- 无标题文档
查看论文信息

论文中文题名:

 煤矿工人情景意识的 fNIRS脑功能连接特征与分类识别研究    

姓名:

 田方圆    

学号:

 18120089008    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 安全人因工程与安全应急管理    

第一导师姓名:

 李红霞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Characterization and Classification Identification of fNIRS Brain Functional Connectivity for Situation Awareness of Coal Miners    

论文中文关键词:

 煤矿工人 ; 认知功能 ; fNIRS ; 情景意识 ; 功能连接    

论文外文关键词:

 coal miners ; cognitive function ; fNIRS ; situation awareness ; functional connectivity    

论文中文摘要:

煤炭行业长久以来一直是我国能源生产的重要支柱。近年来,伴随着煤炭行业的高速发展,我国煤矿安全生产取得了明显的成效,但重特大事故尚未杜绝,较大事故时有发生。研究与调查表明,人类的不安全行为和失误是事故的主要原因和直接原因,而情景意识,即对特定时间空间内的感知、理解预测能力,如执行功能、工作记忆、注意力和信息处理速度等认知功能是安全工作的重要保证。因此,从脑科学的角度出发,探究煤矿工人情景意识-不安全行为/人因失误的内在认知神经机制,对有效降低煤矿工人的失误率和伤害率,全面落实对“人的隐患”精准排查,全方位做到风险预控、关口前移,切实提升煤矿安全管理水平,具有重要理论意义与实用价值。

本研究以煤矿工人脑功能连接为研究对象,采用fNIRS脑影像实验平台,融合安全科学与认知神经科学研究方法,从安全科学和认知神经科学融合的视角,构建了煤矿工人情景意识全要素模型;对陕煤集团H公司的煤矿工人开展了两项实验——实验一:煤矿工人人因失误倾向者脑功能连接特征分析;实验二:轮班工作对煤矿工人脑功能连接的影响;基于实验一和实验二采集的煤矿工人脑功能连接特征数据构建了基于深度学习的煤矿工人情景意识分类识别模型。主要研究结论如下:

(1)构建了煤矿工人情景意识全要素模型。以动态决策情景意识模型、人类行为SOR模型和大脑信息加工理论为基础,将本模型分为刺激、肌体和反应三大模块。环境信息属于刺激模块,为信息的输入层。情景意识,认知功能和个体因素共同构成肌体模块。其中,以感知为基础的情景意识是信息感受器,认知功能为大脑信息加工器。认知功能是情景意识的神经生理表现。个体因素是情景意识和认知功能的重要影响因素。反应模块为不安全行为/人为因素输出层,是信息效应器。当环境信息与个体因素内任一子因素发生不利变化时,个体感知能力将受到影响,情景意识随之下降或者失效,从而引发个体认知功能下降,导致不安全行为/人因失误。此外,个体不安全行为/人因失误也将反馈于环境信息。

(2)揭示了煤矿工人人因失误倾向者的大脑功能连接特征。实验一应用fNIRS脑影像实验平台,采集了106名煤矿工人的静息态数据。采用皮尔逊相关系数分析、脑网络分析和t检验对煤矿工人人因失误倾向者脑功能连接进行了量化。研究发现,煤矿工人人因失误倾向者的脑功能连接特征在其额叶区、眶额区和布洛卡三角区的脑功能连接与一般煤矿工人之间存在显著差异;且其背外侧前额叶皮层的脑网络在聚类系数、局部结点效率和全局结点效率上与一般煤矿工人存在明显差异。上述脑功能连接特征显示,煤矿工人人因失误倾向者的个人特质为抑郁、冲动、高认知负荷和较弱的注意力控制能力、反应能力、执行能力、情绪稳定能力与工作记忆能力。实验一的研究结果显示,fNIRS静息态功能连接研究手段,可以揭示并量化煤矿工人人因失误倾向者脑功能连接的神经生理特征,为现代化煤炭企业实现科学、精准识别煤矿工人人因失误倾向者提供了重要的技术支撑和数据参考。

(3)明晰了轮班工作对煤矿工人脑功能连接的影响。实验二基于fNIRS脑影像实验平台,采集了早班、午班和夜班共54名煤矿工人岗前岗后的静息态数据以测量其脑功能连接特征。研究发现,早班、午班和夜班煤矿工人的脑功能连接在岗前岗后均有显著差异;其中,早班煤矿工人岗前岗后的功能连接差异最大,其次是午班,夜班岗前岗后功能连接差异最小;相较于岗前,早班和午班的煤矿工人岗后功能连接显著降低;而夜班的情况则与早班和午班相反;三班岗前岗后所有状态的前额叶皮层静息态脑网络都具有小世界属性,早班和夜班煤矿工人的前额叶皮层的中介中心性和局部结点效率具有显着差异。上述脑功能连接变化表明:受教育水平较低的轮班煤矿工人的认知功能较低;离异或丧偶的轮班煤矿工人的认知能力较低;早班和午班轮班煤矿工人在工作结束时更容易出现注意力下降、多任务处理能力下降、情绪控制能力下降、疲劳和困倦等认知功能降低并伴有脑网络信息转换效率显著下降;早班轮班煤矿工人的多任务处理能力在工作结束时显著下降;夜班轮班煤矿工人的情绪控制能力在工作结束时显著下降。实验二的研究结果显示,fNIRS静息态功能连接研究手段,可以从认知神经科学的角度量化早班、午班、夜班不同班次工作对煤矿工人脑功能连接神经生理的影响。为进一步提升轮班制度合理性,保障煤矿工人身心健康提供了重要量化指标和分析依据。

(4)构建了基于深度学习的煤矿工人情景意识分类识别模型。在实验一和实验二采集的煤矿工人脑功能连接特征数据基础上,优选了脑功能网络特征,构建了四个SVM分类识别模型对不同条件下的煤矿工人情景意识进行检测。结果表明,SVM分类器对煤矿工人人因失误倾向者情景意识的识别准确率为84.21%;对早班煤矿工人岗前岗后情景意识识别准确率为97.06%;对午班煤矿工人岗前岗后情景意识识别率为83.33%;对晚班煤矿工人岗前岗后情景意识识别率为83.33%。为现代化煤矿企业实现科学、精准煤矿工人个体情景意识排查、检测提供了重要的技术支持和量化数据参考。为政府提供了新的煤矿安全管理和公共安全管理量化思路,进一步促进了我国煤矿监察监管的精准化和科学化发展。

总而言之,本研究运用fNIRS脑影像技术,探究了煤矿工人情景意识-不安全行为/人因失误的内在认知神经机制,从安全科学和认知神经科学交叉融合的角度进一步揭示了煤矿工人发生不安全行为或人因失误内在机制和脑功能连接特征,为煤矿工人情景意识量化检测提供了重要的数据依据和决策参考。

论文外文摘要:

For a long time, the coal industry has been an important pillar of China’s energy production. In recent years, with the rapid development of the coal industry, China’s coal mine safety management has achieved significant results, however, serious accidents have not been eliminated, and larger accidents occur from time to time. Studies and surveys have shown that human unsafe behaviors and human errors are the main and direct causes of accidents, while situation awareness, such as executive functions, working memory, attention, and information processing speed are important protections for safety work. Therefore, from the perspective of brain science, it is of great theoretical significance and practical value to investigate the inner cognitive neural mechanism of situation awareness-unsafe behavior/human error of coal miners, to effectively reduce the error rate and injury rate of coal miners, to fully implement the precise screening of “human hazards”, to achieve all-round risk pre-control, to shift the gate forward, and to effectively improve coal mine safety management.

From the perspective of integrating safety science and cognitive neuroscience, this study built the full elements model of situation awareness of coal miners; took the brain functional connectivity of coal miners as the research object, based on the fNIRS brain imaging experimental platform, integrated safety science and cognitive neuroscience research methods, and two experiments were conducted on coal miners of Shaanxi Coal Group H Company --Experiment 1: characterization of functional brain connectivity in coal miners with human error propensity; Experiment 2: effects of shift work on brain function connectivity in coal miners; a deep learning-based situation awareness classification recognition model for coal miners was constructed based on the brain functional connectivity feature data of coal miners collected in Experiment 1 and Experiment 2. The main findings are summarized as follows:

(1) The full elements model of situation awareness of coal miners was constructed. Based on the dynamic decision-making situation awareness model, the SOR model of human behavior and the brain information processing theory, this model is divided into three modules: stimulus, organism and response. Environment factors belong to the stimulus module, which is the input layer of information. Situation awareness, cognitive function and individual factors together constitute the organism module. Among them, based on perception, situation awareness is the information receptor and cognitive function is the brain information processor. Cognitive function is the neurophysiological manifestation of situation awareness. Individual factors are important influences on situation awareness and cognitive function. The response module is the unsafe behavior/human factor output layer, which is the information effector. When there is an adverse change in any subfactor in environment factors or individual factors, the individual perceptual ability will be affected and the situation awareness will subsequently decline or fail, thus triggering a decline in individual cognitive function and leading to unsafe behavior/human factors failures. In addition, the individual’s unsafe behavior/human factor failures will also feedback to the environment factors.

(2) The brain functional connectivity characteristics of coal miners with human error propensity were uncovered a fNIRS brain imaging experimental platform was utilized to collect the resting-state data of 106 coal miners. Pearson correlation coefficient analysis, brain network analysis and two-sample t-test were used to quantify the brain functional connectivity of coal miners with accident-prone tendencies or not. It was found that the brain functional connectivity of coal miners with human error propensity was characterized by significant differences between their frontal, orbitofrontal and Broca’s triangle brain functional connectivity and that of the general coal miners; and their brain networks in the dorsolateral prefrontal cortex were significantly different from those of the general coal miners in terms of clustering coefficient, local nodal efficiency and global nodal efficiency. The functional brain connectivity features described above indicate that the personal traits of coal miners with human error tendency are depression, impulsivity, high cognitive load and weak attentional control, reactivity, executive ability, emotional stability and working memory ability. The results of Experiment 1 show that the fNIRS resting-state functional connectivity research approach can reveal the neurophysiological characteristics of quantifying the brain functional connectivity of coal miners with human error propensity, which provides important technical support and data reference for modern coal enterprises to achieve scientific and accurate identification of coal miners with human error propensity.

(3) The effects of shift work on the functional connectivity of coal miners were clarified. Based on the fNIRS brain imaging experimental platform, resting state data were collected from 54 coal miners in the morning, afternoon, and night shifts before and after work to evaluate their cognitive function status. The results showed that the cognitive functions of coal miners in all morning, afternoon, and night shifts were significantly different before and after work; among them, the difference in functional connectivity was the largest in the morning shift, followed by the afternoon shift, and the smallest in the night shift; compared with the pre-shift, the post-shift functional connectivity of coal miners in the morning and afternoon shifts was significantly lower; while the situation in the night shift was the opposite of the morning and afternoon shifts; all the pre-shift and post-shift functional connectivity in all three shifts state prefrontal cortex resting-state brain functional networks had small-world properties, with significant differences in betweenness centrality and local nodal efficiency in prefrontal cortex between morning and night shift coal miners. The functional brain connectivity features described above indicate that shift coal miners with lower levels of education had lower cognitive function; divorced or widowed shift coal miners had lower cognitive ability; morning and afternoon shift coal miners were more likely to have lower cognitive function at the end of work such as decreased attention, decreased multitasking, decreased emotional control, fatigue and sleepiness with a significant decrease in brain network information conversion efficiency; morning shift shift The multitasking ability of coal miners significantly decreased at the end of work; the emotional control ability of coal miners on night shift significantly decreased at the end of work. The results of Experiment 2 show that the fNIRS resting-state functional connectivity research approach can quantify the effects of working different shifts of morning, afternoon and night shifts on the neurophysiology of brain functional connectivity in coal miners from the perspective of cognitive neuroscience. It provides an important quantitative index and analytical basis for further improving the rationality of shift system and safeguarding the physical and mental health of coal miners.

(4) A deep learning-based classification and recognition model for coal miners’ situation awareness was constructed. Based on the brain functional connectivity feature data collected from coal miners in Experiment 1 and Experiment 2, four SVM classification recognition models were constructed to detect the situation awareness of coal miners under different conditions by preferentially selecting brain functional network features. The results showed that the SVM classifier had an accuracy of 84.21% in recognizing the situation awareness of coal miners with human error tendency; 97.06% in recognizing the situation awareness of coal miners before and after the morning shift; 83.33% in recognizing the situation awareness of coal miners before and after the lunch shift; and 83.33% in recognizing the situation awareness of coal miners before and after the evening shift. The results provide important technical support and quantitative data reference for modern coal mining enterprises to achieve scientific and precise coal miners’ individual situation awareness ranking and detection and provide the government with new quantitative ideas for coal mine safety management and public safety management, and further promotes the precise and scientific development of China’s coal mine supervision and regulation.

In conclusion, this study explored the intrinsic cognitive neural mechanisms of coal miners’ situational awareness - unsafe behavior/human errors based on fNIRS brain imaging technology, further revealing the intrinsic mechanisms and characteristics of coal miners’ unsafe behaviors from the perspective of cross-fertilization between safety science and cognitive neuroscience, and providing an important data basis and decision reference for quantitative detection of coal miners’ accident-prone tendencies.

参考文献:

[1] 中国矿业大学新闻网. 双重预防机制,企业安全的晴雨表——中国矿业大学李爽教授团队谈双重预防机制研究和实践[EB/OL]. 中国矿业报, 2019. 2021-01-01. http://xwzx.cumt.edu.cn/1c/2a/c522a531498/page.htm.

[2] Goh Y M, Ubeynarayana C U, Wong K L X, et al. Factors influencing unsafe behaviors: A supervised learning approach[J]. Accident Analysis & Prevention, 2018, 118: 77–85.

[3] Heinrich H W. Industrial Accident Prevention. A Scientific Approach.[M]. New York & London: McGraw-Hill Book Company, Inc., 1941(Second Edition).

[4] Tong R, Yang X, Li H, et al. Dual process management of coal miners’ unsafe behaviour in the Chinese context: Evidence from a meta-analysis and inspired by the JD-R model[J]. Resources Policy, 2019, 62: 205–217.

[5] 国家矿山安全监察局. 国家矿山安全监察局召开2021年首次新闻发布会[EB/OL]. 中华人民共和国中央人民政府 中华人民共和国应急管理部, 2021. 2021-02-03. http://www.chinacoal-safety.gov.cn/xw/xwfbh/202101/t20210111_376885.shtml.

[6] Liu Q, Li X, Hassall M. Evolutionary game analysis and stability control scenarios of coal mine safety inspection system in China based on system dynamics[J]. Safety Science, 2015, 80: 13–22.

[7] Chen H, Qi H, Long R, et al. Research on 10-year tendency of China coal mine accidents and the characteristics of human factors[J]. Safety science, 2012, 50(4): 745–750.

[8] Poplin G S, Miller H B, Ranger-Moore J, et al. International evaluation of injury rates in coal mining: a comparison of risk and compliance-based regulatory approaches[J]. Safety Science, 2008, 46(8): 1196–1204.

[9] Zhang J, Fu J, Hao H, et al. Root causes of coal mine accidents: characteristics of safety culture deficiencies based on accident statistics[J]. Process Safety and Environmental Protection, 2020, 136: 78–91.

[10] Khanzode V V, Maiti J, Ray P K. A methodology for evaluation and monitoring of recurring hazards in underground coal mining[J]. Safety Science, 2011, 49(8): 1172–1179.

[11] Yin W, Fu G, Yang C, et al. Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors: 2000–2014[J]. Safety Science, 2017, 92: 173–179.

[12] Patterson J M, Shappell S A. Operator error and system deficiencies: analysis of 508 mining incidents and accidents from Queensland, Australia using HFACS[J]. Accident Analysis & Prevention, 2010, 42(4): 1379–1385.

[13] Skogdalen J E, Vinnem J E. Quantitative risk analysis offshore—Human and organizational factors[J]. Reliability Engineering & System Safety, 2011, 96(4): 468–479.

[14] Salmon P M. Human factors methods and accident analysis: practical guidance and case study applications[M]. Ashgate Publishing, Ltd., 2011.

[15] 国务院安委办. 国务院安委办出台意见推进构建风险管控隐患治理双重预防机制[EB/OL]. 中华人民共和国中央人民政府安全监管总局网站, 2016. 2021-02-04. http://www.gov.cn/xinwen/2016-10/13/content_5118758.htm.

[16] Endsley M R. Design and evaluation for situation awareness enhancement[J]. Proceedings of the Human Factors Society Annual Meeting, 1988, 32(2): 97–101.

[17] 刘伟, 袁修干. 人机交互设计与评估[M]. 北京: 科学出版社, 2008.

[18] Liu R, Cheng W, Yu Y, et al. Human factors analysis of major coal mine accidents in China based on the HFACS-CM model and AHP method[J]. International Journal of Industrial Ergonomics, 2018, 68: 270–279.

[19] Chen Z, Qiao G, Zeng J. Study on the relationship between worker states and unsafe behaviours in coal mine accidents based on a bayesian networks model[J]. Sustainability, 2019, 11(18): 5021.

[20] Onifade M. Towards an emergency preparedness for self-rescue from underground coal mines[J]. Process Safety and Environmental Protection, 2021, 149: 946–957.

[21] Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations[J]. NeuroImage, 2010, 52(3): 1059–1069.

[22] Carlén M. What constitutes the prefrontal cortex?[J]. Science, 2017, 358(6362): 478–482.

[23] 尼科尔·M·盖奇 伯纳德·J·巴斯. 认知、大脑和意识[M]. 上海: 上海人民出版社, 2015.

[24] Pan Y, Borragán G, Peigneux P. Applications of functional near-infrared spectroscopy in fatigue, sleep deprivation, and social cognition[J]. Brain Topography, 2019, 32(6): 998–1012.

[25] 范维澄, 苗鸿雁, 袁亮, 等. 我国安全科学与工程学科“十四五”发展战略研究[J]. 中国科学基金, 2022, 6(3): 864–870.

[26] 曹庆仁, 李凯, 李静林. 管理者行为对矿工不安全行为的影响关系研究[J]. 管理科学, 2011, 24(6): 71–80.

[27] Li J, Li Y, Liu X. Development of a universal safety behavior management system for coal mine workers[J]. Iranian journal of public health, Tehran University of Medical Sciences, 2015, 44(6): 759–771.

[28] 李红霞, 李思琦. 煤矿工人安全认知与不安全行为关系研究[J]. 煤矿安全, 2017(11): 233–236.

[29] Wang C, Wang J, Wang X, et al. Exploring the impacts of factors contributing to unsafe behavior of coal miners[J]. Safety science, 2019, 115: 339–348.

[30] 李元龙. 煤矿工人心理韧性、安全态度与安全行为的影响关系研究[D]. 北京: 中国地质大学, 2020.

[31] Senapati A, Bhattacherjee A, Chatterjee S. Causal relationship of some personal and impersonal variates to occupational injuries at continuous miner worksites in underground coal mines[J]. Safety Science, 2022, 146: 105562.

[32] 周刚, 程卫民, 诸葛福民, 等. 人因失误与人不安全行为相关原理的分析与探讨[J]. 中国安全科学学报, 2008, 18(3): 10–14.

[33] Wu L, Jiang Z, Cheng W, et al. Major accident analysis and prevention of coal mines in China from the year of 1949 to 2009[J]. Mining Science and Technology (China), 2011, 21(5): 693–699.

[34] 宋泽阳, 任建伟, 程红伟, 等. 煤矿安全管理体系缺失和不安全行为研究[J]. 中国安全科学学报, 2011, 21(11): 128–135.

[35] He G, Zhang H, Qiao G T. Systematic analysis of coal miners’ safety behavior based on system dynamics model[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2014, 556–562: 6232–6235.

[36] Zhang Y, Shao W, Zhang M, et al. Analysis 320 coal mine accidents using structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables[J]. Accident Analysis & Prevention, 2016, 92: 189–201.

[37] Fu G, Xie X, Jia Q, et al. Accidents analysis and prevention of coal and gas outburst: Understanding human errors in accidents[J]. Process Safety and Environmental Protection, 2020, 134: 1–23.

[38] Fa Z, Li X, Qiu Z, et al. From correlation to causality: path analysis of accident-causing factors in coal mines from the perspective of human, machinery, environment and management[J]. Resources Policy, 2021, 73: 102157.

[39] 田水承, 薛明月, 李广利, 等. 基于因子分析法的矿工不安全行为影响因素权重确定[J]. 矿业安全与环保, 2013, 40(5): 113–116.

[40] 田水承, 李停军, 李磊, 等. 基于分层关联分析的矿工不安全行为影响因素分析[J]. 矿业安全与环保, 2013, 40(3): 125–128.

[41] 李琰, 赵梓焱, 田水承, 等. 矿工不安全行为研究综述[J]. 中国安全生产科学技术, 2016, 12(8): 47–54.

[42] Qiao W, Liu Q, Li X, et al. Using data mining techniques to analyze the influencing factor of unsafe behaviors in Chinese underground coal mines[J]. Resources Policy, 2018, 59: 210–216.

[43] 黄辉, 张雪. 煤矿员工不安全行为研究综述[J]. 煤炭工程, 2018, 50(6): 123–127.

[44] 胡利军, 陈建华. 煤矿安全中关键人因失误因素的识别研究[J]. 南华大学学报(社会科学版), 2007, 8(3): 31–34.

[45] 李磊, 田水承, 邓军, 等. 矿工不安全行为影响因素分析及控制对策[J]. 西安科技大学学报, 2011, 31(6): 794–798.

[46] 刘双跃, 陈丽娜, 周佩玲, 等. 矿工不安全行为致因分析及控制[J]. 中国安全生产科学技术, 2013, 9(1): 158–163.

[47] 赵泓超, 田水承, 邓增社, 等. 基于层次分析法的矿工不安全行为后果严重程度研究[J]. 煤炭工程, 2014, 46(7): 117–120.

[48] 田水承, 刘芬, 杨禄, 等. 基于计划行为理论的矿工不安全行为研究[J]. 矿业安全与环保, 2014, 41(1): 109–112.

[49] 田水承, 杨鹏飞, 李磊, 等. 矿工不良情绪影响因素及干预对策研究[J]. 矿业安全与环保, 2016, 43(6): 99–102.

[50] 田水承, 董威松, 沈小清, 等. 基于Netlogo的矿工不安全行为传播仿真研究[J]. 安全与环境学报, 2019, 19(6): 2016–2022.

[51] 李红霞, 任家和. 基于ISM法的矿工不安全行为影响因素分析[J]. 煤炭技术, 2017, 36(8): 296–298.

[52] 李红霞, 李妍雯. 安全信息认知视角下矿工个体安全信息力影响因素研究[J]. 西安科技大学学报, 2019, 39(5): 867–874.

[53] Butlewski M, Dahlke G, Drzewiecka M, et al. Fatigue of miners as a key factor in the work safety system[J]. Procedia Manufacturing, 2015, 3: 4732–4739.

[54] 常悦, 薛利国. 基于层次分析法的矿山监控应用[J]. 山东工业技术, 2016(13): 136–137.

[55] 史德强, 靳波, 陆刚, 等. 某钨矿掘进工作面人因失误评价研究[J]. 中国钨业, 2016, 31(1): 68–73.

[56] Verma S, Chaudhari S. Safety of workers in Indian mines: study, analysis, and prediction[J]. Safety and Health at Work, 2017, 8(3): 267–275.

[57] 席晓娟. 煤矿安全管理体系缺失和不安全行为研究[J]. 能源与节能, 2017(5): 34–37.

[58] 赵梓焱, 李琰, 豆静. 基于成本收益的矿工不安全行为多主体模型构建与分析[D]. 西安: 西安科技大学, 2018.

[59] Wang L, Cao Q, Zhou L. Research on the influencing factors in coal mine production safety based on the combination of DEMATEL and ISM[J]. Safety Science, 2018, 103: 51–61.

[60] 张瑜. 基于本体的矿工不安全行为知识表示和推理研究[D]. 徐州: 中国矿业大学(江苏), 2019.

[61] Cao Q, Yu K, Zhou L, et al. In-depth research on qualitative simulation of coal miners’ group safety behaviors[J]. Safety Science, 2019, 113: 210–232.

[62] 黄知恩, 李明, 廖国礼, 等. 基于HFACS的高原矿山作业疲劳与人因失误率浅析[J]. 黄金科学技术, 2020, 28(4): 610–618.

[63] 牛莉霞, 刘洁, 李乃文. 人因失误驱动力SBM跨层次模型[J]. 中国安全科学学报, 2020, 30(12): 43–51.

[64] 杨雪, 冯念青, 张瀚元, 等. 情感事件视角矿工不安全行为影响因素SD仿真[J]. 煤矿安全, 2020, 51(3): 252–256.

[65] 安宇, 王袆, 李子琪, 等. 基于TPB的矿工不安全行为形成机制[J]. 中国安全科学学报, 2020, 30(10): 24–30.

[66] 吕威建, 吕永卫. 工作负荷与矿工不安全行为的关系研究[J]. 煤炭技术, 2020, 39(12): 181–184.

[67] 李红霞, 樊恒子, 张嘉琦, 等. 智慧矿山工人人因失误影响因素研究[J]. 西安科技大学学报, 2021, 41(6): 1090–1097.

[68] Di H, Sbeih A, Shibly F H A. Predicting safety hazards and safety behavior of underground coal mines[J]. Soft Computing, 2021: 1–13.

[69] Qiao W. Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory[J]. Reliability Engineering & System Safety, 2021, 208: 107433.

[70] Zupanc C M, Burgess-Limerick R J, Wallis G. Performance consequences of alternating directional control-response compatibility: evidence from a coal mine shuttle car simulator[J]. Human Factors, 2007, 49(4): 628–636.

[71] Quick B L, Stephenson M T, Witte K, et al. An examination of antecedents to coal miners’ hearing protection behaviors: A test of the theory of planned behavior[J]. Journal of Safety Research, 2008, 39(3): 329–338.

[72] 赵泓超. 基于生理—心理测量的矿工不安全行为实验研究[D]. 西安: 西安科技大学, 2012.

[73] 田水承, 李磊, 邓军, 等. 基于BioLAB的矿工不安全行为与噪声关系试验研究[J]. 中国安全科学学报, 2013, 23(3): 10–15.

[74] 田水承, 乌力吉, 寇猛, 等. 基于生理实验的矿工不安全行为与疲劳关系研究[J]. 西安科技大学学报, 2016, 36(3): 324–330.

[75] 田水承, 张德桃. 高温联合噪声对矿工不安全行为的影响研究[J]. 煤矿安全, 2019, 050(2): 241–244.

[76] 杨妍. 矿工疲劳与不安全行为的实验研究[D]. 西安: 西安科技大学, 2013.

[77] 张羽. 基于生理测量的疲劳与矿工不安全行为关系研究[D]. 西安: 西安科技大学, 2014.

[78] 吴红玉. 基于生理测量的矿工不安全行为实验研究[D]. 焦作: 河南理工大学, 2016.

[79] 车丹丹. 矿工警觉度对不安全行为的影响研究[D]. 西安: 西安科技大学, 2017.

[80] Yue Y U, Yanyan L V. Application study of BBS on unsafe behavior and psychology of coal miners[J]. NeuroQuantology, NeuroQuantology, 2018, 16(4).

[81] 寇猛. 矿工安全行为能力差异的实验测量研究[J]. 矿业安全与环保, 2018, 045(1): 74–76.

[82] Chen S, Xu K, Zheng X, et al. Linear and nonlinear analyses of normal and fatigue heart rate variability signals for miners in high-altitude and cold areas[J]. Computer Methods and Programs in Biomedicine, 2020, 196: 105667.

[83] Chen S, Xu K, Yao X, et al. Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas[J]. Computers in Biology and Medicine, 2021, 133: 104413.

[84] Chen S, Xu K, Yao X, et al. Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals[J]. Computer Methods and Programs in Biomedicine, 2021, 211: 106451.

[85] 张心怡. 基于本体的矿工不安全行为判识方法研究[D]. 徐州: 中国矿业大学, 2020.

[86] Tong R, Wang X, Zhang N, et al. An experimental approach for exploring the impacts of work stress on unsafe behaviors[J]. Psychology, Health & Medicine, 2021: 1–8.

[87] Li J, Qin Y, Yang L, et al. A simulation experiment study to examine the effects of noise on miners’ safety behavior in underground coal mines[J]. BMC Public Health, 2021, 21(1): 324.

[88] Li J, Wang Z, Qin Y, et al. Study on the influence of an underground low-light environment on human safety behavior[J]. International Journal of Occupational Safety and Ergonomics, 2020: 1–10.

[89] Li B, Wang E, Shang Z, et al. Quantification study of working fatigue state affected by coal mine noise exposure based on fuzzy comprehensive evaluation[J]. Safety Science, 2022, 146: 105577.

[90] 陈庆峰. 矿井皮带区域矿工不安全行为识别方法的研究[D]. 徐州: 中国矿业大学, 2019.

[91] 杨赛烽. 基于Kinect的罐笼内矿工不安全行为识别方法研究[D]. 徐州: 中国矿业大学, 2019.

[92] 佟瑞鹏, 张艳伟. 人工智能技术在矿工不安全行为识别中的融合应用[J]. 中国安全科学学报, 2019, 29(1): 7–12.

[93] 仝泽友. 基于RGB图像的皮带区矿工不安全行为识别研究[D]. 徐州: 中国矿业大学, 2020.

[94] 陈天. 基于改进双流算法的矿工不安全行为识别方法研究[D]. 徐州: 中国矿业大学, 2021.

[95] Ding E, Liu Z, Liu Y, et al. Unsafe Action Recognition of Miners Based on Video Description[C]//IEEE. 2019 IEEE Globecom Workshops (GC Wkshps). 2019: 1–4.

[96] 徐达炜. 基于注意力和人体关键点的井下矿工不安全行为识别算法研究[D]. 徐州: 中国矿业大学, 2021.

[97] Bratt S. Measuring situational awareness aptitude using functional near-infrared spectroscopy[C]//Foundations of Augmented Cognition: 9th International Conference, AC 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings. Springer, 2015, 9183: 244.

[98] Tsunashima H, Yanagisawa K. Measurement of Brain Function of Car Driver Using Functional Near-Infrared Spectroscopy (fNIRS)[J]. Computational Intelligence and Neuroscience, 2009: 164958.

[99] Jeon M, Walker B N, Gable T M. Anger effects on driver situation awareness and driving performance[J]. Presence: Teleoperators and Virtual Environments, 2014, 23(1): 71–89.

[100] Liu T, Pelowski M, Pang C, et al. Near-infrared spectroscopy as a tool for driving research[J]. Ergonomics, 2016, 59(3): 368–379.

[101] Liu T. Positive correlation between drowsiness and prefrontal activation during a simulated speed-control driving task[J]. NeuroReport, 2014, 25(16).

[102] Unni A, Ihme K, Surm H, et al. Brain activity measured with fNIRS for the prediction of cognitive workload[C]//2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). 2015: 349–354.

[103] Foy H J, Runham P, Chapman P. Prefrontal cortex activation and young driver behaviour: a fNIRS study[J]. Plos One, 2016, 11(5): e0156512.

[104] Ahn S, Nguyen T, Jang H, et al. Exploring neuro-physiological correlates of drivers’ mental fatigue caused by sleep deprivation using simultaneous EEG, ECG, and fNIRS data[J]. Frontiers in Human Neuroscience, 2016, 10(219).

[105] 赵越. 可绝对量检测的近红外光谱脑功能成像及疲劳驾驶研究[D]. 成都: 电子科技大学, 2016.

[106] Sirkin D, Martelaro N, Johns M, et al. Toward measurement of situation awareness in autonomous vehicles[C]//Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. New York, NY, USA: Association for Computing Machinery, 2017: 405–415.

[107] Liu Z, Zhang M, Xu G, et al. Effective connectivity analysis of the brain network in drivers during actual driving using near-infrared spectroscopy[J]. Frontiers in Behavioral Neuroscience, 2017, 11: 211.

[108] Xu L, Wang B, Xu G, et al. Functional connectivity analysis using fNIRS in healthy subjects during prolonged simulated driving[J]. Neuroscience Letters, 2017, 640: 21–28.

[109] 王碧天. 基于虚拟现实和近红外脑氧信号的驾驶员脑功能评估技术研究[D]. 济南:山东大学, 2017.

[110] 高原. 无线近红外脑功能成像仪及驾驶疲劳研究[D]. 成都: 电子科技大学, 2017.

[111] 徐功铖. 基于近红外光谱技术的驾驶员注意力分散态脑功能连接特性分析[D]. 济南:山东大学, 2018.

[112] Khan R A, Naseer N, Khan M J. Drowsiness detection during a driving task using fNIRS[J]. Neuroergonomics, 2019: 79–85.

[113] 霍聪聪. 驾驶员误踩操作行为的近红外脑功能效应连接机理分析[D]. 济南: 山东大学, 2019.

[114] Monika, Lohani, Brennan, et al. A review of psychophysiological measures to assess cognitive states in real-world driving[J]. Frontiers in Human Neuroscience, 2019.

[115] Muhundan S, Jeon M. Effects of native and secondary language processing on emotional drivers’ situation awareness, driving performance, and subjective perception[C]//13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. New York, NY, USA: Association for Computing Machinery, 2021: 255–262.

[116] Hu M, Shealy T, Hallowell M, et al. Advancing construction hazard recognition through neuroscience: Measuring cognitive response to hazards using functional near infrared spectroscopy[C]//Construction Research Congress 2018: Safety and Disaster Management - Selected Papers from the Construction Research Congress 2018, 2018: 134–143.

[117] Shi Y, Zhu Y, Mehta R K, et al. A neurophysiological approach to assess training outcome under stress: A virtual reality experiment of industrial shutdown maintenance using functional near-Infrared spectroscopy (fNIRS)[J]. Advanced Engineering Informatics, 2020, 46.

[118] 潘津津, 焦学军, 姜劲, 等. 利用功能性近红外光谱成像方法评估脑力负荷[J]. 光学学报, 2014, 34(11): 344–349.

[119] Hirshfield L, Costa M, Bandara D, et al. Measuring situational awareness aptitude using functional near-infrared spectroscopy[C]//Foundations of Augmented Cognition: 9th International Conference, AC 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings. Cham: Springer International Publishing, 2015: 244–255.

[120] Gateau T, Durantin G, Lancelot F, et al. Real-time state estimation in a flight simulator using fNIRS[J]. Plos One, 2015, 10(3): e0121279.

[121] 姜劲, 焦学军, 潘津津, 等. 利用fNIRS研究情绪状态下的脑力负荷评估[J]. 光学学报, 2016, 36(5): 183–195.

[122] Causse M, Chua Z, Peysakhovich V, et al. Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS[J]. Scientific Reports, 2017, 7(1): 5222.

[123] Dehais F, Dupres A, Flumeri G Di, et al. Monitoring pilot’s cognitive fatigue with engagement features in simulated and actual flight conditions using an hybrid fNIRS-EEG passive BCI[C]//IEEE. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2018: 544–549.

[124] Verdière K J, Roy R N, Dehais F. Detecting pilot’s engagement using fNIRS connectivity features in an automated vs. manual landing scenario[J]. Frontiers in Human Neuroscience, 2018, 12: 6.

[125] Causse M, Chua Z K, Rémy F. Influences of age, mental workload, and flight experience on cognitive performance and prefrontal activity in private pilots: a fNIRS study[J]. Scientific Reports, 2019, 9(1): 7688.

[126] 范诗琪. 远洋船舶驾驶员情绪和工作负荷定量分析及人因失误关联性研究[D]. 武汉:武汉理工大学, 2020.

[127] Fan S, Blanco-Davis E, Zhang J, et al. The role of the prefrontal cortex and functional connectivity during maritime operations: an fNIRS study[J]. Brain and Behavior, 2021, 11(1): e01910.

[128] 高龙龙. 流水单元下基于fNIRS的脑力疲劳对绩效的影响机制与因应[D]. 镇江: 江苏科技大学, 2017.

[129] Fishburn F, Norr M, Medvedev A, et al. Sensitivity of fNIRS to cognitive state and load[J]. Frontiers in Human Neuroscience, 2014, 8: 76.

[130] McKendrick R, Parasuraman R, Murtza R, et al. nto the wild: neuroergonomic differentiation of hand-held and augmented reality wearable displays during outdoor navigation with functional near infrared spectroscopy[J]. Frontiers in Human Neuroscience, 2016, 10.

[131] Aghajani H, Garbey M, Omurtag A. Measuring mental workload with EEG+fNIRS[J]. Frontiers in Human Neuroscience, 2017, 11: 359.

[132] J M, A C, A K, et al. Multimodal cognitive workload assessment using EEG, fNIRS, ECG, EOG, PPG, and Eye-tracking[J]. Frontiers in Human Neuroscience, 2018: 12.

[133] Parent M, Peysakhovich V, Mandrick K, et al. The diagnosticity of psychophysiological signatures: Can we disentangle mental workload from acute stress with ECG and fNIRS?[J]. International Journal of Psychophysiology, 2019, 146: 139–147.

[134] Khan M J, Hong K-S. Passive BCI based on drowsiness detection: an fNIRS study[J]. Biomedical Optics Express, 2015, 6(10): 4063–4078.

[135] Myrden A, Chau T. Effects of user mental state on EEG-BCI performance[J]. Frontiers in Human Neuroscience, 2015, 9: 308.

[136] Nguyen T, Babawale O, Kim T, et al. Exploring brain functional connectivity in rest and sleep states: a fNIRS study[J]. Scientific Reports, 2018, 8(1): 16144.

[137] Borragán G, Guerrero-Mosquera C, Guillaume C, et al. Decreased prefrontal connectivity parallels cognitive fatigue-related performance decline after sleep deprivation. An optical imaging study[J]. Biological Psychology, 2019, 144: 115–124.

[138] Radel R, Brisswalter J, Perrey S. Saving mental effort to maintain physical effort: a shift of activity within the prefrontal cortex in anticipation of prolonged exercise[J]. Cognitive, Affective, & Behavioral Neuroscience, 2017, 17(2): 305–314.

[139] Dehais F, Hodgetts H M, Causse M, et al. Momentary lapse of control: A cognitive continuum approach to understanding and mitigating perseveration in human error[J]. Neuroscience & Biobehavioral Reviews, 2019, 100: 252–262.

[140] 王思锐. 基于近红外光谱技术的情绪识别算法的研究[D]. 兰州: 兰州大学, 2019.

[141] 王恩慧. 基于EEG-fNIRS的情绪识别系统研究[D]. 长春: 吉林大学, 2020.

[142] Zhang H, Zhang Y-J, Lu C-M, et al. Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements[J]. NeuroImage, 2010, 51(3): 1150–1161.

[143] Lu C-M, Zhang Y-J, Biswal B B, et al. Use of fNIRS to assess resting state functional connectivity[J]. Journal of Neuroscience Methods, 2010, 186(2): 242–249.

[144] Geng S J, Liu X Y, Biswal B B, et al. Effect of resting-state fNIRS scanning duration on functional brain connectivity and graph theory metrics of brain network[J]. Frontiers in Neuroscience, 2017, 11: 12.

[145] Wang J, Dong Q, Niu H. The minimum resting-state fNIRS imaging duration for accurate and stable mapping of brain connectivity network in children[J]. Scientific Reports, 2017, 7(1): 6461.

[146] Zhang Y, Zhu C. Assessing brain networks by resting-state dynamic functional connectivity: An fNIRS-EEG study[J]. Frontiers in Neuroscience, 2020, 13: 1430.

[147] Yaqub M A, Woo S-W, Hong K-S. Effects of HD-tDCS on resting-state functional connectivity in the prefrontal cortex: an fNIRS study[J]. Complexity, 2018: 1613402.

[148] Zhu H, Xu J, Li J, et al. Decreased functional connectivity and disrupted neural network in the prefrontal cortex of affective disorders: A resting-state fNIRS study[J]. Journal of Affective Disorders, 2017, 221: 132–144.

[149] Niu H, He Y. Resting-state functional brain connectivity: lessons from functional near-infrared spectroscopy[J]. The Neuroscientist, 2014, 20(2): 173–188.

[150] 赵佳. 基于fNIRS的脑功能连接研究综述[J]. 北京生物医学工程, 2015, 34(6): 633–638.

[151] Ieong H F, Yuan Z. Abnormal resting-state functional connectivity in the orbitofrontal cortex of heroin users and its relationship with anxiety: a pilot fNIRS study[J]. Scientific Reports, 2017, 7(1): 46522.

[152] Hu Z, Liu G, Dong Q, et al. Applications of resting-state fNIRS in the developing brain: a review from the connectome perspective[J]. Frontiers in Neuroscience, 2020.

[153] Raichlen D A, Bharadwaj P K, Fitzhugh M C, et al. Differences in resting state functional connectivity between young adult endurance athletes and healthy controls[J]. Frontiers in Human Neuroscience, 2016, 10: 610.

[154] Racz F S, Mukli P, Nagy Z, et al. Increased prefrontal cortex connectivity during cognitive challenge assessed by fNIRS imaging[J]. Biomedical Optics Express, 2017, 8(8): 3842–3855.

[155] Harrivel A, Weissman D, Noll D, et al. Monitoring attentional state with fNIRS[J]. Frontiers in Human Neuroscience, 2013, 7: 861.

[156] Wang M, Hu Z, Liu L, et al. Disrupted functional brain connectivity networks in children with attention-deficit/hyperactivity disorder: evidence from resting-state functional near-infrared spectroscopy[J]. Neurophotonics, 2020, 7(1): 1–13.

[157] Devaney K J, Levin E J, Tripathi V, et al. Attention and default mode network assessments of meditation experience during active cognition and rest[J]. Brain Sciences, 2021, 11(5).

[158] Bu L, Wang D, Huo C, et al. Effects of poor sleep quality on brain functional connectivity revealed by wavelet-based coherence analysis using NIRS methods in elderly subjects[J]. Neuroscience Letters, 2018, 668: 108–114.

[159] Shirzadi S, Einalou Z, Dadgostar M. Investigation of functional connectivity during working memory task and hemispheric lateralization in left-and right-handers measured by fNIRS[J]. Optik, 2020, 221: 165347.

[160] Chen Y, Tang J, Chen Y, et al. Amplitude of fNIRS resting-state global signal is related to EEG vigilance measures: A simultaneous fNIRS and EEG study[J]. Frontiers in Neuroscience, 2020, 14: 560878.

[161] San Juan J, Hu X-S, Issa M, et al. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS)[J]. Plos One, 2017, 12(6): 1–20.

[162] Zhang Y-J, Lu C-M, Biswal B B, et al. Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy[J]. Journal of Biomedical Optics, 2010, 15(4): 1–8.

[163] Balconi M, Vanutelli M E, Grippa E. Resting state and personality component (BIS/BAS) predict the brain activity (EEG and fNIRS measure) in response to emotional cues[J]. Brain and Behavior, 2017, 7(5): e00686.

[164] Yu L, Long Q, Tang Y, et al. Improving emotion regulation through real-time neurofeedback training on the right dorsolateral prefrontal cortex: evidence from behavioral and brain network analyses[J]. Frontiers in Human Neuroscience, 2021, 15.

[165] 杜炜龙. 基于功能近红外光谱成像的抑郁症患者自动识别[D]. 北京: 北京理工大学, 2015.

[166] Dadgostar M, Setarehdan S K, Shahzadi S, et al. Classfication of schizophrenia using SVM via fNIRS[J]. Biomedical Engineering: Applications, Basis and Communications, 2018, 30(02): 1850008.

[167] Abtahi M, Borgheai S B, Jafari R, et al. Merging fNIRS-EEG brain monitoring and body motion capture to distinguish parkinsons disease[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(6): 1246–1253.

[168] Zhu Y, Gilman J, Evins A E, et al. Detecting cannabis-associated cognitive impairment using resting-state fNIRS[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2019: 146–154.

[169] Yoo S-H, Hong K-S. Hemodynamics analysis of patients with mild cognitive impairment during working memory tasks[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2019: 4470–4473.

[170] Katmah R, Al-Shargie F, Tariq U, et al. Connectivity analysis under mental stress using fNIRS[C]//2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART). 2021: 1–4.

[171] Parshi S, Amin R, Azgomi H F, et al. Mental workload classification via hierarchical latent dictionary learning: A functional near infrared spectroscopy study[C]//2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). 2019: 1–4.

[172] Wang H, Liu X, Li J, et al. Driving fatigue recognition with functional connectivity based on phase synchronization[J]. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13(3): 668–678.

[173] 杨家忠, 张侃. 情境意识的理论模型、测量及其应用[J]. 心理科学进展, 2004, 12(6): 842–850.

[174] Endsley M R, Garland D J. Situation awareness analysis and measurement[M]. New York, NY, USA: CRC Press, 2000.

[175] Greenwood M, Woods H. The incidence of industrial accidents upon individuals with special reference to multiple accidents[M]. London: Her Majesty’s Stationery Office, 1919.

[176] Smillie R J, Ayoub M A. Accident causation theories: A simulation approach[J]. Journal of Occupational Accidents, 1976, 1(1): 47–68.

[177] Neeleman J, Wessely S, Wadsworth M. Predictors of suicide, accidental death, and premature natural death in a general-population birth cohort[J]. The Lancet, 1998, 351(9096): 93–97.

[178] Visser E, Pijl Y J, Stolk R P, et al. Accident proneness, does it exist? A review and meta-analysis[J]. Accident Analysis & Prevention, 2007, 39(3): 556–564.

[179] Day A J, Brasher K, Bridger R S. Accident proneness revisited: The role of psychological stress and cognitive failure[J]. Accident Analysis & Prevention, 2012, 49: 532–535.

[180] Shappell S A, Wiegmann D A. A human error approach to accident investigation: The taxonomy of unsafe operations[J]. The International Journal of Aviation Psychology, 1997, 7(4): 269–291.

[181] Shappell S A, Wiegmann D A. A human error approach to aviation accident analysis[M]. Ashgate Pub Co, 2003.

[182] Lenné M G, Salmon P M, Liu C C, et al. A systems approach to accident causation in mining: An application of the HFACS method[J]. Accident Analysis & Prevention, 2012, 48: 111–117.

[183] Robinson-Riegler B. 认知心理学[M]. 北京: 人民邮电出版社, 2020.

[184] Lewin K. Manual of child psychology-behavior and development as a function of the total situation[M]. Hoboken, NJ, US: John Wiley & Sons Inc, 1946.

[185] 约翰·安德森. 认知心理学及其启示[M]. 北京: 人民邮电出版社, 2012.

[186] 马庆国. 认知神经科学,神经经济学与神经管理学[J]. 管理世界, 2006, 11(10): 139–149.

[187] Newell A, Simon H A. Human problem solving[M]. Prentice-hall Englewood Cliffs, NJ, 1972, 104(9).

[188] 王甦, 汪安圣. 认知心理学[M]. 北京: 北京大学出版社, 1992.

[189] Direct S. Cerebrum-an overview[EB/OL]. 2012, 2021-12-06 https://www. sciencedirect. com/ topics/neuroscience/cerebru.

[190] Jeffrey S. Kreutzer, John DeLuca B C. Encyclopedia of clinical neuropsychology[M]. New York, NY, USA: Springer International Publishing, 2011.

[191] 李晓捷. 人体发育学[M]. 北京: 人民卫生出版社, 2008.

[192] S.Gazzaniga M, Lvry R B, Mangun G R. 认知神经科学[M]. 北京: 中国轻工业出版社, 2020.

[193] Szczepanski S M, Knight R T. Insights into human behavior from lesions to the prefrontal cortex[J]. Neuron, 2014, 83(5): 1002–1018.

[194] Petrides M. Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey[J]. The Journal of Neuroscience, 1995, 15(1): 359 LP – 375.

[195] Aron A R, Robbins T W, Poldrack R A. Inhibition and the right inferior frontal cortex[J]. Trends in Cognitive Sciences, 2004, 8(4): 170–177.

[196] Voytek B, Davis M, Yago E, et al. Dynamic neuroplasticity after human prefrontal cortex damage[J]. Neuron, 2010, 68(3): 401–408.

[197] Chao L L, Knight R T. Contribution of human prefrontal cortex to delay performance[J]. Journal of Cognitive Neuroscience, 1998, 10(2): 167–177.

[198] Daffner K R, Mesulam M M, Scinto L F M, et al. The central role of the prefrontal cortex in directing attention to novel events[J]. Brain, 2000, 123(5): 927–939.

[199] Duncan J. Disorganisation of behaviour after frontal lobe damage[J]. Cognitive Neuropsychology, Routledge, 1986, 3(3): 271–290.

[200] Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Annals of the New York Academy of Sciences, 2020, 1464(1): 5–29.

[201] Cope M, Delpy D T. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination[J]. Medical and Biological Engineering and Computing, 1988, 26(3): 289–294.

[202] 朱朝喆. 近红外光谱脑功能成像[M]. 北京: 科学出版社, 2020.

[203] Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. NeuroImage, 2012, 63(2): 921–935.

[204] Scholkmann F, Kleiser S, Metz A J, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology[J]. NeuroImage, 2014, 85: 6–27.

[205] Wu S-T, Rubianes Silva J A I, Novi S L, et al. Accurate Image-guided (Re)Placement of NIRS Probes[J]. Computer Methods and Programs in Biomedicine, 2020: 105844.

[206] Aydin E A. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces[J]. Computer Methods and Programs in Biomedicine, 2020, 195: 105535.

[207] Raichle M E. Two views of brain function[J]. Trends in Cognitive Sciences, 2010, 14(4): 180–190.

[208] Srinivasan R, Winter W R, Ding J, et al. EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics[J]. Journal of Neuroscience Methods, 2007, 166(1): 41–52.

[209] Irani F, Platek S M, Bunce S, et al. Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders[J]. The Clinical Neuropsychologist, 2007, 21(1): 9–37.

[210] Bunce S C, Izzetoglu M, Izzetoglu K, et al. Functional near-infrared spectroscopy[J]. IEEE Engineering in Medicine and Biology Magazine, 2006, 25(4): 54–62.

[211] M.D. Y H. Functional near-infrared spectroscopy: current status and future prospects[J]. Journal of Biomedical Optics, 2007, 12(6): 1–9.

[212] Ji X, Quan W, Yang L, et al. Classification of schizophrenia by seed-based functional connectivity using prefronto-temporal functional near infrared spectroscopy[J]. Journal of Neuroscience Methods, 2020, 344: 108874.

[213] Aarabi A, Huppert T J. Assessment of the effect of data length on the reliability of resting-state fNIRS connectivity measures and graph metrics[J]. Biomedical Signal Processing and Control, 2019, 54: 101612.

[214] Humphries M D, Gurney K. Network “small-world-ness”: a quantitative method for determining canonical network equivalence[J]. Plos One, 2008, 3(4): e0002051.

[215] Wang M, Yuan Z, Niu H. Reliability evaluation on weighted graph metrics of fNIRS brain networks[J]. Quantitative imaging in medicine and surgery, 2019, 9(5): 832–841.

[216] Qi P, Ru H, Gao L, et al. Neural mechanisms of mental fatigue revisited: New insights from the brain connectome[J]. Engineering, 2019, 5(2): 276–286.

[217] Xu S-Y, Lu F-M, Wang M-Y, et al. Altered functional connectivity in the motor and prefrontal cortex for children with Down’s syndrome: an fNIRS[J]. Frontiers in Human Neuroscience, 2020, 14: 6.

[218] Zhang J, Lin X, Fu G, et al. Mapping the small-world properties of brain networks in deception with functional near-infrared spectroscopy[J]. Scientific Reports, 2016, 6(1): 25297.

[219] Wang M-Y, Lu F-M, Hu Z, et al. Optical mapping of prefrontal brain connectivity and activation during emotion anticipation[J]. Behavioural Brain Research, 2018, 350: 122–128.

[220] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440–442.

[221] Maslov S, Sneppen K. Specificity and stability in topology of protein networks[J]. Science, 2002, 296(5569): 910 LP – 913.

[222] Sporns O, Zwi J D. The small world of the cerebral cortex[J]. Neuroinformatics, 2004, 2(2): 145–162.

[223] Latora V, Marchiori M. Efficient behavior of small-world networks[J]. Physical Review Letters, 2001, 87(19): 198701.

[224] Perpetuini D, Cardone D, Filippini C, et al. Can functional infrared thermal imaging estimate mental workload in drivers as evaluated by sample entropy of the fNIRS signal?[C]//8th European Medical and Biological Engineering Conference. Springer International Publishing, 2021: 223–232.

[225] Liu A, Li B, Wang X, et al. NeuroDesignScience: An fNIRS-based system designed to help pilots sustain attention during transmeridian flights[C]//Intelligent Human Systems Integration 2021. Springer International Publishing, 2021: 165–170.

[226] Harris D, Li W-C. Using neural networks to predict HFACS unsafe acts from the pre-conditions of unsafe acts[J]. Ergonomics, 2019, 62(2): 181–191.

[227] Fuster J M. Role of the forebrain in sensation and behavior-the prefrontal cortex and its relation to behavior[M]. Elsevier, 1991, 87.

[228] Miller E K, Cohen J D. An integrative theory of prefrontal cortex function[J]. Annual Review of Neuroscience, 2001, 24(1): 167–202.

[229] Wang Y, Dai C, Shao Y, et al. Changes in ventromedial prefrontal cortex functional connectivity are correlated with increased risk-taking after total sleep deprivation[J]. Behavioural Brain Research, 2022, 418: 113674.

[230] Nosrati R, Vesely K, Schweizer T A, et al. Event-related changes of the prefrontal cortex oxygen delivery and metabolism during driving measured by hyperspectral fNIRS[J]. Biomedical Optics Express, 2016, 7(4): 1323–1335.

[231] Mirelman A, Maidan I, Bernad-Elazari H, et al. Increased frontal brain activation during walking while dual tasking: an fNIRS study in healthy young adults[J]. Journal of NeuroEngineering and Rehabilitation, 2014, 11(1): 85.

[232] Adrian C, Hasan A. The age of neuroergonomics: towards ubiquitous and continuous measurement of brain function with fNIRS[J]. Japanese Psychological Research, 2018.

[233] Sun W, Wu X, Zhang T, et al. Narrowband resting-state fNIRS functional connectivity in autism spectrum disorder[J]. Frontiers in Human Neuroscience, 2021, 15: 294.

[234] Bassett D S, Bullmore E T. Human brain networks in health and disease[J]. Current Opinion in Neurology, 2009, 22(4): 340–347.

[235] Qing-gui C, Kai L, Ye-jiao L, et al. Risk management and workers’ safety behavior control in coal mine[J]. Safety Science, 2012, 50(4): 909–913.

[236] China C P G of the P R of. Special provisions of the state council on the prevention of production safety accidents in coal mines[EB/OL]. Decree of the State Council of the People’s Republic of China, 2005. 2021-08-30. http://www.gov.cn/gongbao/ content/2005/content_91201.htm.

[237] Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function[J]. Trends in Neurosciences, 1997, 20(10): 435–442.

[238] Ye J C, Tak S, Jang K E, et al. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy[J]. NeuroImage, 2009, 44(2): 428–447.

[239] Duncan A, Meek J H, Clemence M, et al. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy[J]. Physics in Medicine and Biology, 1995, 40(2): 295–304.

[240] Molavi B, Dumont G A. Wavelet-based motion artifact removal for functional near-infrared spectroscopy[J]. Physiological Measurement, 2012, 33(2): 259–270.

[241] Sasai S, Homae F, Watanabe H, et al. A NIRS–fMRI study of resting state network[J]. NeuroImage, 2012, 63(1): 179–193.

[242] Fu G, Mondloch C J, Ding X P, et al. The neural correlates of the face attractiveness aftereffect: A functional near-infrared spectroscopy (fNIRS) study[J]. NeuroImage, 2014, 85: 363–371.

[243] Lin X, Xu S, Ieong H F-H, et al. Optical mapping of prefrontal activity in pathological gamblers[J]. Applied Optics, 2017, 56(21): 5948–5953.

[244] Chan Y L, Ung W C, Lim L G, et al. Automated thresholding method for fNIRS-based functional connectivity analysis: Validation with a case study on Alzheimer’s disease[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(8): 1691–1701.

[245] Baldassarre A, Lewis C M, Committeri G, et al. Individual variability in functional connectivity predicts performance of a perceptual task[J]. Proceedings of the National Academy of Sciences, 2012, 109(9): 3516–3521.

[246] Niu H, Wang J, Zhao T, et al. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy[J]. Plos One, 2012, 7(9): e45771.

[247] Niu H, Li Z, Liao X, et al. Test-retest reliability of graph metrics in functional brain networks: a resting-state fNIRS study[J]. Plos One, 2013, 8(9): e72425.

[248] Einalou Z, Maghooli K, Setarehdan S K, et al. Graph theoretical approach to functional connectivity in prefrontal cortex via fNIRS[J]. Neurophotonics, 2017, 4(4): 1–8.

[249] Cao W, Zhu H, Li Y, et al. The development of brain network in males with autism spectrum disorders from childhood to adolescence: evidence from fNIRS study[J]. Brain Sciences, 2021, 11(1).

[250] Wang M-Y, Zhang J, Lu F-M, et al. Neuroticism and conscientiousness respectively positively and negatively correlated with the network characteristic path length in dorsal lateral prefrontal cortex: A resting-state fNIRS study[J]. Brain and Behavior, 2018, 8(9): e01074.

[251] Ieong H F, Yuan Z. Emotion recognition and its relation to prefrontal function and network in heroin plus nicotine dependence: a pilot study[J]. Neurophotonics, 2018, 5(2): 1–15.

[252] Jiutong Luo, Hui Li, Pui-sze Yeung C C. The association between media multitasking and executive function in Chinese adolescents: Evidence from self-reported, behavioral and fNIRS data[J]. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 2021, 15(2).

[253] Zhao J, Liu J, Jiang X, et al. Linking resting-state networks in the prefrontal cortex to executive function: A functional near infrared spectroscopy study[J]. Frontiers in Neuroscience, 2016, 10: 452.

[254] Chen T, Zhao C, Pan X, et al. Decoding different working memory states during an operation span task from prefrontal fNIRS signals[J]. Biomedical Optics Express, 2021, 12(6): 3495–3511.

[255] Curtis C E, D’Esposito M. Persistent activity in the prefrontal cortex during working memory[J]. Trends in Cognitive Sciences, 2003, 7(9): 415–423.

[256] Kaiser R H, Whitfield-Gabrieli S, Dillon D G, et al. Dynamic resting-state functional connectivity in major depression[J]. Neuropsychopharmacology, 2016, 41(7): 1822–1830.

[257] Korponay C, Pujara M, Deming P, et al. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex[J]. Social Cognitive and Affective Neuroscience, 2017, 12(7): 1169–1178.

[258] Strotzer M. One century of brain mapping using Brodmann areas[J]. Clinical Neuroradiology, 2009, 19(3): 179–186.

[259] Heim S, Eickhoff S B, Ischebeck A K, et al. Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM[J]. Human Brain Mapping, 2009, 30(2): 392–402.

[260] Shallice T, Broadbent D E, Weiskrantz L. Specific impairments of planning[J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 1982, 298(1089): 199–209.

[261] Dimitrakopoulos G N, Kakkos I, Dai Z, et al. Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(4): 740–749.

[262] Alavash M, Doebler P, Holling H, et al. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?[J]. NeuroImage, 2015, 108: 182–193.

[263] Association C N C. China coal industry development annual report 2020[EB/OL]. 2020, 2021-10-25. http://www.coalchina.org.cn/uploadfile/2021/0303/20210303022435291.pdf.

[264] Torquati L, Mielke G I, Brown W J, et al. Shift work and poor mental health: A meta-analysis of longitudinal studies[J]. American Journal of Public Health, 2019, 109(11): e13–e20.

[265] Caruso C C. Negative impacts of shiftwork and long work hours[J]. Rehabilitation Nursing, 2014, 39(1): 16–25.

[266] Thomas M, Sing H, Belenky G, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity[J]. Journal of Sleep Research, 2000, 9(4): 335–352.

[267] Costa C, Mondello S, Micali E, et al. Night shift work in resident physicians: does it affect mood states and cognitive levels?[J]. Journal of Affective Disorders, 2020, 272: 289–294.

[268] Tvaryanas A P, MacPherson G D. Fatigue in pilots of remotely piloted aircraft before and after shift work adjustment.[J]. Aviation, Space, and Environmental Medicine, 2009, 80(5): 454–461.

[269] Pereira H, Fehér G, Tibold A, et al. The impact of shift work on occupational health indicators among professionally active adults: A comparative study[J]. International Journal of Environmental Research and Public Health, 2021, 18(21).

[270] Allahyari T, Rangi N H, Khalkhali H, et al. Occupational cognitive failures and safety performance in the workplace[J]. International Journal of Occupational Safety and Ergonomics, 2014, 20(1): 175–180.

[271] Rouch I, Wild P, Ansiau D, et al. Shiftwork experience, age and cognitive performance[J]. Ergonomics, 2005, 48(10): 1282–1293.

[272] Kazemi R, Haidarimoghadam R, Motamedzadeh M, et al. Effects of shift work on cognitive performance, sleep quality, and sleepiness among petrochemical control room operators[J]. Journal of Circadian Rhythms, 2016, 14: 1.

[273] Legault G, Clement A, Kenny G P, et al. Cognitive consequences of sleep deprivation, shiftwork, and heat exposure for underground miners[J]. Applied Ergonomics, 2017, 58: 144–150.

[274] Esmaily A, Jambarsang S, Mohammadian F, et al. Effect of shift work on working memory, attention and response time in nurses[J]. International Journal of Occupational Safety and Ergonomics, 2020: 1–6.

[275] Kang J, Noh W, Lee Y. Sleep quality among shift-work nurses: A systematic review and meta-analysis[J]. Applied Nursing Research, 2020, 52: 151227.

[276] Maltese F, Adda M, Bablon A, et al. Night shift decreases cognitive performance of ICU physicians[J]. Intensive Care Medicine, 2016, 42(3): 393–400.

[277] Kaliyaperumal D, Elango Y, Alagesan M, et al. Effects of sleep deprivation on the cognitive performance of nurses working in shift[J]. Journal of Clinical and Riagnostic Research : JCDR, 2017, 11(8): CC01–CC03.

[278] Killgore W D S, Grugle N L, Balkin T J. Gambling when sleep deprived: don’t bet on stimulants[J]. Chronobiology International, 2012, 29(1): 43–54.

[279] Legault G. Sleep and heat related changes in the cognitive performance of underground miners: a possible health and safety concern[J]. Minerals, 2011, 1(1).

[280] Ferguson S A, Paech G M, Dorrian J, et al. Performance on a simple response time task: Is sleep or work more important for miners?[J]. Applied Ergonomics, 2011, 42(2): 210–213.

[281] Loudoun R J, Muurlink O, Peetz D, et al. Does age affect the relationship between control at work and sleep disturbance for shift workers?[J]. Chronobiology International, 2014, 31(10): 1190–1200.

[282] Yu H, Chen H, Long R. Mental fatigue, cognitive bias and safety paradox in chinese coal mines[J]. Resources Policy, 2017, 52: 165–172.

[283] Pizarro-Montaner C, Cancino-Lopez J, Reyes-Ponce A, et al. Interplay between rotational work shift and high altitude-related chronic intermittent hypobaric hypoxia on cardiovascular health and sleep quality in Chilean miners[J]. Ergonomics, 2020, 63(10): 1281–1292.

[284] Zhao X-C, Han K-Y, Gao Y-Y, et al. Effects of shift work on sleep and cognitive function among male miners[J]. Psychiatry Research, 2021, 297: 113716.

[285] Lavigne A-A, Hébert M, Auclair J, et al. Good sleep quality and progressive increments in vigilance during extended night shifts: a 14-day actigraphic study in underground miners[J]. Journal of Occupational and Environmental Medicine, 2020, 62(12).

[286] Hulme A, Stanton N A, Walker G H, et al. Accident analysis in practice: A review of Human Factors Analysis and Classification System (HFACS) applications in the peer reviewed academic literature[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2019, 63(1): 1849–1853.

[287] Haidarimoghadam R, Kazemi R, Motamedzadeh M, et al. The effects of consecutive night shifts and shift length on cognitive performance and sleepiness: a field study[J]. International Journal of Occupational Safety and Ergonomics, 2017, 23(2): 251–258.

[288] Zarjam P, Epps J, Lovell N H. Beyond subjective self-rating: EEG signal classification of cognitive workload[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(4): 301–310.

[289] Chen F, Ruiz N, Choi E, et al. Multimodal behavior and interaction as indicators of cognitive load[J]. ACM Trans. Interact. Intell. Syst., 2013, 2(4).

[290] Tian F, Li H, Tian S, et al. Is there a difference in brain functional connectivity between Chinese coal mine workers who have engaged in unsafe behavior and those who have not?[J]. International Journal of Environmental Research and Public Health, 2022, 19(1).

[291] Bose R, Abbasi N I, Thakor N, et al. Cognitive state assessment and monitoring: A brain connectivity perspective[M]. Handbook of Neuroengineering, Singapore: Springer Singapore, 2020.

[292] Urquhart E L, Wang X, Liu H, et al. Differences in net information flow and dynamic connectivity metrics between physically active and inactive subjects measured by functional near-infrared spectroscopy (fNIRS) during a fatiguing handgrip task[J]. Frontiers in Neuroscience, 2020, 14: 167.

[293] Wang J, Wang X, Xia M, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics[J]. Frontiers in Human Neuroscience, 2015, 9: 386.

[294] Mingrui Xia , Jinhui Wang Y H. BrainNet viewer: a network visualization tool for human brain connectomics[J]. Plos One, 2013, 8(7): e68910.

[295] Evans D A, Beckett L A, Albert M S, et al. Level of education and change in cognitive function in a community population of older persons[J]. Annals of Epidemiology, 1993, 3(1): 71–77.

[296] Xu P, Wei R, Cheng B, et al. The association of marital status with cognitive function and the role of gender in Chinese community-dwelling older adults: a cross-sectional study[J]. Aging Clinical and Experimental Research, 2021, 33(8): 2273–2281.

[297] Lim J, Dinges D F. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables[J]. Psychological bulletin, 2010, 136(3): 375–389.

[298] Bae S-H, Fabry D. Assessing the relationships between nurse work hours/overtime and nurse and patient outcomes: Systematic literature review[J]. Nursing Outlook, 2014, 62(2): 138–156.

[299] Rhéaume A, Mullen J. The impact of long work hours and shift work on cognitive errors in nurses[J]. Journal of Nursing Management, 2018, 26(1): 26–32.

[300] Dolan M, Park I. The neuropsychology of antisocial personality disorder[J]. Psychological Medicine, 2002, 32(3): 417–427.

[301] Özdemir P G, Selvi Y, Özkol H, et al. The influence of shift work on cognitive functions and oxidative stress[J]. Psychiatry Research, 2013, 210(3): 1219–1225.

[302] Dreher J-C, Koechlin E, Tierney M, et al. Damage to the Fronto-Polar Cortex Is Associated with Impaired Multitasking[J]. Plos One, 2008, 3(9): e3227.

[303] Rolls E T. The functions of the orbitofrontal cortex[J]. Brain and Cognition, 2004, 55(1): 11–29.

[304] Chen J, Wang H, Hua C, et al. Graph analysis of functional brain network topology using minimum spanning tree in driver drowsiness[J]. Cognitive Neurodynamics, 2018, 12(6): 569–581.

[305] Li R, Nguyen T, Potter T, et al. Dynamic cortical connectivity alterations associated with Alzheimer’s disease: An EEG and fNIRS integration study[J]. NeuroImage: Clinical, 2019, 21: 101622.

[306] Haavisot M-L, Porkka-heiskanen T, Hublin C, et al. Sleep restriction for the duration of a work week impairs multitasking performance[J]. Journal of Sleep Research, 2010, 19(3): 444–454.

[307] Zohar D, Tzischinsky O, Epstein R, et al. The effects of sleep loss on medical residents’ emotional reactions to work events: a cognitive-energy model[J]. Sleep, 2005, 28(1): 47–54.

[308] Chang C-C, Lin C-J. LIBSVM: a library for support vector machines[J]. ACM transactions on intelligent systems and technology (TIST), 2011, 2(3): 1–27.

[309] 汪灿华. 基于静息态fMRI脑功能连接的ASD辅助诊断智能算法研究[D]. 南昌: 南昌大学, 2020.

[310] 杨艳丽. 基于静息态fMRI的功能连接分析方法研究[D]. 太原: 太原理工大学, 2012.

[311] Sadeghi M, Khosrowabadi R, Bakouie F, et al. Screening of autism based on task-free fMRI using graph theoretical approach[J]. Psychiatry Research: Neuroimaging, 2017, 263: 48–56.

[312] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.

[313] Ande. MATLAB实现LIBSVM中的c和g的参数寻优[EB/OL]. CSDN, 2019. 2022-01-25. https://blog.csdn.net/qq_35166974/article/details/89889262.

中图分类号:

 X921    

开放日期:

 2024-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式