson H, et al. Fracturing and tectonic stress drives ultrarapid magma flow into dikes[J]. Science, 2024, 0(0): eadn2838.

[10] Goldstein R M, Engelhardt H, Kamb B, et al. Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream[J]. Science, 1993, 262(5139): 1525–1530.

[11] Hu Y, Harrison S, Liu L, et al. Modelling rock glacier ice content based on InSAR-derived velocity, Khumbu and Lhotse valleys, Nepal[J]. The Cryosphere, 2023, 17(6): 2305–2321.

[12] Wang C-Y, Lin Y N, Hwang C, et al. Observing glacial isostatic adjustment by PSInSAR in southern Hudson Bay[J]. Remote Sensing of Environment, 2024, 304: 114023.

[13] 李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5): 1476–1486.

[14] Daout S, Doin M-P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2): 901–909.

[15] Liu S, Zhao L, Wang L, et al. Intra-Annual Ground Surface Deformation Detected by Site Observation, Simulation and InSAR Monitoring in Permafrost Site of Xidatan, Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 2022, 49(3): e2021GL095029.

[16] Dong J, Zhang L, Liao M, et al. Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring[J]. Remote Sensing of Environment, 2019, 233: 111370.

[17] Kang Y, Lu Z, Zhao C, et al. Inferring slip-surface geometry and volume of creeping landslides based on InSAR: A case study in Jinsha River basin[J]. Remote Sensing of Environment, 2023, 294: 113620.

[18] Zhang C, Li Z, Ding M, et al. Dynamic deformation monitoring and scenario simulation of the Xiaomojiu landslide in the Jinsha River Basin, China[J]. Landslides, 2023.

[19] Buzzanga B, Bekaert D P S, Hamlington B D, et al. Toward Sustained Monitoring of Subsidence at the Coast Using InSAR and GPS: An Application in Hampton Roads, Virginia[J]. Geophysical Research Letters, 2020, 47(18): e2020GL090013.

[20] Guo L, Gong H, Li J, et al. Understanding Uneven Land Subsidence in Beijing, China, Using a Novel Combination of Geophysical Prospecting and InSAR[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088676.

[21] Cui P, Ge Y, Li S, et al. Scientific challenges in disaster risk reduction for the Sichuan–Tibet Railway[J]. Engineering Geology, 2022, 309: 106837.

[22] Chen J, Knight R, Zebker H A, et al. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations[J]. Water Resources Research, 2016, 52(5): 3623–3636.

[23] Smith R G, Knight R, Chen J, et al. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California[J]. Water Resources Research, 2017, 53(3): 2133–2148.

[24] Ghobadi-Far K, Werth S, Shirzaei M, et al. Spatiotemporal Groundwater Storage Dynamics and Aquifer Mechanical Properties in the Santa Clara Valley Inferred From InSAR Deformation Over 2017–2022[J]. Geophysical Research Letters, 2023, 50(22): e2023GL105157.

[25] Cavalié O, Jónsson S. Block-like plate movements in eastern Anatolia observed by InSAR[J]. Geophysical Research Letters, 2014, 41(1): 26–31.

[26] Walters R J, Parsons B, Wright T J. Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(6): 5215–5234.

[27] Maubant L, Frank W B, Wallace L M, et al. Imaging the Spatiotemporal Evolution of Plate Coupling With Interferometric Radar (InSAR) in the Hikurangi Subduction Zone[J]. Geophysical Research Letters, 2023, 50(19): e2023GL105388.

[28] Zebker H A, Rosen P A, Hensley S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B4): 7547–7563.

[29] Ding X, Li Z, Zhu J, et al. Atmospheric Effects on InSAR Measurements and Their Mitigation[J]. Sensors, 2008, 8(9): 5426–5448.

[30] Young T. The Bakerian Lecture. Experiments and Calculations Relative to Physical Optics. [Abstract][J]. Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London, 1800, 1: 131–132.

[31] 刘国祥, 陈强, 罗小军, 等. InSAR原理与应用[M]. 北京: 科学出版社, 2019.

[32] Rogers A E E, Ingalls R P. Venus: Mapping the Surface Reflectivity by Radar Interferometry[J]. Science, 1969, 165(3895): 797–799.

[33] Graham L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6): 763–768.

[34] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B7): 9183–9191.

[35] 赵德政, 屈春燕. 基于InSAR技术的同震形变获取、地震应急监测和发震构造研究应用进展[J]. 地震地质, 2023, 45(2): 570.

[36] Farr T G, Kobrick M. Shuttle radar topography mission produces a wealth of data[J]. Eos, Transactions American Geophysical Union, 2000, 81(48): 583–585.

[37] Ferretti, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8–20.

[38] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375–2383.

[39] Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460–3470.

[40] Sowter A, Bateson L, Strange P, et al. DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields[J]. Remote Sensing Letters, 2013, 4(10): 979–987.

[41] Alshawaf F, Hinz S, Mayer M, et al. Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(4): 1391–1403.

[42] Ebmeier S K. Application of independent component analysis to multitemporal InSAR data with volcanic case studies[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(12): 8970–8986.

[43] Rouet-Leduc B, Jolivet R, Dalaison M, et al. Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning[J]. Nature Communications, 2021, 12.

[44] Lee J-C, Shirzaei M. Novel algorithms for pair and pixel selection and atmospheric error correction in multitemporal InSAR[J]. Remote Sensing of Environment, 2023, 286: 113447.

[45] Ohenhen L O, Shirzaei M, Ojha C, et al. Disappearing cities on US coasts[J]. Nature, 2024, 627(8002): 108–115.

[46] Fruneau B, Sarti F. Detection of ground subsidence in the city of Paris using radar interferometry: Isolation of deformation from atmospheric artifacts using correlation[J]. Geophysical Research Letters, 2000, 27(24): 3981–3984.

[47] Shirzaei M, Bürgmann R. Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms[J]. Geophysical Research Letters, 2012, 39(1): 2011GL049971.

[48] Bekaert D P S, Hooper A, Wright T J. A spatially variable power law tropospheric correction technique for InSAR data[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2): 1345–1356.

[49] Doin M-P, Lasserre C, Peltzer G, et al. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models[J]. Journal of Applied Geophysics, 2009, 69(1): 35–50.

[50] Yu C, Li Z, Penna N T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018, 204: 109–121.

[51] Li, Fielding E J, Cross P, et al. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models[J]. International Journal of Remote Sensing, 2009, 30(13): 3343–3363.

[52] Li, Muller J ‐P., Cross P, et al. Assessment of the potential of MERIS near‐infrared water vapour products to correct ASAR interferometric measurements[J]. International Journal of Remote Sensing, 2006, 27(2): 349–365.

[53] Lopez-Pozo F, Abarca-Del-Rio R, Lara L E. ADTC-InSAR: a tropospheric correction database for Andean volcanoes: 1[J]. Scientific Data, 2022, 9(1): 526.

[54] Darvishi M, Cuozzo G, Bruzzone L, et al. Performance Evaluation of Phase and Weather-Based Models in Atmospheric Correction With Sentinel-1Data: Corvara Landslide in the Alps[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1332–1346.

[55] Wang Y, Chang L, Feng W, et al. Topography-correlated atmospheric signal mitigation for InSAR applications in the Tibetan plateau based on global atmospheric models[J]. International Journal of Remote Sensing, 2021, 42(11): 4361–4379.

[56] Mateus P J B. Mitigação Dos Efeitos atmosféricos Em Interferometria Sar[J]. 2013. ProQuest Dissertations Publishing, 2013.

[57] Webb T L, Wadge G, Pascal K. Mapping water vapour variability over a mountainous tropical island using InSAR and an atmospheric model for geodetic observations[J]. Remote Sensing of Environment, 2020, 237: 111560.

[58] Williams S, Bock Y, Fang P. Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B11): 27051–27067.

[59] Li, Muller J-P, Cross P, et al. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B3).

[60] Qiu L, Chen P, Yao Y, et al. An Interferometric Synthetic Aperture Radar Tropospheric Delay Correction Method Based on a Global Navigation Satellite System and a Backpropagation Neural Network: More Suitable for Areas with Obvious Terrain Changes[J]. Sensors, 2023, 23(24): 9760.

[61] Jolivet R, Agram P S, Lin N Y, et al. Improving InSAR geodesy using Global Atmospheric Models[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2324–2341.

[62] Walters R J, Elliott J R, Li Z, et al. Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere-corrected InSAR[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(7): 3674–3690.

[63] Shehaj E, Frey O, Moeller G, et al. On the Consistency of Tropospheric Delays Over Mountainous Terrain Retrieved From Persistent Scatterer Interferometry, GNSS, and Numerical Weather Prediction Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1–18.

[64] Yu C, Penna N T, Li Z. Generation of real‐time mode high‐resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(3): 2008–2025.

[65] Yu C, Li Z, Penna N T, et al. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 9202–9222.

[66] Shamshiri R, Motagh M, Nahavandchi H, et al. Improving tropospheric corrections on large-scale Sentinel-1 interferograms using a machine learning approach for integration with GNSS-derived zenith total delay (ZTD)[J]. Remote Sensing of Environment, 2020, 239: 111608.

[67] Chen Y, Bruzzone L, Jiang L, et al. ARU-Net: Reduction of Atmospheric Phase Screen in SAR Interferometry Using Attention-Based Deep Residual U-Net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5780–5793.

[68] Zhao Z, Wu Z, Zheng Y, et al. Recurrent neural networks for atmospheric noise removal from InSAR time series with missing values[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 227–237.

[69] Vitale S, Ferraioli G, Pascazio V. A CNN Based Solution for InSAR Phase Denoising[C]//IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia: IEEE, 2022: 931–934.

[70] Chen C, Dai K, Tang X, et al. Removing InSAR Topography-Dependent Atmospheric Effect Based on Deep Learning: 17[J]. Remote Sensing, 2022, 14(17): 4171.

[71] Zhou H, Dai K, Pirasteh S, et al. InSAR Spatial-Heterogeneity Tropospheric Delay Correction in Steep Mountainous Areas Based on Deep Learning for Landslides Monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–14.

[72] Hanssen R F. Radar Interferometry: Data Interpretation and Error Analysis[M]. Dordrecht: Springer Netherlands, 2001.

[73] 廖明生, 林珲. 雷达干涉测量——原理与信号处理基础[M]. 北京: 测绘出版社, 2003.

[74] Zebker H A, Goldstein R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4993–4999.

[75] 李振洪, 刘经南, 许才军. InSAR数据处理中的误差分析[J]. 武汉大学学报 ( 信息科学版), 2004, 29(1): 72–76.

[76] Massonnet D, Feigl K, Rossi M, et al. Radar interferometric mapping of deformation in the year after the Landers earthquake[J]. Nature, 1994, 369(6477): 227–230.

[77] Hooper A, Bekaert D, Spaans K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514–517: 1–13.

[78] Kinoshita Y, Furuya M, Hobiger T, et al. Are numerical weather model outputs helpful to reduce tropospheric delay signals in InSAR data?[J]. Journal of Geodesy, 2013, 87(3): 267–277.

[79] Cao Y, Li Z, Wei J, et al. Stochastic modeling for time series InSAR: with emphasis on atmospheric effects[J]. Journal of Geodesy, 2018, 92(2): 185–204.

[80] 姚宜斌, 赵庆志. GNSS对流层水汽监测研究进展与展望[J]. 测绘学报, 2022, 51(6): 935–952.

[81] 杨成生. 差分干涉雷达测量技术中水汽延迟改正方法研究[D]. 西安: 长安大学, 2011.

[82] Bevis M, Businger S, Chiswell S, et al. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water[J]. Journal of Applied Meteorology and Climatology, 1994, 33(3): 379–386.

[83] 陈鹏. GNSS 电离层层析及震前电离层异常研究[D]. 武汉: 武汉大学, 2012.

[84] Bradford W P, James J S J. Ionospheric Effects On GPS[M]//Global Positioning System: Theory and Applications, Volume I. American Institute of Aeronautics and Astronautics, 1996: 485–515.

[85] Massonnet D, Feigl K L. Discrimination of geophysical phenomena in satellite radar interferograms[J]. Geophysical Research Letters, 1995, 22(12): 1537–1540.

[86] 占文俊, 李志伟, 韦建超, 等. 一种InSAR大气相位建模与估计方法[J]. 地球物理学报, 2015, 58(7): 2320–2329.

[87] Koulali A, Ouazar D, Bock O, et al. Study of seasonal-scale atmospheric water cycle with ground-based GPS receivers, radiosondes and NWP models over Morocco[J]. Atmospheric Research, 2012, 104–105: 273–291.

[88] Remy D, Bonvalot S, Briole P, et al. Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: application to Sakurajima volcano (Japan)[J]. Earth and Planetary Science Letters, 2003, 213(3–4): 299–310.

[89] Bekaert D P S, Hooper A, Wright T J. A spatially variable power law tropospheric correction technique for InSAR data[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2): 1345–1356.

[90] Crosetto M, Tscherning C C, Crippa B, et al. Subsidence monitoring using SAR interferometry: Reduction of the atmospheric effects using stochastic filtering[J]. Geophysical Research Letters, 2002, 29(9): 26-1-26–4.

[91] Jolivet R, Grandin R, Lasserre C, et al. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data[J]. Geophysical Research Letters, 2011, 38(17).

[92] 唐伟, 廖明生, 张丽, 等. 基于全球气象再分析资料的InSAR对流层延迟改正研究[J]. 地球物理学报, 2017, 60(2): 527–540.

[93] Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787–15801.

[94] 唐伟. 利用气象再分析资料研究InSAR大气对流层延迟与水汽反演[D]. 武汉大学, 2017.

[95] Schüler T. On ground-based GPS tropospheric delay estimation[D]. Neubiberg: Universtät der Bundeswehr Müchen, 2001.

[96] Landskron D, Böhm J. VMF3/GPT3: refined discrete and empirical troposphere mapping functions[J]. Journal of Geodesy, 2018, 92(4): 349–360.

[97] Yao Y, Zhang B, Xu C, et al. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology[J]. Journal of Geodesy, 2014, 88(3): 273–282.

[98] Rosen P A, Gurrola E, Sacco G F, et al. The InSAR scientific computing environment[C]//EUSAR 2012; 9th European Conference on Synthetic Aperture Radar. .

[99] Fattahi H, Agram P, Simons M. A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 777–786.

[100] Hooper A, Segall P, Zebker H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B7).

[101] Murray K D, Bekaert D P S, Lohman R B. Tropospheric corrections for InSAR: Statistical assessments and applications to the Central United States and Mexico[J]. Remote Sensing of Environment, 2019, 232: 111326.

[102] Chen C W, Zebker H A. Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms[J]. JOSA A, 2000, 17(3): 401–414.

[103] Goldstein R. Atmospheric limitations to repeat-track radar interferometry[J]. Geophysical Research Letters, 1995, 22(18): 2517–2520.

中图分类号:

 P228    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式