- 无标题文档
查看论文信息

题名:

 低渗高瓦斯煤层注气驱替多元气体非线性渗流机制研究    

作者:

 宋金锁    

学号:

 22220226093    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

导师姓名:

 樊世星    

导师单位:

 西安科技大学    

提交日期:

 2025-06-18    

答辩日期:

 2025-06-07    

外文题名:

 Research on Nonlinear Seepage Mechanism of Multi element Gas Displacement by Gas Injection in Low permeability and High gas Coal Seam    

关键词:

 注气驱替 ; 渗透率 ; 吸附 ; 渗流    

外文关键词:

 Gas injection displacement ; Permeability ; Adsorption ; Seepage.    

摘要:

我国煤层地质构造复杂、围岩应力高、含水率大,导致煤层渗透性普遍较低,对煤层气开发、瓦斯治理、煤矿生产和安全管理造成诸多挑战。为提升煤层渗透性,提出了多种煤层增渗改造技术,其中注气驱替煤层CH4技术在改善渗透性、提高煤层气回收率方面展现出良好的效果。然而,煤储层注气增产机理研究已积累较多成果,但受限于低渗透煤岩孔隙-裂隙双重介质的强非均质性,注气过程中N2/CO2与CH4在多场耦合作用下的竞争吸附-渗流传输机制仍未完全阐明。因此,有必要建立符合实际条件的气体渗流模型,以精准解析气体运移规律,优化钻孔布局,提高瓦斯抽采效率,从而为煤层气高效开发提供可行依据。研究成果如下:

(1)基于粘滞流、Knudsen扩散及表面扩散机理,结合有效孔隙半径、单重分形维数及气体吸附模型,构建适用于实际条件下的煤心纳米孔隙/微裂隙中气体(He/N2/CH4 /CO2)运移的表观渗透率关系式,通过修正Forchheimer方程,推导出纳米孔隙/微裂隙气体渗流数学模型,从而确定单组分气体在煤心内的渗流范围。

(2)对比分析不同温度和压力条件下单组分气体密度、动力粘度、压缩因子、气体分子平均直径及平均自由程,探讨气体分子物理性质随温度和压力的变化规律,明确温度与压力对于单组分气体影响程度;结合低温氮气吸附实验与高压压汞实验,联合表征某矿某煤层煤样孔隙结构特征,基于单重分形维数方法,确定了该煤样吸附孔的分形维数为2.722,渗流孔的分形维数为2.754,表明其中孔和大孔的结构复杂且不规则,为数学模型的提供了基础支持。

(3)开展气体吸附实验,研究粉状煤和煤心对气体的吸附特性,引入过剩吸附量、绝对吸附量及吸附面积等关键参数,对比分析Langmuir方程与BET方程在表征气体吸附行为方面的适用性,进一步探讨吸附模型与实际吸附过程之间的差异,并筛选Langmuir压力和Langmuir吸附量表征煤心中气体吸附浓度的表征指标,为数学模型的建立提供可靠的数据支撑。

(4)基于准静态实验方法体系开展单组分气体渗流实验,通过引入煤心渗透率、气体渗透性系数、Forchheimer方程、启动压力梯度、雷诺数等多维度参数,研究启动压力梯度、粘滞阻力及吸附力对于气体渗流行为的影响,探讨煤心中气体非线性渗流的成因。气体在煤心中的运移过程存在临界压力并确定其具体数值,同时深入分析该临界压力的形成机制。本研究验证了纳米孔隙/微裂隙表观渗透率关系式、纳米孔隙/微裂隙内渗流模型的准确性和可靠性,表明上述模型能够较为准确地描述煤心中的渗流行为,为注气驱替煤层CH4的现场应用提供了重要的理论依据。

外文摘要:

China's coal seam geological structure is complex, with high surrounding rock stress and high-water content, resulting in generally low coal seam permeability, which poses many challenges to coalbed methane development, gas control, coal mine production, and safety management. In order to improve the permeability of coal seams, various coal seam permeability enhancement and transformation technologies have been proposed, among which the gas injection displacement of coal seam CH4 technology has shown good results in improving permeability and increasing coalbed methane recovery rate. However, there have been many achievements in the study of the mechanism of gas injection for increasing production in coal reservoirs. However, due to the strong heterogeneity of the dual media of low-permeability coal rock pores and fractures, the competitive adsorption permeation transport mechanism of N2/CO2 and CH4 under multi field coupling during gas injection has not been fully elucidated. Therefore, it is necessary to establish a gas permeation model that meets practical conditions to accurately analyze gas migration laws, optimize drilling layout, improve gas extraction efficiency, and provide feasible basis for efficient development of coalbed methane. The research results are as follows:

(1) Based on the mechanisms of viscous flow, Knudsen diffusion, and surface diffusion, combined with effective pore radius, single fractal dimension, and gas adsorption model, an apparent permeability model suitable for gas (He/N2/CH4/CO2) migration in coal core nanopores/microcracks under actual conditions is constructed. By modifying the Forchheimer equation, a mathematical model for gas permeation in nanopores/microcracks is derived to determine the range of single component gas permeation in coal core.

(2) Compare and analyze the density, dynamic viscosity, compression factor, average diameter of gas molecules, and average free path of single component gases under different temperature and pressure conditions, explore the changes in physical properties of gas molecules with temperature and pressure, and clarify the degree of influence of temperature and pressure on single component gases; By combining low-temperature nitrogen adsorption experiments and high-pressure mercury intrusion experiments, the pore structure characteristics of a coal sample from a certain mine and coal seam were characterized. Based on the single fractal dimension method, the fractal dimension of the adsorption pores in the coal sample was determined to be 2.722, and the fractal dimension of the seepage pores was 2.754, indicating that the structure of the pores and macropores is complex and irregular, providing basic support for the mathematical model.

(3) Conduct gas adsorption experiments to study the adsorption characteristics of powdered coal and coal cores for gases, introduce key parameters such as excess adsorption capacity, absolute adsorption capacity, and adsorption area, compare and analyze the applicability of Langmuir equation and BET equation in characterizing gas adsorption behavior, further explore the differences between adsorption models and actual adsorption processes, and screen Langmuir pressure and Langmuir adsorption capacity as characterization indicators for gas adsorption concentration in coal cores, providing reliable data support for the establishment of mathematical models.

(4) Based on the quasi-static experimental method system, single component gas permeation experiments were conducted. By introducing multidimensional parameters such as coal core permeability, gas permeability coefficient, Forchheimer equation, starting pressure gradient, Reynolds number, etc., the effects of starting pressure gradient, viscous resistance, and adsorption force on gas permeation behavior were studied, and the causes of nonlinear gas permeation in coal core were explored. The migration process of gas in coal core has a critical pressure and its specific value is determined. At the same time, the formation mechanism of this critical pressure is analyzed in depth. This study verified the accuracy and reliability of the relationship between apparent permeability of nanopores/microcracks and the flow model within nanopores/microcracks, indicating that the above models can accurately describe the flow behavior in coal cores, providing important theoretical basis for the field application of gas injection to replace CH4 in coal seams.

参考文献:

[1]国家应急管理部. 煤矿安全规程[M]. 煤炭工业出版社, 2022: 77-78.

[2]陈建伟. “十四五”时期页岩气煤层气勘探开发利用的思考[J]. 中文科技期刊数据库(全文版)工程技术, 2022(10): 3

[3]丛钰洲, 翟成, 丁熊, 等. 煤层钻孔内注入液氮过程中的传热传质规律及煤损伤分析[J]. 煤炭学报, 2023, 48(8): 3128.

[4]刘志伟. 低渗煤层高压水射流割缝强化瓦斯抽采技术研究[J]. 中国安全生产科学技术, 2019, 15(7): 75-80.

[5]赵方钰, 邓泽, 王海超, 等. 煤体结构与宏观煤岩类型对煤体吸附/解吸瓦斯的影响[J]. 煤炭科学技术, 2022, 50(12): 170-184.

[6]Wang Y W, Yuan H H, Gao M Z, et al. Fracture law of different overlying strata in mining of protective seam under close distance coal seam [J]. Energy Science & Engineering, 2023, 11(3): 1336-1348.

[7]李云鹏, 张宏伟, 苏怀瑞, 等. 复杂坚硬岩层井上下联合水力压裂控制技术研究[J]. 采矿与安全工程学报, 2023, 40(04): 704-713.

[8]周雷, 彭雨, 卢义玉, 等. 基于物质点法的深部煤层气水力割缝卸压解吸增透规律数值模拟研究[J]. 煤炭学报, 2022, 47(09): 3298-3309.

[9]李潜, 李海波, 傅帅旸 等. 高地应力下双孔爆破成缝最优孔间距研究[J]. 岩石力学与工程学报, 2025, 44(03): 678-690.

[10]聂百胜, 马正韬, 柳先锋, 等. 基于液电效应的高强电爆震致裂页岩试验研究[J]. 中国矿业大学学报, 2024, 53(04): 623-633.

[11]贾进章, 邢迎欢, 李斌, 等. 液态CO2相变爆破孔网参数优化研究[J]. 安全与环境学报, 2023, 23(06): 1868-1879.

[12]姜延航, 周露函, 白刚 等. 煤层注热CO2驱替CH4特性实验研究[J]. 中国安全生产科学技术, 2022,18(10): 70-77.

[13]Gu H L, Tao M, Li X B, et al. Dynamic response and meso-deterioration mechanism of water-saturated sandstone under different porosities[J]. Measurement, 2021, 167: 1-12.

[14]Gu H L, Tao M, Li X B, et al. Dynamic response and meso-deterioration mechanism of water-saturated sandstone under different porosities[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 162.

[15]Wang Meixia, Yang Weimin, Zhou Zongqing, et al. Experi mental study on fractal characteristics of fault filling medium in the tunnel and relationship between fractal dimension and per meability coefficient[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(1): 6.

[16]宋鑫, 舒龙勇, 王斌, 等. 低瓦斯赋存高强度开采煤层驱替促抽技术研究[J]. 采矿与安全工程学报, 2023, 40(04): 847-856.

[17]Shu L Y, Wang K, Liu Z S, et al. A novel physical model of coal and gas mechanism: insights into the process and initiation criterion of outbursts[J]. Fuel, 2022, 32: 124305.

[18]宋鑫, 舒龙勇, 王斌, 等. 低瓦斯赋存高强度开采煤层驱替促抽技术研究[J]. 采矿与安全工程学报, 2023, 40(03): 847-856.

[19]蒋延行, 白刚, 周西华, 等. 煤层注CO2驱替CH4影响因素试验研究[J]. 中国安全科学学报, 2022, 32(04): 113-121.

[20]Gong H R, Wang K, Wang G D, et al. Underground coal seam gas displacement by injecting nitrogen: field test and effect predictions[J]. Fuel, 2021, 306: 121646.

[21]林海飞, 季鹏飞, 孔祥国, 等. 我国低渗煤层井下注气驱替增流抽采瓦斯技术进展及前景展望[J]. 煤炭学报, 2023, 48(02): 730-749.

[22]杨天鸿, 陈立伟, 杨宏民, 等. 注二氧化碳促排煤层瓦斯机制转化过程实验研究[J]. 东北大学学报:自然科学版, 2020, 41(05): 6.2020-05-003.

[23]刘辉辉, 林柏泉, 蒋长宝, 等. 煤体渗透率对多重应力敏感性研究[J]. 采矿与安全工程学报, 2023, 40(04): 818-825.

[24]Feng P F, Tan L G, Cao Y C, et al. Fiber scale numerical investigations on water droplet dynamics on gas diffusion layers [J]. International Journal of Hydrogen Energy, 2021, 46(70): 34912-34923.

[25]Nicholas S, Harrington J, Ziegler K J, et al. Effects of electrode support structure on electrode microstructure, transport properties, and gas diffusion within the gas diffusion layer [J]. ACS Omega, 2022, 7(34): 29832-29839.

[26]Ira Y, Bakhshan Y, Khorshidimalahmadi J. Effect of wettability heterogeneity and compression on liquid water transport in gas diffusion layer coated with microporous layer of PEMFC [J]. International Journal of Hydrogen Energy, 2021, 46(33): 17397-17413.

[27]Jaebong S, Minsoo K, Hwanyeong O, et al. The effect of gas diffusion layer on electrochemical effective reaction area of catalyst layer and water discharge capability [J]. Renewable Energy, 2022, 197: 932-942.

[28]Wang X L, Wang W K, Qu Z G, et al. Surface roughness dominated wettability of carbon fiber in gas diffusion layer materials revealed by molecular dynamics simulations [J]. International Journal of Hydrogen Energy, 2021, 46(52): 26489-26498.

[29]豆帅威, 张玉东, 韩豪施, 等. 纳米通道气体流动的实验研究[J]. 传感器与微系统, 2025, 44(03): 54-57

[30]Qian J H, Li Y H, Wu H A, et al. Surface morphological effects on gas transport through nanochannels with atomically smooth walls[J]. Carbon, 2021, 180: 85-91.

[31]Zeng Fanhui, Zhang Yu, Guo Jianchun, et al. Prediction of shale apparent liquid permeability based on fractal theory[J]. Energy & Fuels, 2020, 34(6): 6822-6833.

[32]唐明云, 张海路, 段三壮, 等. 基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J]. 煤炭科学技术, 2021, 49(5): 8.

[33]Miao Feng, Wu Di, Chen Xintong, et al. CO2 storage in organic nanopores with varying widths: Molecular simulation and simplified local density model[J]. Science of the Total Environment, 2024, 907: 168024.

[34]Liu Dameng, Yao Yanbin, Chang Yanhai. Measurement of adsorption phase densities with respect to different pressure: Potential application for determination of free and adsorbed methane in coalbed methane reservoir[J]. Chemical Engineering Journal, 2022,446:137103.

[35]董银涛, 鞠斌山, 刘楠楠. 页岩甲烷高压等温吸附模型评价与改进[J]. 煤炭学报, 2020, 45(9): 11.

[36]Wang Yang, Cheng Hong-Fei, Hu Qin-Hong, et al. Adsorption of methane onto mudstones under supercritical conditions: Mechanisms, physical properties and thermodynamic parameters[J]. Petroleum Science, 2023, 20(1): 34-47.

[37]李俊辉, 张海涛, 王俊杰. 吸附势理论在煤层气吸附行为中的应用研究[J]. 煤炭学报, 2021, 46(7): 2022-2033.

[38]Wei Yunsheng, Wang Junle, Liu Chuxi. A smart productivity evaluation method for shale gas wells based on 3D fractal fracture network model [J]. Petroleum Exploration and Development, 2021,48(48): 911-920.

[39]Wang C, Gao J, Zhang X. Effect of mixed acid fluid on the pore structure of high rank coal and acid fluid optimization[J]. ACS omega, 2022, 37(7): 33280-33294.

[40]Cheng Xiaoxi, Cheng Yuanping, Wang Chenghao, Hu Biao, Wang Jia. Calculation methods on methane adsorption phase density in coal: A critical review and new insights[J]. Chemical Engineering Journal, 2023, 472: 144778.

[41]田海彤, 郭耀骏, 赵妍舒, 等. 双组分阳离子染料在壳聚糖生物炭上的竞争吸附机理研究[J]. 应用化工, 2024, 53(07): 1540-1545.

[42]Liu H H, Liu J L, Xue S, et al. Insight into difference in high-pressure adsorption-desorption of CO2and CH4 from low permeability coal seam of Huainan-Huaibei coalfield, China[J]. Journal of Environmental Chemical Engineering, 2022, 10: 108846.

[43]王公达, 陈善文, 孙峰, 等. 抽采衰竭期注气增压强采欠压瓦斯技术研究[J]. 煤炭科学技术, 2021, 49(08): 125-130

[44]钟光海, 李跃刚, 李生杰. 基于改进的BET多层吸附模型的深层页岩吸附气含量测井评价方法 [J]. 测井技术, 2024, 48(01): 84-93.

[45]朱令起, 桑明明, 杜嘉齐, 等. 基于吸附势理论的煤吸附CO超临界模型构建[J]. 煤矿安全, 2020, 53(09), 25-30.

[46]何季民, 袁梅, 刘丁菱, 等. 酸化作用对无烟煤微观结构及吸附特性的影响研究[J]. 煤矿安全, 2024,55: 1.

[47]Zhou, S. N., & Liu, X. Diffusion and linear seepage theory in coal seams: A review of gas migration in coal reservoirs [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021,43(6), 774-785.

[48]Wu Hao, Yao Yanbin, Liu Dameng, et al. An analytical model for coalbed methane transport through nanopores coupling multiple flow regimes [J]. Journal of Natural Gas Science and Engineering, 2020,82: 1188-1202.

[49]Phillip M, Juan J. Random knotting in fractal ring polymers[J]. Macromolecules, 2022, 55(18): 8409-8417.

[50]周世宁. 瓦斯在煤层中流动的机理[J]. 煤炭学报, 1990, (1): 15-24.

[51]吴世跃. 煤层瓦斯扩散与渗流规律的初步探讨[J]. 山西矿业学院学报, 199(3): 259-263.

[52]姚池, 邵玉龙, 杨建华, 等. 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报, 2020, 42(06): 1050-1058.

[53]刘伟韬, 赵吉园, 孔德斌, 等. 基于非线性渗流理论的破裂岩体突水危险性量化方法[J]. 煤炭学报, 2024, 49(11): 44520-4541.

[54]高旭华. 深层页岩气多场耦合非线性渗流例分析及产能预测[D]. 北京: 北京科技大学, 2023.

[55]Shaoyang Geng, Qigui Wang, Runhua Zhu, et al. Experimental and numerical investigation of Non-Darcy flow in propped hydraulic fractures: Identification and characterization[J]. Gas Science and Engineering, 2024, 121, 205171.

[56]Ngameni, K.L., Bandyopadhyay, et al. Statistical analysis of experimental studies of non-Darcy flow in proppant packs[J]. Energy, 2022,217, 110727.

[57]杜殿发, 张耀祖, 张莉娜, 等. 页岩气藏渗流机理研究进展[J]. 非常规油气, 2021, 8(3): 1-9.

[58]陈帅, 李波波, 张尧, 等. 页岩气储层微观渗流机理研究[J].中国科学:技术科学, 2021, 51(5): 580-590.

[59]Chen Y, Wang H, Li T, et al. Evaluation of geothermal development considering proppant embedment in hydraulic fractures[J]. Journal of Natural Gas Science and Engineering, 2020, 82: 103519.

[60]VALLETTI N, BUDRONI M A, ALBANESE P, et al. Hydrodynamically-enhanced transfer of dense non-aqueous phase liquids into an aqueous reservoir[J]. Water Research, 2023, 231: 119608.

[61]陈明君, 康毅力, 张廷山, 等. 页岩气多尺度传质特征及过程协调机制研究[J].中国科学技术, 2018,48(5): 473-487.

[62]Villazon G G M, Sigal R F, Civan F, et al. Parametric Investigation of Shale Gas Production Considering Nano-Scale Pore Size Distribution, Formation Factor, and Non-Darcy Flow Mechanisms[J]. Society of Petroleum Engineers, 2011.

[63]Huikun Cai, Zhaoyang Li, Yidong Lu, et al. Theoretical research on high-efficiency region in cryogenic micro flow heat transfer based on thermal and viscous Knudsen numbers[J]. Case Studies in Thermal Engineering, 2024(60): 104758.

[64]Swami V, Clarkson C R, Settari A. Non-Darcy Flow in Shale Nanopores: Do We Have a Final Answer? [M]. Society of Petroleum Engineers, 2012: 8-20.

[65]李冬冬. 页岩气藏多重介质渗流规律研究[D]. 青岛: 中国石油大学(华东), 2020.

[66]Luo Xianping, Zhang Yongbing, Zhou Hepeng, et al. Pore structure characterization and seepage analysis of ionic rare earth orebodies based on computed tomography images. International Journal of Mining Science and Technology. 2022, 32(2): 411-421.

[67]程小蛟. CO2驱替煤层CH4非线性渗流机制及演化规律研究[D]. 西安: 西安科技大学, 2022.

[68]吴克柳, 李相方, 陈掌星. 页岩纳米孔吸附气表面扩散机理和数学模型[J]. 中国科学:技术科学, 2015(5): 16.

[69]吴世跃. 煤层中的耦合运动理论及其应用-具有吸附作用的气固耦合运动理论[M]. 北京: 科学出版社, 2009: 30-35

[70]Smith, J. A., & Liu, X. Improvement of Clausius-Clapeyron relation for high-pressure phase transition. Journal of Chemical Thermodynamics, 2022,45(3), 215-229.

[71]Shaoyang G, Qigui W, Runhua Z, et al. Experimental and numerical investigation of Non-Darcy flow in propped hydraulic fractures: Identification and characterization[J]. Gas Science and Engineering,2024,121.

[72]王付勇, 赵久玉. 微裂缝油-气-水多相流动力学机制与规律[J]. 中南大学学报(自然科学版), 2021. 55(11): 3990-3998.

[73]王德明. 矿井通风与安全[M]. 徐州: 中国矿业大学出版社, 2012: 200-230.

[74]中华人民共和国质量监督检验检疫总局, 煤的工业分析方法[M]. 北京: 中国标准出版社. GB/T30732-2014: 5.

[75]中华人民共和国质量监督检验检疫总局, 压汞法和气体吸附法测定固体材料孔径分布和孔隙度[M].北京: 中国标准出版社. GB/T 21650.2-2008: 6.

[76]Yang, X., & Li, Z. Gibbs adsorption isotherms and their application in the characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023,649, 128-136.

[77]冯雪磊, 马凤山, 赵海军, 等. 断层影响下的页岩气储层水力压裂模拟研究[J]. 工程地质学报, 2020,28(4): 372-380.

[78]赵海军, 魏爱华, 张家祥, 等. 基于氮气吸附法和压汞法的玄武岩孔隙结构特征及其对储层渗透性的影响[J]. 第四纪研究, 2023, 43(2): 560-572.

[79]张旭,李明. 煤层的多尺度性、随机性和自相似性特征分析[J]. 煤炭学报, 2022, 47(9): 2147-2155.

[80]孟婷婷. 详述土壤颗粒体积单重分形理论模型计算过程[J]. 科技与创新, 2021,(2): 2.

[81]Thommes M, Physical adsorption characterization of nanoporous materials[J]. Chemie Ingenieur Technik, 2010,82(7):1059-1-73.

[82]胡彪. 煤中多尺度孔隙结构的甲烷吸附行为特征及其微观影响机制[D]. 徐州: 中国矿业大学,2022: 57.

[83]煤炭科学研究总院西安研究院, 煤的高压等温吸附试验方法[S]. 北京: 全国煤炭标准化技术委员会. GBT 19560-2008.

[84]吴世跃. 煤层中的耦合运动理论及其应用-具有吸附作用的气固耦合运动理论[M]. 北京: 科学出版社, 2009: 30-80.

[85]Ruppel T C, Grein C T, Bienstock D. Adsorption of methane/ethane mixtures on dry coal at elevated pressure[J]. Fuel, 1972, 51(4):297-303.

[86]Françoise Rouquerol, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids[M]. 北京: 化工出版社, 2014, 32-46.

[87]Rexer T F, Mathia E J, Aplin A C, et al. High-Pressure Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated Kerogens[J]. Energy And Fuels, 2014, 28(5): 2886-2901.

[88]闫长辉, 田园媛, 邓虎成, 等. 页岩吸附特征及机理[M]. 北京: 科学出版社, 2016: 20-70.

[89]Langmuir I. THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. [J]. Journal of Chemical Physics, 2015, 40(9): 1361-1403.

[90]李洋. 鄂尔多斯盆地东缘煤层原地应力测试研究[D]. 西安: 西安工业大学, 2014.

[91]王环玲, 徐卫东. 致密岩石渗透测试与渗流力学特性[M]. 北京: 科学出版社, 2015: 24-55.

[92]吴凡, 孙黎娟, 乔国安, 等. 气体渗流特征及启动压力规律的研究[J]. 天然气工业, 2001, 21(1): 82-84.

[93]林瑞泰. 多孔介质传热传质引论[M]. 北京: 科学出版社, 1995: 10-32.

中图分类号:

 TD712    

开放日期:

 2027-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式