- 无标题文档
查看论文信息

论文中文题名:

 全介质超材料器件的设计及其电磁特性研究    

姓名:

 岳帅    

学号:

 21201104027    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070207    

学科名称:

 理学 - 物理学 - 光学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 物理学    

研究方向:

 太赫兹光子学    

第一导师姓名:

 王豆豆    

第一导师单位:

 西安科技大学    

第二导师姓名:

 郭长立    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-05-31    

论文外文题名:

 Design of fully dielectric metamaterial devices and their electro-magnetic characterization    

论文中文关键词:

 全介质超材料 ; 连续域束缚态 ; 太赫兹 ; 多极子散射能量 ; 折射率传感    

论文外文关键词:

 All-dielectric metamaterials ; Continuous domain bound state ; Terahertz ; Multipole scattering energy ; Refractive index sensing    

论文中文摘要:

全介质超材料可以实现更低的损耗、更高的透射率以及良好的半导体工艺兼容性。这些优势使得全介质超材料在提升传感器灵敏度、增强光电转换效率以及改善光学装置性能等方面有着巨大的应用潜力。研究发现基于连续域束缚态(BIC)的超材料具有超高的品质因数(Q值)。因此,设计支持BIC的全介质超材料,不仅能够有效的避免金属吸收损耗,而且可以通过BIC增强光和物质的相互作用。将所设计的全介质超材料应用到通讯波段以及太赫兹(THz)波段,根据不同波段的电磁特性,在生物和化学传感等领域有潜在的应用前景。本论文通过将BIC理论与全介质超材料相结合,设计了三种全介质超材料传感器,利用有限元方法对全介质超材料的多极子散射能量和模场分布等电磁特性进行了研究。主要研究内容如下:

(1)设计了一种基于裂环谐振器的高Q值太赫兹连续域束缚态全介质超材料传感器。该传感器由排列在正方形单元结构中的裂环谐振器(SRR)周期性阵列组成,其中SRR结构由硅制成,衬底选用二氧化硅。通过改变其中两个SRR之间的距离破坏该全介质超材料结构对称性,获得了由BIC泄漏引起的准连续域束缚态(准BIC)谐振,该全介质超材料传感器的Q值高达2420。通过计算多极子能量散射分布以及模拟该超材料在谐振处的模场图表明该谐振由电四极子激发引起。通过对该超材料的传感性能进行模拟和分析,当待测物折射率在1.00至1.04变化时,传感器的折射率灵敏度为254.8GHz/RIU,并且FOM达到509.6。并且研究了结构参数对谐振频率的影响规律。

(2)设计了一种基于钽酸锂(LiTaO3)的高Q值太赫兹连续域束缚态全介质超材料生物传感器。该传感器由排列在长方形单元结构中的相连十字周期性阵列组成,其中相连十字由钽酸锂制成,衬底选用二氧化硅。通过改变一侧十字的长度破坏该全介质超材料的结构对称性,获得了准BIC谐振。该全介质超材料传感器的Q值高达1370。通过研究该传感器在谐振频率处的多极子散射能量分布和模场分布,该谐振由电四极子激发引起。针对冠心病标志物甘油三酯(TG),在亚太赫兹波段其折射率范围为2.08-2.12,所设计超材料谐振频率与折射率呈线性关系,传感器获得了91GHz/RIU的平均折射率灵敏度。

(3)设计了一种基于硒化锑-硅的连续域束缚态可调谐全介质超材料传感器。所提出全介质超材料由两个空心矩形槽的周期性结构组成。其中介质层选用硅,衬底选用二氧化硅。该超材料可以通过改变缝隙之间的间距来激发准BIC共振。基于电磁场的空间分布和感应电流的多极展开,证实了这个准BIC共振是由磁四极子响应引起的。通过在结构上层引入Sb2Se3薄膜,设计了Sb2Se3-Si全介质超材料,并系统地研究了其调制特性。当Sb2Se3从非晶相转换为晶相时,谐振的透过率由0转变为80%,实现了该谐振峰的动态可调。当待测物折射率范围为1.00-1.04时,该传感器的平均折射率灵敏度为130nm/RIU。

综上所述,本论文分别设计了三种不同结构的全介质超材料传感器,并且研究了在太赫兹波段和通讯波段所具有的电磁特性以及传感性能。所设计的结构均激发准BIC谐振使其具有很高的Q值,在气体以及生物传感领域有应用前景。研究结论为研制THz波段以及通讯波段的全介质超材料传感器提供了理论指导。

论文外文摘要:

All-dielectric metamaterials enable lower losses, higher transmittance and good semiconductor process compatibility. These advantages make all-dielectric metamaterials have great potential for application in enhancing the sensitivity of sensors, strengthening the photoelectric conversion efficiency, and improving the performance of optical devices. Metamaterials based on continuous domain bound states (BIC) are found to have ultra-high quality factors (Q-values). Therefore, the design of all-media metamaterials supporting BIC not only effectively avoids metal absorption loss, but also enhances the interaction between light and matter through BIC. The application of the designed fully dielectric metamaterials to the communication band as well as to the terahertz (THz) band, depending on the electromagnetic properties of the different bands, has potential applications in fields such as biological and chemical sensing. In this thesis, three kinds of all-dielectric metamaterial sensors are designed by combining the BIC theory with all-dielectric metamaterials, and electromagnetic properties such as multipole scattering energy and mode field distribution of all-dielectric metamaterials are investigated by using the finite element method. The main research contents are as follows:

(1) A high-Q terahertz continuous-domain bound-state all-dielectric metamaterial sensor based on split-ring resonators has been designed. The sensor consists of a periodic array of split-ring resonators (SRRs) arranged in a square cell structure, where the SRR structure is made of silicon and the substrate is chosen to be silicon dioxide. By changing the distance between two of the SRRs to break the symmetry of this all-dielectric metamaterial structure, a quasi-continuous domain bound state (QBIC) resonance induced by continuum-domain bound state (BIC) leakage is obtained, and the Q value of this all-dielectric metamaterial sensor is as high as 2420. Calculation of the multipole energy scattering distribution and simulation of the mode field diagram of the metamaterial at the resonance indicate that the resonance is induced by electric quadrupole excitation. By simulating and analyzing the sensing performance of the metamaterial, the refractive index sensitivity of the sensor is 254.8 GHz/RIU and the FOM reaches 509.6 when the refractive index of the object to be measured varies from 1.00 to 1.04. The influence of structural parameters on the resonance frequency is also studied.

(2) A high-Q terahertz continuous-domain bound-state fully dielectric metamaterial biosensor based on LiTaO3 was designed. The sensor consists of a periodic array of interlocking crosses arranged in a rectangular cell structure, where the interlocking crosses are made of LiTaO3 and the substrate is chosen from silicon dioxide. The QBIC resonance was obtained by breaking the structural symmetry of this all-dielectric metamaterial by changing the length of the cross on one side. The Q value of this all-dielectric metamaterial sensor is as high as 1370. By studying the multipole scattering energy distribution and mode field distribution of this sensor at the resonance frequency, which is caused by electric quadrupole excitation. For triglyceride (TG), a marker of coronary heart disease, its refractive index ranges from 2.08-2.12 in the Asia-Pacific Hertz band, and the resonance frequency of the designed metamaterials is linearly related to the refractive index, and the sensor obtains an average refractive index sensitivity of 91 GHz/RIU.

(3) A continuous-domain bound-state tunable fully dielectric metamaterial sensor based on antimony-silicon selenide is designed. The proposed fully dielectric metamaterial consists of a periodic structure with two hollow rectangular slots. In which silicon is chosen for the dielectric layer and silicon dioxide for the substrate. This metamaterial can excite a QBIC resonance by changing the spacing between the slits. Based on the spatial distribution of the electromagnetic field and the multipolar unfolding of the induced current, we confirm that this QBIC resonance is caused by the magnetic quadrupole response. Sb2Se3-Si fully dielectric metamaterials were designed by introducing Sb2Se3 thin films in the upper layers of the structure, and their modulation properties were systematically investigated. When Sb2Se3 is converted from the amorphous phase to the crystalline phase, the transmittance of the resonance is transformed from 0 to 80%, which realizes the dynamic tunability of this resonance peak. The average refractive index sensitivity of this sensor is 130 nm/RIU when the refractive index range of the object to be measured is 1.00-1.04.

In summary, in this thesis, three all-medium metamaterial sensors with different structures are designed, and the electromagnetic properties and sensing performance in terahertz and communication bands are investigated. The designed structures all excited the QBIC resonance to have high Q value, which is promising for gas and biological sensing applications. The conclusions of the study provide theoretical guidance for the development of all-media metamaterial sensors in the THz and communication bands.

参考文献:

[1] Savinov V, Fedotov V A, Zheludev N I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials [J]. Physical Review B, 2014, 89 (20): 205112.

[2] Ginn J C, Brener I, Peters D W, et al. Realizing optical magnetism from dielectric metamaterials [J]. Physical Review Letters, 2012, 108 (9): 097402.

[3] Decker M, Staude I. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics [J]. Journal of Optics, 2016, 18 (10): 103001.

[4] Liu Y, Zhang X. Metamaterials: a new frontier of science and technology [J]. Chemical SocietyReviews, 2011, 40(5): 2494-2507.

[5] Silveirinha M G. Metamaterial homogenization approach with application to the characterization of microstrctured composites with negative parameters [J]. Physical Review B, 2007, 75(11): 115104.

[6] Shelton D J, Brener I, Ginn J C, et al. Strong coupling between nanoscale metamaterials andphotons [J]. Nano Letters, 2011, 11(5): 2104-2108.

[7] Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces [J]. Nature Reviews Materials, 2017, 2(5):17010.

[8] Yu N, Capasso F. Flat optics with designer metasurfaces [J]. Nature Materials, 2014, 13(2): 139-150.

[9] Droulias S, Jain A, Koschny T, et al. Fundamentals of metasurface lasers based on resoant darkstates [J]. Physical Review B, 2017, 96(15): 155143.

[10] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of a refraction [J]. Science, 2001, 292(5514): 77–79.

[11] SCHURIG D, MOCK J J, JUSTICE B J,et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801), 977-980.

[12] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314 (5801): 977-980.

[13] Fang N, Lee H, Sun C, et al. Sub–diffraction-limited optical imaging with a silver superlens [J]. Science, 2005, 308 (5721): 534-537.

[14] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Physical Review Letters, 2008, 100 (20): 207402.

[15] 张建国. 超材料中太赫兹波传输特性的理论分析及应用研究[D].山西大学, 2020.

[16] Tao H, Bingham C M, Strikwerda A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization [J]. Physical Review B, 2008, 78 (24): 241103.

[17] Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials [J]. Science, 2011, 331 (6015): 290-291.

[18] Choi M, Lee S H, Kim Y, et al. A terahertz metamaterial with unnaturally high refractive index [J]. Nature, 2011, 470 (7334): 369-373.

[19] Zi J C, Li Y F, Feng X, et al. Dual-functional terahertz waveplate based on all-dielectric metamaterial [J]. Physical Review Applied, 2020, 13 (3): 034042.

[20] Nie P C, Zhu D Y, Cui Z J, et al. Sensitive detection of chlorpyrifos pesticide using an all-dielectric broadband terahertz metamaterial absorber [J]. Sensors and Actuators B-Chemical, 2020, 307: 127642.

[21] Huang Z L, Wang J F, Liu Z H, et al. Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface [J]. Journal of Physical Chemistry C, 2015, 119 (50): 28127-28135.

[22] Moitra P, Slovick B A, Li W, et al. Large-scale all-dielectric metamaterial perfect reflectors [J]. ACS Photonics, 2015, 2 (6): 692-698.

[23] Bi K, Yang D Q, Chen J, et al. Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials [J]. Photonics Research, 2019, 7 (4): 457-463.

[24] Jahani S, Jacob Z. All-dielectric metamaterials [J]. Nature Nanotechnology, 2016, 11 (1): 23-36.

[25] Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review [J]. Advanced Photonics, 2019, 1 (2): 024002.

[26] Bi K, Wang Q M, Xu J C, et al. All-dielectric metamaterial fabrication techniques [J]. Advanced Optical Materials, 2021, 9 (1): 2001474.

[27] Li J, Ma T. Magnetic toroidal dipole resonances with high quality factor in all-dielectric Metamaterial [J]. Optics Communications,2021,507,127621.

[28] Xu C, Wen H F. Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing [J]. Optics Letters,2019,44(23):5876-5879.

[29] Wang Y L,Han Z H,Qin J Y,et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface [J]. Nanophotonics,2021, 10(4): 1295–1307.

[30] Fleming J W. High-Resolution Submillimeter-Wave Fourier-Transform Spectrometry of Gases [J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(12):1023-1025.

[31] Auston D H, NussM C. Electrooptic generation and detection of femtosecond electrical transients [J]. IEEE J Quantum Electron, 1988, 24(2), 184-197.

[32] 赵国忠. 太赫兹科学技术研究的新进展 [J]. 国外电子测量技术, 2014, 33(2):1-6.

[33] 刘小明, 俞俊生, 陈晓东. 毫米波及太赫兹准光学技术:理论、应用与发展 [J]. 太赫兹科学与电子信息学报, 2022, 20(7): 631-652.

[34] 刘盛纲, 钟任斌. 太赫兹科学技术及其应用的新发展[J]. 电子科技大学学报, 2009, 38(05): 481-486.

[35] 李恩晨,徐红新,谢振超,等. 太赫兹技术在航天计量测试领域的应用及挑战[J]. 中国航天, 2018, 468(10): 22-28.

[36] 叶麾, 郄明蓉, 曹寒雨, 等. 太赫兹技术在医学科学中的应用及研究进展[J]. 光电工程, 2018, 45(05): 4-13.

[37] Knight J C, Broeng J, Birks T A, et al. Photonic band gap guidance in optical fibers [J]. Science, 1998, 282(5393): 1476-1478.

[38] Koshelev K L, Sadrieva Z F, Shcherbakov A A, et al. Bound states of the continuum in photonic structures [J]. Physics Uspekhi, 2021, 66(5):494-517.

[39] NeumannJ V, Wigner E. Über das Verhalten von Eigenwerten bei adiabatischenProzessen [J]. Nippon Sugaku-Buturigakkwaishi, 1929, 3(2): 239-242.

[40] Herrick D R. Construction of bound states in the continuum for epitaxial heterostructure superlattices [J]. Physica B+C, 1976, 85(1): 44-50.

[41] Stillinger F H. Potentials supporting positive-energy eigenstates and their application to semiconductor heterostructures [J]. Physica B+C, 1976, 85(2): 270-276.

[42] Capasso F, Sirtori C, Faist J, et al. Observation of an electronic bound state above a potential well [J]. Nature (London), 1992, 358(6387): 565-567.

[43] Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum [J]. Nature reviews Materials, 2016, 1(9):16048.

[44] Koshelev K, Favraud G, Bogdanov A, et al. Nonradiating photonics with resonant dielectric nanostructures [J]. Nanophotonics (Berlin, Germany), 2019, 8(5): 725-745.

[45] Bulgakov E N, Maksimov D N. Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods [J]. Physical review. A, 2017, 96(6):063833.

[46] Dreisow F, Szameit A, Heinrich M, et al. Adiabatic transfer of light via a continuum in optical waveguides [J]. Optics Letters, 2009, 34(16):2405-2407.

[47] Moiseyev N. Suppression of feshbach resonance widths in two-dimensional waveguides and quantum dots: a lower bound for the number of bound states in the continuum [J]. Physical review letters, 2009, 102(16): 167404.

[48] Hsu C W, Zhen B, Lee J, et al. Observation of trapped light within the radiation continuum [J]. Nature, 2013, 499(7457): 188-191.

[49] Fan S, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators [J]. Journal of the Optical Society of America. A, Optics, image science, and vision, 2003, 20(3): 569-572.

[50] Azzam S I, Kildishev A V. Photonic Bound States in the Continuum: From Basics to Applications [J]. Advanced Optical Materials, 2021, 9(1): 2001469.

[51] Koshelev K, Lepeshov S, Liu M, et al. Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum [J]. Physical review letters,2018, 121(19): 193903.

[52] Weimann S, Xu Y, Keil R, et al. Compact surface Fano states embedded in the continuum of waveguide arrays [J]. Physical review letters, 2013, 111(24): 240403.

[53] Kodigala A, Lepetit T, Gu Q, et al. Lasing action from photonic bound states in continuum [J]. Nature, 2017, 541(7636): 196-199.

[54] Ha S T, Fu Y H, Emani N K, et al. Directional lasing in resonant semiconductor nanoantenna arrays [J]. Nature nanotechnology, 2018, 13(11): 1042-1047.

[55] Mylnikov V, Ha S T, Pan Z, et al. Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes [J]. ACS Nano, 2020, 14(6): 7338-7346.

[56] Wood R W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum [J]. The London, Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1902, 4(21): 396-402.

[57] Wood R W. Anomalous diffraction gratings [J]. Physical Review, 1935, 48(12): 928-36.

[58] Rayleigh. On the dynamical theory of gratings [J]. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1907, 79(532): 399-416.

[59] Fano U. Some theoretical considerations on anomalous diffraction gratings [J]. Physical Review, 1936, 50(6).

[60] Fano U. On the anomalous diffraction gratings II [J]. Physical Review, 1937, 51(4).

[61] Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves) [J]. Journal of the Optical Society of America, 1941, 31(3): 213-222.

[62] Hessel A, Oliner A A. A new theory of wood anomalies on optical grating [J]. Applied Optics, 1965, 4(10): 1275-1297.

[63] De Abajo F J G. Colloquium: Light scattering by particle and hole arrays [J]. Reviews of Modern Physics, 2007, 79(4): 1267-1290.

[64] Fano U. Effect of configurational interaction on strength and phase shifts [J]. Physical Review, 1961, 124(6).

[65] Sarrazin M, Vigneron J P, Vigoureux J M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes [J]. Physical Review B, 2003, 67(8):85415.

[66] Limonov M F, Rybin M V, Poddubny A N, et al. Fano resonances in photonics [J]. Nature Photonics, 2017, 11(9): 543-554.

[67] Fong K Y, Fan L R, Jiang L, et al. Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems [J]. Physical Review A, 2014, 90(5):051801.

[68] Holfeld C P, Loser F, Sudzius M, et al. Fano resonances in semiconductor superlattices [J]. Physical Review Letters, 1998, 81(4): 874-877.

[69] Fan P Y, Yu Z F, Fan S H, et al. Optical Fano resonance of an individual semiconductor nanostructure [J]. Nature Materials, 2014, 13(5): 471-475.

[70] Hadjiev V G, Zhou X J, Strohm T, et al. Strong superconductivity-induced phonon self-energy effects in Hg Ba2Ca3Cu4O10+delta [J]. Physical Review B, 1998, 58(2): 1043-1050.

[71] Yang H J, Zhao D Y, Chuwongin S, et al. Transfer-printed stacked nanomembrane lasers on silicon [J]. Nature Photonics, 2012, 6(9): 615-620.

[72] Rybin M V, Khanikaev A B, Inoue M, et al. Bragg scattering induces Fano resonance in photonic crystals [J]. Photonics and Nanostructures-Fundamentals and Applications, 2010, 8(2): 86-93.

[73] Zhou W D, Zhao D Y, Shuai Y C, et al. Progress in 2D photonic crystal Fano resonance photonics [J]. Progress in Quantum Electronics, 2014, 38(1): 1-74.

[74] Chong K E, Hopkins B, Staude I, et al. Observation of Fano Resonances in All-Dielectric Nanoparticle Oligomers [J]. Small, 2014, 10(10): 1985-90.

[75] Luk'yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials [J]. Nature Materials, 2010, 9(9): 707-15.

[76] Vercruysse D, Zheng X Z, Sonnefraud Y, et al. Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion [J]. Acs Nano, 2014, 8(8): 8232-8241.

[77] Fedotov V A,Papasimakis N, Plum E., et al.Spectral Collapse in Ensembles of Metamolecules [J]. Phys Rev Lett 2010,104, 223901.

[78] Fan J A, Bao K, Wu C. H, et al.Fano-like Interference in Self-Assembled Plasmonic Quadrumer Clusters [J]. Nano Lett 10,2010, 4680-4685.

[79] Gallinet B, Martin O J, Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials [J]. Physics Review B,2011,83, 235427.

[80] Joe Y S, Satanin A M,Kim C S.,Classical analogy of Fano resonances [J]. Physics Scripta 2006,74, 259-266.

[81] Bai Z Y, Hang C,Huang G X,Classical analog of electromagnetically induced transparency [J]. Physics.2012, 70, 37-41.

[82] Rdescu E E, Vaman G.Exact calculation of the angular momentum loss, recoil force,and radiation intensity for an arbitrary source in terms of electric,magnetic, and toroid multipoles [J]. Physical Review E, 2002, 65(4): 046609.

[83] Bahsarin A A, Kafesaki M, Economou E N, et al. Dielectric metamaterials with toroidal dipolar response [J]. Physical Review X, 2014, 5(1):1–11.

[84] Coggon J H. Electromagnetic and electrical modeling by thefinite elemet method [J]. Geophysics, 1971,36(1):132-155.

[85] 金建铭.电磁场有限元方法 [M].西安电子科技大学出版社, 1998.

[86] Johnson S G, Mekis A, Fan S, et al. Molding the flow of light [M]. Princeton University Press, 2007.

[87] Smith D R, Vier D C, Koschny T, et al. Electromagnetically parameter retrieval from inhomogeneous metamaterials [J]. Physical Review E, 2005, 71(03): 036617.

[88] Jeong J, Goldflam M D, Campione S, et al. High quality factor toroidal resonances in dielectric metasurfaces [J]. ACS Photonics, 2020, 7(7): 1699-1707.

[89] Liu L, Li Z, Cai C Y, et al. High-Q hybridized resonance in a plasmonic metasurface of asymmetric aligned magnetic dipoles [J]. Applied Physics Letters, 2020, 117(8): 081108.

[90] Kodigala A, Lepetit T, Gu Q, et al. Lasing action from photonic bound states in continuum [J]. Nature, 2017, 541(7636): 196-199.

[91] Cong L Q, Singh R. Symmetry-protected dual bound states in the continuum in metamaterials [J]. Advanced Optical Materials, 2019, 7(13): 1900383.

[92] Melik-Gaykazyan E, Koshelev K, Choi J H, et al. From Fano to quasi-BIC resonances in individual dielectric nanoantennas [J]. Nano Letters, 2021, 21(4): 1765-1771.

[93] Forouzmand A, Mosallaei H. All-dielectric C-shaped nanoantennas for light manipulation: tailoring both magnetic and electric resonances to the desire [J]. Advanced Optical Materials, 2017, 5(14): 1700147.

[94] Liu M K, Powell D A, Guo R, et al. Polarization-induced chirality in metamaterials via optomechanical interaction [J]. Advanced Optical Materials, 2017, 5(16): 1600760.

[95] Wang Y L, Han Z H, Du Y, et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface [J]. Nanophotonics, 2021, 10(4): 1295-1307.

[96] Jahani S, Jacob Z. All-dielectric metamaterials [J]. Nature Nanotechnology, 2016, 11(1): 23-36.

[97] Ma T, Huang Q P, He H C, et al. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range [J]. Optics Express, 2019, 27(12): 16624-16634.

[98] Fu X J, Cui T J. Recent progress on metamaterials: from effective medium model to real-time information processing system [J]. Progress in Quantum Electronics, 2019, 67: 100223.

[99] Bi K, Wang Q M, Xu J C, et al. All-dielectric metamaterial fabrication techniques [J]. Advanced Optical Materials, 2021, 9(1): 2001474.

[100] Bi K, Yang D Q, Chen J, et al. Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials [J]. Photonics Research, 2019, 7(4): 457-463.

[101] Li H, Yu S L, Yang L, et al. High Q-factor multi-Fano resonances in all-dielectric double square hollow metamaterials [J]. Optics & Laser Technology, 2021, 140: 107072.

[102] Yang Y M, Kravchenko I I, Briggs D P, et al. All-dielectric metasurface analogue of electromagnetically induced transparency [J]. Nature Communications, 2014, 5: 5753.

[103] 张星源, 谷建强, 师文桥. 基于金属裂环谐振器的太赫兹连续域束缚态超表面[J]. 中国激光, 2023, 50(2): 0214001.

[104] Wu P C, Liao C Y, Savinov V, et al. Optical anapole metamaterial [J]. ACS Nano, 2018, 12(2): 1920-1927.

[105] Wang D,Zhang Y, Han J,et al. Quantification of triglyceride levels in fresh human blood byterahertz time-domain spectroscopy [J].Scientific Reports.2021,11,13209.

[106] Roth G A,Mensah G A,Johnson C O,et al. Global Burden of Cardiovascular Diseases and Risk Factors 1990-2019: Update From the GBD 2019 Study [J].J Am Coll Cardiol,2020, 76, 2982–3021.

[107] Kolovou G,Kolovou V, Koutelou M,et al. Atherosclerotic and Non-Atherosclerotic Coronary Heart Disease in Women [J].Curr Med Chem,2015, 22, 3555–3564.

[108] Achenbach S,Daniel W G.Noninvasive coronary angiography-an acceptable alternative [J]. N Engl J. Med,2001,345, 1909–1910.

[109] Elnabawi Y A, Dey A K,Mehta N N.Emerging Applications of Coronary CT Angiography in Coronary Heart Disease: GettingBetter with Time [J].Eur Heart J,2018, 39, 3682–3684.

[110] Habib A, Anower S, Abdulrazak L F, et al. Hollow core photonic crystal fiber for chemical identification in terahertz regime [J].Optical Fiber Technology,2019, 52, 101933.

[111] Wang J, Lindley-Hatcher H, Chen X, et al. THz Sensing of Human Skin: A Review of Skin Modeling Approaches [J].Sensors,2021, 21, 3624.

[112] Cong L Q , Tan S, Yahiaoui R, et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers:a comparison with the metasurfaces [J].Applied Physics Letters, 2015, 106(3):311107.

[113] Farmani A, Mir A, Bazgir M, et al. Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: Numerical study [J]. Physica E-Low-dimensional systems and nanostructures, 2018, 104, 233-240.

[114] Song M,Feng L,Huo P, et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface [J]. Nature Nanotechnol, 2023, 18, 71–78.

[115] Wang Y, Zhao C, Wang J, et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces [J]. Sci ence Advances, 2021, 7(4):eabe4553.

[116] Kim M, Lee D, Yang Y,et al. Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces [J].Nature Communication, 2022, 13(1): 2036.

[117] Algorri J, Dell’Olio F, Ding Y, et al. Experimental demonstration of a silicon-slot quasi-bound state in the continuum in near-infrared all-dielectric metasurfaces [J]. Optics and Laser Technology, 2023, 161, 109199.

[118] Li H, Xing J, Shi Y, et al. Performance analysis and optimization of high Q-factor toroidal resonance refractive index sensor based on all-dielectric metasurface [J].Optics and Laser Technology, 2023 ,157, 108752.

[119] Abujetas D R, Barreda A, Moreno F, et al. High-Q transparency band in all-dielectric metasurfaces induced by a quasi bound state in the continuum [J]. Laser Photonics Reviews, 2021, 15, 2000263.

[120] Fang C, Yang Q, Yuan Q, et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electronic Advances,2021,4, 200030-200031.

[121] Joseph S,Pandey S,Sarkar S,et al. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications [J]. Nanophotonics, 2021, 10, 4175–4207.

[122] Azzam S I, Kildishev A V. Photonic bound states in the continuum: from basics to applications [J]. Advanced Optical Materials, 2021, 9, 2001469.

[123] Kang M, Liu T, Chan C, et al. Applications of bound states in the continuum in photonics [J]. Nature Reviews Physics, 2023, 1–20.

[124] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum [J], Physical Review Letters, 2014, 113, 257401.

[125] Koshelev K, Lepeshov S, Liu M, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum [J].Physical Review Letters, 2018,121, 193903.

[126] Shi T, Deng Z L, Tu Q A, et al.Displacement-mediated bound states in the continuum in all-dielectric superlattice metasurfaces [J], PhotoniX, 2021,2, 1–10.

[127] Delaney M, Zeimpekis I, Lawson D,et al. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3 [J]. Advanced Functional Materals, 2020, 30, 2002447.

[128] Palik E D. Handbook of Optical Constants of Solids vol. 3 [J]. Academic press, 1998.

中图分类号:

 O437    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式