- 无标题文档
查看论文信息

论文中文题名:

 角质残植煤中角质体解离特性与分子结构系统研究    

姓名:

 刘雷    

学号:

 18113079001    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 081902    

学科名称:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿物加工工程    

研究方向:

 化石能源洁净利用    

第一导师姓名:

 杜美利    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Dissociative characteristics and molecular structure of cutinite isolated from cutinitic liptobiolith    

论文中文关键词:

 角质残植煤 ; 解离特征 ; 角质体 ; 小分子组成 ; 热解产物 ; 分子结构    

论文外文关键词:

 Cutinitic Liptobiolith ; Dissociative Features ; Cutinite ; Small Molecules ; Pyrolysates ; Molecular Structure    

论文中文摘要:

角质残植煤是以富氢组分角质体为主体的特殊稀缺煤种,对其解离特征、富集规律、分子结构的系统研究对于实现富氢组分含量丰富的煤炭资源清洁加工、高效转化与分质利用方面具有重要意义。本文运用光学显微镜(MSP)、高分辨透射电子显微镜(HRTEM)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、固态核磁共振波谱(13C NMR)、色谱−质谱(GC−MS)、图像识别技术等现代分析测试技术,从宏观、微观、超微、化学等多个维度,深入剖析了我国康滇古陆周围典型角质残植煤中角质体的岩石、生物和化学等三重属性;运用分形几何、颗粒学方法系统研究了角质残植煤中角质体的解离特性;结合溶剂萃取研究了角质残植煤中角质体单组分的小分子组成及其变化规律;通过热解研究了角质残植煤中角质体单组分的热解产物(气、液、固)组成及其演变规律;融合溶剂萃取、波谱分析、结构剥层和分子模拟方法构建了角质残植煤中角质体的化学结构模型,系统分析了不同热演化程度角质体的分子结构差异。

对角质残植煤赋存特征、破碎特征及单组分富集规律研究发现,煤中角质体含量高达70−88%,显微镜下角质体呈褶皱或盘肠状包裹均质镜质体,部分以条带状、细脉状、网状嵌布于镜质组中,少量以浸染状混杂在镜质组中或嵌布于矿物中;角质体最佳解离粒度为0.125−0.074 mm,分选密度为1.07−1.22 g/cm3 ;随着破碎粒度减小,角质体长宽比和凸度减小,球度和分形维数增大;煤阶较高的攀枝花煤中角质体长宽比和凸度较小,而球度和分形维数较大;煤阶较低的禄劝煤中角质体破碎特征与其相反。

对角质体单组分溶剂抽提产物及萃余物研究得知,角质体中小分子主要包括直链烷烃(C12−C18)、芳烃(烷基苯、烷基萘及其衍生物)、酯类化合物、脂肪酸(C16−C18)及酚类化合物;较低煤阶角质体含有较多羧酸类、烷烃,较高煤阶角质体含有较多芳烃、酮及环烷烃;与角质体相比,萃余物中脂肪结构侧链变短、脂肪率降低、芳香度升高、化学结构稳定性降低;萃余物热解产物中缩合芳烃及脂肪烃的相对含量增加,酚类和单环芳烃的相对含量降低,溶剂萃取有利于脂肪烃的产生而不利于轻质芳烃的生成。

对角质体单组分热解产物研究证实,较低煤阶角质体热稳定性较差,烯烃芳构化和苯酚还原剧烈,热解产物中含较多的二氧化碳、甲烷和苯,而较高煤阶角质体的热解产物中含较多的一氧化碳和乙烯;角质体的液态热解产物主要包括苯、烷基苯、烷基萘、烷基酚以及正构烷烃和正构烯烃衍生物,热解芳烃多为1−2环,热解烷烃主要为C10−C20直链烷烃和C7−C10环烷烃衍生物;热解烷烃和杂原子化合物的相对丰度随热解温度升高而降低,环烷烃和芳烃随温度的升高而增加,而烯烃则随温度的升高先增加后降低。

对角质体单组分和热解残渣结构剥层研究揭示,角质体的芳香结构主要为苯和萘,较高煤阶角质体含有相对丰富的多环芳烃,芳香结构尺寸大,石墨化缺陷低,有序度高,螺旋位错(π−π)的碳结构层丰富;角质体中芳香结构尺寸随温度升高而增加,不同尺寸芳香结构含量随温度演化的拐点不同,苯和萘的演化规律呈增−降−增,而蒽的演化规律与其相反,取向度则呈无序−有序。

对角质体单组分分子结构研究表明,较低煤阶角质体的芳香度较低,脂肪链较长且羧酸和酯含量丰富;角质体在煤化过程中侧链数量增加且变短,羰基含量降低,芳烃含量增加;两种不同煤阶角质体结构模型分子式为C195H231N3O32(禄劝角质残植煤中角质体)、C205H218N4O25(攀枝花角质残植煤中角质体),对应的分子量为3128.98、3138.00。

论文外文摘要:

Cutinitic liptobiolith is regarded as a special scarce coal with hydrogen-rich cutinite as the main maceral. The systematic study on the dissociation features, enrichment law and molecular structure of cutinite is of great significance for the clean processing, efficient transformation and high value-added utilization of coal resources with richer hydrogen  macerals. The petrological, biological and chemical properties (macro, micro, ultra micro, chemical dimensions, etc) of macerals isolated from cutinitic liptobiolith on the west side of West Sichuan Central Yunnan oldland in China were analyzed by High-resolution transmission electron microscope (HRTEM), Nuclear magnetic resonance spectroscopy (13C NMR), Image recognition technology and so on. The dissociation features of cutinite in cutinitic liptobiolith were systematically studied by means of fractal geometry and powder technology. Combined with solvent extraction and modern testing technology, the small molecular composition and change of cutinite were studied, and the composition and evolution law of pyrolysates were explored. The structural model of cutinite was constructed by combining solvent extraction, pyrolysis, spectroscopy parameters, fringe extraction and molecular simulation, and the structural evolution features of cutinite with different coal-rank were analyzed. This study can improve the systematic cognition of its macromolecular structure and also is one part of a study that seeks to establish new perspectives on the relationships between coal structure and reactivity.

The study on the occurrence characteristics, crushing features and enrichment law of cutinite in cutinitic liptobiolith showed that the content of cutinite can reach 70−88%. Under the microscope, the telocollinites were wrapped with cutinite of the folds and gut shapes. Some cutinites were embedded in vitrinite with the strip, veinlet and network, and a small amount were mixed in vitrinite or embedded in minerals in disseminated form. The optimum dissociation particle size of cuticle was 0.125−0.074 mm, and the separation density of cutinite was 1.07−1.22 g/cm3. With the reduction of particle sizes, the aspect ratio and convexity of cutinite decreased, and the sphericity and fractal dimension increased. The aspect ratio and convexity of cutinite were smaller, while the sphericity and fractal dimension were larger in Panzhihua coal with higher-rank. The properties of cutinite fragmentation in Luquan coal with lower-rank were opposite.

The study of solvent extracts and extraction residues for cutinite illustrated that the small molecules in cutinite mainly included alkanes (C12−C18), aromatics (alkylbenzene, alkylnaphthalene and their derivatives), esters, fatty acids (C16−C18) and phenols. The lower coal rank cutinite contained more carboxylic acids and alkanes, while the higher coal rank cutinite had more aromatics, ketones and cycloalkanes. Compared with cutinite, the side-chain of aliphatic structure in the residues became shorter, the content of aliphatic carbon decreased, the content of aromatic carbon increased, and the stability of chemical structure decreased. The relative contents of condensed aromatics and aliphatic hydrocarbons in the pyrolysates of residue increased, while the relative content of phenols and monocyclic aromatics decreased. Solvent extraction was conducive to the generation of aliphatics but not light aromatics.

The study of pyrolysates for cutinite confirmed that the lower rank cutinite had low thermal stability, strong alkene aromatization and phenol reduction reaction, resulting in more CO2, CH4 and C6H6 in the pyrolysates, while the higher rank cutinite contained more CO and C2H4 in the pyrolysates. The liquid pyrolysates were mainly composed of benzene, alkylbenzene, alkylnaphthalene, alkylphenol, phenanthrene and derivatives of n-alkanes and n-alkenes. The aromatic pyrolysates in cutinites were basically 1−2 rings, and the alkane pyrolysates were mainly C10−C20 straight-chain alkane and C7−C10 cycloalkanes derivatives. The relative abundances of pyrolytic alkanes and heteroatomic compounds decreased with temperature, cycloalkanes and aromatics increased, while alkenes first increased and then decreased.

The research on the structural fringe extraction of cutinite and pyrolysis residues revealed that the aromatic structure of cutinite was mainly benzene and naphthalene. The cutinite in higher rank coal had relatively abundant polycyclic aromatic hydrocarbons with large aromatic structure size, low graphitization defects, high degree of order and rich carbon structure layer of spiral dislocation (π−π). The inflection points of aromatics with temperature evolution in different sizes were different. The evolution law of benzene and naphthalene increased first and then decreased, while the evolution law of anthracene was opposite, and the orientation degree was disordered first and then ordered.

The research on the molecular structure of cutinite suggested that the lower rank cutinite had less aromatics with longer aliphatic chains and abundant carboxylic acids or esters. The number of aliphatic side-chains increased, aromatic cluster enlarged and the aliphatic side-chains became shorter for cutinite during coalification. The formulas of the two cutinite structure models were C195H231N3O32 (cutinite isolated from Luquan area) and C205H218N4O25 (cutinite isolated from Panzhihua area), respectively, with corresponding molecular weights of 3128.98 and 3138.00. 

参考文献:

[1]曾勇. 中国西部地区特殊煤种及其综合开发与利用[J]. 煤炭学报, 2001, 26(4):337-340.

[2]程爱国, 曹代勇, 袁同星. 煤炭资源潜力评价技术要求[M]. 北京:地质出版社, 2010.

[3]王绍清, 唐跃刚, 李正越, 等. 特殊原生成因煤的特性和分布研究[J]. 洁净煤技术, 2016, 22 (01):20-25.

[4]白磊. 我国稀缺与特殊煤的划分和分布情况研究[J]. 科技与创新, 2016, (03):3-4.

[5]韩德馨, 任德贻, 王延斌, 等.中国煤岩学[M]. 徐州:中国矿业大学出版社, 1996.

[6]斯塔赫等著; 杨起等译. 斯塔赫煤岩学教程[M]. 北京:煤炭工业出版社, 1990.

[7]Guo Y N, Tang Y G, Wang S Q, et al. Coal petrology and coal facies interpretations of bark liptobiolith [J]. World Journal of Engineering, 2013,10(3):253-264.

[8]Liu W B, Lu X C, Qin J Z, et al. Organic geochemistry of a potential precursor for petroleum generation: Devonian liptobiolith in Luquan, southwestern China[J]. Geochimica and Cosmochimica Acta, 2006,70(18):A364.

[9]Han D X. The features of Devonian coal-bearing deposits in South China, The People's Republic of China[J]. International Journal of Coal Geology, 1989, 12:209-223.

[10]Dai S F, Han D X, Chou C L. Petrography and geochemistry of the middle Devonian coal from Luquan, Yunnan Province, China[J]. Fuel, 2006,85:456-464.

[11]孙德伟, 王怿, 徐洪河, 等. 云南禄劝中泥盆世晚期角质残植煤中植物角质层的再研究[J]. 古生物学报, 2007, (3):355-364.

[12]Liu L, Du M L, Li G, et al. Pyrolysis behavior and product distribution of exinite submacerals[J]. Journal of Analytical & Applied Pyrolysis, 2020,152:104957.

[13]Du M L, Liu L, Fan J W, et al. Effect of structural evolution on the products distribution of cutinite concentrates from cutinitic liptobiolith[J]. Fuel, 2022, 309:122137.

[14]Du M L, Liu L, Fan J W, et al. Prediction and characterization of macromolecular structure of cutinite from luquan cutinitic liptobiolith with molecular simulation[J]. Energy Sources, 2020, 1-12.

[15]韩德馨. 中国煤田地质学史的研究[J]. 中国矿业学院学报, 1986, (2):94-100.

[16]蔡昌凤. 煤岩组分的解离特性与分离技术[J]. 洁净煤技术, 1998, 4(3):24-27.

[17]王共远, 吴国光, 李启辉. 煤显微组分分离技术及其应用的研究进展[J].中国煤炭, 2005, (8):52-52.

[18]孙旭光, 李荣西, 杜美利. 煤显微组分分离富集[J]. 中国煤田地, 1997, (3):26-27.

[19]代世峰, 赵蕾, 唐跃刚, 等. 煤的显微组分定义与分类(ICCP system 1994)解析IV:类脂体[J]. 煤炭学报, 2021,46(9):2965-2983.

[20]代世峰, 唐跃刚, 姜尧发, 等. 煤的显微组分定义与分类(ICCP system 1994) 解析I:镜质体[J]. 煤炭学报, 2021, 46(6):1821-1832.

[21]樊锦文. 西北侏罗纪煤显微光度学特征及其变化规律研究[D]. 西安科技大学, 2016.

[22]代世峰, 王绍清, 唐跃刚, 等. 煤的显微组分定义与分类(ICCP system 1994)解析II:惰质体[J]. 煤炭学报, 2021, 46(7):2212-2226.

[23]王美丽, 舒新前, 朱书全. 煤岩组分解离与分选的研究[J]. 选煤技术, 2004, (4):33-36.

[24]门东坡, 张磊, 刘文礼. 低阶烟煤煤岩组分解离特性及其分选[J]. 煤炭学报, 2015, (A2):479-485.

[25]Gaudin A M. Principles of mineral dressing[M]. New York: McGraw-Hill, 1939.

[26]King R P. A model for the quantitative estimation of mineral liberation by grinding[J]. International Journal of Mineral Processing, 1979, 6(3):207-220.

[27]Klimpel R R, Austin L G. A preliminary model of liberation from a binary system[J]. Powder Technology, 1983, 34(1):121-130.

[28]Meloy T P. Liberation theory-8, modern, usable theorems[J]. International Journal of Mineral Processing, 1984, 13(4):313-324.

[29]Hsin C S, Wen S B, Kuan C C. An exposure model for valuable components in comminuted particles[J]. International Journal of Mineral Processing, 1995, 43 (3):145-165.

[30]Austina L G, Skentzosb A K, Woodburnb E T. Ash liberation in fine grinding of a British coal[J]. Powder Technology, 1994,80(2):147-158.

[31]舒新前. 神府煤煤岩组分选别及利用[D]. 中国矿业大学, 1995.

[32]曾凡桂. 煤粉碎过程中粒度及解离度的分形模型[D]. 中国矿业大学, 1996.

[33]曾凡桂, 王祖讷. 煤粉碎过程中颗粒形状的分形特征[J]. 煤炭转化, 1999, (1):30-33.

[34]曾凡桂, 郝玉英. 镜煤与丝炭粉碎特性的比较研究[J]. 燃料化学学报, 1998, (6):575-578.

[35]Alan S T, James C H. Studies of the relationship between coal petrology and grinding properties[J]. International Journal of Coal Geology, 2003, 54(3):253-260.

[36]Mlynarczuk M, Skiba M. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal[J]. Computers and Geosciences, 2017, 103:133-141.

[37]Karimpouli S, Faraji A, Balcewicz M, et al. Computing heterogeneous core sample velocity using digital rock physics: A multiscale approach[J]. Computers & Geosciences, 2020, 135:104378.

[38]Anelechi I, Dubravka P, Yukie T. Automated extraction of in situ contact angles from micro-computed tomography images of porous media[J]. Computers & Geosciences, 2020, 137:104425.

[39]陈建湟, 张中俭, 徐文杰, 等. 基于数字图像处理的矿物颗粒形态定量分析[J]. 工程地质学报2021, 29(1):59-68.

[40]Jiu B, Huang W H, Shi J, et al. A method to extract the content, radius and specific surface area of maceral compositions in coal reservoirs based on image modeling[J]. Journal of Petroleum Science & Engineering, 2021, 201(6):108409.

[41]Siomn J B, Kenneth P. Particle shape: a review and new methods of characterization and classification[J]. Sedimentology, 2008, 55(1):31-63.

[42]Altuhafi F, O’Sullivan C, Cavarretta I. Analysis of an image-based method to quantify the size and shape of sand particles[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139 (8):1290-1307.

[43]Mandelbrot B B. The fractal geometry of nature. New York: W [M]. The Freeman, 1977.

[44]Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308(5961):721-722.

[45]梁栋, 王云鹤, 肖淑衡. 大隆煤升温氧化时煤表面的介观特性[J]. 黑龙江科技学院学报, 2007, (1):8-10.

[46]Liu J X, Jiang X M, Huang X Y, et al. Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle[J]. Fuel, 2010, 89(12):3884-3891.

[47]Liu J X, Jiang X M, Huang X Y, et al. Morphological characterization of superfine pulverized coal particles. 1. fractal characteristics and economic fineness[J]. Energy & Fuels, 2010, 24(2):844-855.

[48]荣丽漫. 煤嵌布结构的分形分析研究[D]. 中国矿业大学, 2015.

[49]Du M L, Liu L, Ren J, et al. Study on the classification and floc-flotation process of Huangling coal slime[J]. Separation Science and Technology, 2021, 56:1-14.

[50]舒新前, 王祖讷, 葛岭梅. 煤岩组分分离与选别的研究现状及前景展望[J].煤炭转化, 1996, (1):40-46.

[51]段旭琴, 陈志刚, 祁威, 等.神府煤惰质组与镜质组的富集和可浮性研究[J]. 选煤技术, 2004, (4):26-29.

[52]Liu L, Du M L, Fan J W, et al. Embedded characteristics and macromolecular structure of sporinite of Pingdingshan coal in Early Permian[J]. Energy Sources, 2019, (2):1-14.

[53]褚建萍. 粒度对煤中矿物质解离和静电分选效果的影响[J]. 选煤技术, 2011, (6):1-4.

[54]孙柏年, 石亚军, 张成君, 等. 植物化石角质层分析及其应用[M].北京:科学出版社, 2005.

[55]王雪莲, 熊聪慧, 孙柏年, 等. 植物化石角质层分析实验技术总结及探索[J]. 地质学报, 2020 94(8):2476-2486.

[56]马清温, 张秀省, 李凤兰. 角质层的离析及显微观察方法[J]. 植物研究, 2005, (3):307-310.

[57]王士俊, 于冰, 张井, 等. 徐州煤田晚古生代煤中的分散角质层及其意义[J].中国煤田地质, 1993, (4):30-34.

[58]Zhang X Y, Wang R Y, Ma F Y, et al. Structural characteristics of soluble organic matter in four low-rank coals[J]. Fuel, 2020, 267:117230.

[59]Gupta R. Advanced coal characterization: a review[J]. Energy & Fuels, 2007, 21(2):451-460.

[60]Takanohashi T, Yoshida T, Kawashima H. Molecular simulation of relaxation behaviors of coal-aggregated structures[J]. Fuel Processing Technology, 2002,77-78(1):53-60.

[61]Li M F, Zeng F G, Chang H Z, et al. Aggregate structure evolution of low-rank coals during pyrolysis by in-situ X-ray diffraction[J]. International Journal of Coal Geology, 2013, 116-117:262-269.

[62]Song Y, Jiang B, Qu M J. Macromolecular evolution and structural defects in tectonically deformed coals[J]. Fuel, 2019, 236:1432-1445.

[63]Liu Y, Zhu Y M, Liu S M, et al. Molecular structure controls on micropore evolution in coal vitrinite during coalification[J]. International Journal of Coal Geology, 2018, 199:19-30.

[64]Yan Y X, Qi Y, Marshall M, et al. Separation and analysis of maceral concentrates from Victorian brown coal[J]. Fuel, 2019, 242:232-242.

[65]Xie W, Stanger R, Wall T F, et al. Associations of physical, chemical with thermal changes during coking as coal heats-experiments on coal maceral concentrates[J]. Fuel, 2015, 147: 1-8.

[66]O'Keefe J M K, Bechtel A, Christanis K, et al. On the fundamental difference between coal rank and coal type[J]. International Journal of Coal Geology, 2013, 118:58-87.

[67]Greg C, Smitha, Alan C C. Coalification paths of exinite, vitrinite and inertite[J]. Fuel, 1980, 59(9): 641-646.

[68]Jonathan P M, Alan L C. The molecular representations of coal−A review[J]. Fuel, 2012, 96:1-14.

[69]Jonathan P M. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718-728.

[70]Fuchs W, Sandhoff A G. Theory of coal pyrolysis[J]. Industrial and Engineering Chemistry, 1942, 34(5):567-571.

[71]Given P H. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, (2): 147-153.

[72]Wender I. Catalytic synthesis of chemicals from coal[J]. Catalysis Reviews, 1976, (1):97-129.

[73]Wiser W H. Conversion of bituminous coal to liquids and gases: chemistry and representative processes[J]. Magnetic Resonance, 1984,124:325-350.

[74]Shinn J H. From coal to single-stage and two-stage products: A reactive model of coal structure[J]. Fuel, 1984, (9):1187-1196.

[75]Spiro C L. Space-filling models for coal: a molecular description of coal plasticity[J]. Fuel, 1981, (12):1121-1126.

[76]Spiro C L, Kosky P G. Space-filling models for coal. 2. Extension to coals of various ranks[J]. Fuel, 1982, (11):1080-1084.

[77]Carlson G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy and Fuels, 1992, (6):771-778.

[78]Vorpagel E R, Lavin J G. Most stable configurations of polynuclear aromatic hydrocarbon molecules in pitches via molecular modelling[J]. Carbon, 1992, 30(7):1033-1040.

[79]Zhou B, Shi L, Liu Q Y, et al. Examination of structural models and bonding characteristics of coals[J]. Fuel, 2016,184:799-807.

[80]Qin Z H. New advances in coal structure model[J]. International Journal of Mining Science and Technology, 2018, 28(4):541-559.

[81]Niekerk D V, Mathews J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010, 89(1):73-82.

[82]Li W, Zhu Y M, Song Y, et al. Study of a vitrinite macromolecular structure evolution control mechanism of the energy barrier in hydrocarbon generation[J]. Energy & Fuels, 2014, 28(1):500-509.

[83]Lin H L, Li K J, Zhang X W, et al. Structure characterization and model construction of Indonesian brown coal[J]. Energy & Fuels, 2016, 30(5):3809-3814.

[84]Qian L, Tao C, Ma C, et al. Construction of a macromolecular structure model for Zhundong subbituminous coal[J]. Journal of Molecular Structure, 2022,1248:131496.

[85]杜美利, 刘雷, 贺成杰, 等. 抚顺树脂残植煤中树脂体分子组成与结构模型研究[J]. 煤炭科学技术, 2021,49(6):135-144.

[86]Wang J P, Li G Y, Guo R, et al. Theoretical and experimental insight into coal structure: establishing a chemical model for Yuzhou lignite[J]. Energy& Fuels, 2017, 31(1):124-132.

[87]张登峰, 贾帅秋, 伦增珉, 等. 煤体中小分子有机物赋存规律及其对煤体理化性质影响的研究进展[J]. 安全与环境学报, 2018,18(6):2369-2378.

[88]叶翠平. 煤大分子化合物结构测定及模型构建[D]. 太原理工大学, 2008.

[89]Wei L H, Li Y N, Cui B C, et al. Effect of mineral extraction on the evolution of nitrogen functionalities during coal pyrolysis[J]. Fuel, 2021, 297: 120752.

[90]陈红. 微波辅助溶剂对煤抽提机制研究及煤组成结构分析[D]. 西安科技大学, 2009.

[91]王晓华, 魏贤勇. 煤的溶剂萃取研究进展[J]. 现代化工, 2003,23(7):19-23.

[92]He Y Y, Zhao R F, Yan L J, et al. The effect of low molecular weight compounds in coal on the formation of light aromatics during coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123:49-55.

[93]Zong Y, Sun Y B, Zhao Y L, et al. Analysis of soluble fraction with carbon 18 disulfide/ tetrahydrofuran of Erdos coal by FTIR and GC/MS[J]. Applied Mechanics and Materials, 2012, 138-139: 946-951.

[94]Zheng Q X, Morimoto M, Sato H, et al. Molecular composition of extracts obtained by hydrothermal extraction of brown coal[J]. Fuel, 2015,159:751-758.

[95]Zou L, Jin L J, Li Y, et al. Effect of tetrahydrofuran extraction on lignite pyrolysis under nitrogen[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112:113-120.

[96]Yang J L, Stansberry P G, Zondlo J W, et al. Characteristics and carbonization behaviors of coal extracts[J]. Fuel Processing Technology, 2002,79(3):207-215.

[97]Chen H, Zhu B W, Li J W. Studies on macrostructure of Shenfu sub-bituminous coal[J]. Journal of The Institution of Engineers (India): Series E, 2015, 96(1):55-62.

[98]张双全, 吴国光. 煤化学[M].徐州:中国矿业大学出版社, 2019.

[99]徐秀峰, 杨保联. 用13C NMR及DEPT技术分析气煤加氢产物中沥青烯段分的组成结构[J]. 燃料化学学报, 1995,(4):410-416.

[100]Takanohashi T, Nakamura K, Iino M. Computer simulation of methanol swelling of coal molecules[J]. Energy and Fuels, 1999,13(4):922-926.

[101]Takanohashi T, Nakamura K, Terao Y, et al. Computer simulation of solvent swelling of coal molecules: effect of different solvents[J]. Energy and Fuels, 2000, 14(2):393-399.

[102]Painter C P, John G, Michael M C. Coal solubility and swelling. 1. Solubility parameters for coal and the flory .chi. parameter[J]. Energy & Fuels, 1990,4(4):379-384.

[103]Van N D, Mathews J P. Molecular dynamic simulation of coal−solvent interactions in Permian-aged South African coals[J]. Fuel Processing Technology, 2011, 92(4):729-734.

[104]Qin Z H, Jiang C, Hou C, et al. Solubilization of small molecules from coal and the resulting effects on the pore structure distribution[J]. Mining Science and Technology, 2009, 19(6):761-768.

[105]Chen H, Li J W, Lei Z, et al. Microwave-assisted extraction of Shenfu coal and its macromolecule structure[J]. Mining Science and Technology, 2009,19(1):19-24.

[106]Liu J X, Yang X C, Jiang X, et al. Pyrolysis mechanisms of coal extracts based on TG-FTIR and ReaxFF MD study[J]. Fuel Processing Technology, 2022, 227:107124.

[107]Esmaeili S, Jorjani E, Khorami M T. The effect of particle size on coal maceral group’s separation using flotation[J]. Fuel, 2012, 114:10-15.

[108]Neal S G. Distribution of cutan in modern leaves[J]. Biopolymers, 2014, 38: 17-41.

[109]Kolattukudy P E. Introduction to natural waxes. In chemistry and biochemistry of natural waxes[M]. Elsevier Amsterdam, 1976.

[110]格列契什尼科夫著; 北京地质学院煤田教研室译. 煤岩学[M]. 北京:地质出版社, 1959.

[111]Volkova I B, Bekh I D E, Sidorova I N. New find of cuticular coal in the Franz Josef Land[J]. Lithology and Mineral Resources, 2001, 36:187−190.

[112]Patrakov Y F, Kamyanov V F, Fedyaeva O N. A structural model of the organic matter of Barzas liptobiolith coal[J]. Fuel, 2005, 84:189−199.

[113]宋到福, 王铁冠, 钟宁宁, 等. 中国北疆泥盆纪角质残植煤的发现及其对比研究[J]. 中国科学(地球科学), 2021, 51(5):753-762.

[114]王延斌, 韩德馨, 毛鹤龄. 大麦地中泥盆统角质残植煤的物质组成及成因[J]. 中国矿业大学学报, 1997, (4):38-42.

[115]Doaa A M, Walid A M, Thomas G, et al. Discovery of an extraordinary Carboniferous cutinite-rich coal seam from Wadi Abu Thora, southern Sinai, Egypt: organic petrographical and geochemical characterization[J]. International Journal of Coal Geology, 2021, 250:103908.

[116]Nip M, De Leeuw J W, Schenck P A, et al. A flash pyrolysis and petrographic study of cutinite from the Indiana paper coal[J]. Geochimica Et Cosmochimica Acta, 1989, 53(3):671-683.

[117]Richard C N, Gottfried K G. Indiana paper coal−composition and deposition[J]. Journal of Sedimentary Research, 1960, 30(2):241-248.

[118]Lyons P C, Orem W H, Mastalerz M, et al. 13C NMR, micro-FTIR and fluorescence spectra, and pyrolysis-gas chromatograms of coalified foliage of late Carboniferous medullosan seed ferns, Nova Scotia, Canada: Implications for coalification and chemotaxonomy[J]. International Journal of Coal Geology, 1995, 27(2):227-248.

[119]Volkova I B. Nature and composition of the Devonian coals of Russia[J]. Energy & Fuels, 1994,8(6): 1489-1493.

[120]Song D F, Simoneit B T, He D F. Abundant tetracyclic terpenoids in a Middle Devonian foliated cuticular liptobiolite coal from northwestern China[J]. Organic Geochemistry, 2017,107:9-20.

[121]Kashirtsev V A, Moskvin V I, Fomin A N, et al. Terpanes and steranes in coals of different genetic types in Siberia[J]. Russian Geology and Geophysics, 2010, 51(4):404-411.

[122]程顶胜. 中国泥盆纪煤有机地球化学特征[J].中国煤田地质, 2006, (5):7-10,24.

[123]盛国英, 傅家谟, 刘德汉, 等. 富含于泥盆系角质残植煤中的四环二萜烷[J]. 石油与天然气地质, 1991,12(2):107-117.

[124]Ulusoy U, Igathinathane C. Dynamic image based shape analysis of hard and lignite coal particles ground by laboratory ball and gyro mills[J]. Fuel Processing Technology, 2014, 126:350-358.

[125]Zhao L, Zhang S, Deng M, et al. Statistical analysis and comparative study of multi-scale 2D and 3D shape features for unbound granular geomaterials[J]. Transportation Geotechnics, 2020, 26:100377.

[126]刘雷, 杜美利, 樊锦文, 等. 平顶山山西组煤显微组分分离富集研究[J]. 中国煤炭, 2017, 43(10):91-95.

[127]郭强. 生物质颗粒破碎以及生物质与煤混合颗粒的流动特性研究[D]. 华东理工大学, 2012.

[128]Wang S Q, Tang Y G, Schobert H H, et al. FTIR and 13C NMR investigation of coal component of Late Permian coals from Southern China[J]. Energy and Fuels, 2011, 25:72-77.

[129]Jing Z H, Rodrigues S, Strounina E, et al. Use of FTIR, XPS, NMR to characterize oxidative effects of NaClO on coal molecular structures[J]. International Journal of Coal Geology, 2019, 201:1-13.

[130]Iino M. Network structure of coals and association behavior of coal-derived materials[J]. Fuel Processing Technology, 2000, 62(2):89-101.

[131]Shui H F, Wang Z C, Cao M X. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties[J]. Fuel, 2008, 87(13-14):2908-2913.

[132]Sherrill C D. Energy component analysis of π interactions[J]. Accounts of Chemical Research, 2013, 46(4):1020-1028.

[133]Chong Y S, Carroll W R, Burns W G, et al. High-barrier molecular balance for studying face-to-face arene-arene interactions in the solid state and in solution[J]. Chemistry-A European Journal 2009, 15(36):9117-9126.

[134]Hu H X, Li, X C, Fang Z M, et al. Small-molecule gas sorption and diffusion in coal: Molecular simulation[J]. Energy, 2010, 35(7):2939-2944.

[135]Seehra M S, Ghosh B, Zondlo J W, et al. Relationship of coal extraction with free radicals and coal macerals[J]. Fuel Processing Technology, 1988, 18:279-286.

[136]Wei X Y, Wang X H, Zong Z M. Extraction of organonitrogen compounds from five chinese coals with methanol[J]. Energy & Fuels, 2009, 23:48-51.

[137]Goodwin T W, Mercer E I. Introduction to plant biochemistry[M]. Pergamon Press: Oxford, 1983.

[138]Chapman D J. Geological factors and biochemical aspects of the origin of land plants. In: Geological factors and the evolution of plants[M]. Yale University Press: New Haven, 1985.

[139]Legg V H, Wheeler R V. Plant cuticles. Part I. Modern plant cuticles[J]. Journal of the Chemical Society, 1929, 4:44-49.

[140]He X, Liu X, Nie B, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206:555-563.

[141]van Heek K H, Hodek W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994,73:886-896.

[142]Xie K C, Zhang Y F, Li C Z, et al. Pyrolysis characteristics of macerals separated from a single coal and their artificial mixture[J]. Fuel, 1991,70:474-479.

[143]Zhou Y, Li L, Jin L J, et al. Effect of functional groups on volatile evolution in coal pyrolysis process with in-situ pyrolysis photoionization time-of-flight mass spectrometry[J]. Fuel, 2020, 260:116322

[144]Cheshire S, Craddock P R, Xu G P, et al. Assessing thermal maturity beyond the reaches of vitrinite reflectance and Rock-Eval pyrolysis: A case study from the Silurian Qusaiba formation[J]. International Journal of Coal Geology, 2017, 180:29-45.

[145]Wang C A, Huddle T, Lester E H, et al. Quantifying curvature in high-resolution transmission electron microscopy lattice fringe micrographs of coals[J]. Energy & Fuels, 2016, 30(4):2694-2704.

[146]Wang C A, Huddle T, Huang C H, et al. Improved quantification of curvature in high-resolution transmission electron microscopy lattice fringe micrographs of soots[J]. Carbon, 2017, 117:174-181.

[147]Shen J, Liu J, Xing Y, et al. Application of TG-FTIR analysis to superfine pulverized coal[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133:154-161.

[148]Arenillas A, Rubiera F, Pevida C, et al. A comparison of different methods for predicting coal devolatilisation kinetics[J]. Journal of Analytical and Applied Pyrolysis, 2001, 58:685-701.

[149]Puente G D L, Marban G, Fuente E, et al. Modelling of volatile product evolution in coal pyrolysis. The role of aerial oxidation[J]. Journal of Analytical and Applied Pyrolysis, 1997, 44:205-218.

[150]Wang M, Li Z S, Huang W B, et al. Coal pyrolysis characteristics by TG–MS and its late gas generation potential[J]. Fuel, 2015,156:243-253.

[151]Liu J X, Jiang X M, Shen J, et al. Pyrolysis of superfine pulverized coal. Part 2. Mechanisms of carbon monoxide formation[J]. Energy Conversion & Management, 2014,87:1039-1049.

[152]Hao J H, Feng W, Qiao Y Y, et al. Thermal cracking behaviors and products distribution of oil sand bitumen by TG-FTIR and Py-GC/TOF-MS[J]. Energy Conversion & Management, 2017,151:227-239.

[153]Zhou P, Xiong S J, Zhang Y X, et al. Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR[J]. International Journal of Hydrogen Energy, 2017, 42:18181-18188.

[154]Aarssen B G K, Leeuw V J W D. High-molecular-mass substances in resinites as possible precursors of specific hydrocarbons in fossil fuels[J]. Organic Geochemistry, 1992, 19:315-326.

[155]Zhao L, Cheng Z W, Ling Q, et al. Investigating the trigger mechanism of Shenfu bituminous coal pyrolysis[J]. Fuel, 2022, 313:122995.

[156]Wheeler R V, Wigginton R. Resins in bituminous coal[J]. Fuel, 2002, 81:10-14.

[157]Yao S P, Cao J, Zhang K, et al. Artificial bacterial degradation and hydrous pyrolysis of suberin: Implications for hydrocarbon generation of suberinite[J]. Organic Geochemistry, 2012, 47: 22-33.

[158]Geng W H, Kumabe Y, Nakajima T, et al. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy[J]. Fuel, 2009, 88(4):644-649.

[159]Wang C G, Zeng F G. Molecular structure characterization of CS2–NMP extract and residue for Malan bituminous coal via solid-state 13C NMR, FTIR, XPS, XRD, and CAMD Techniques[J]. Energy & Fuels, 2020, 34:12142-12157.

[160]Levi G, Senneca O, Causa M, et al. Probing the chemical nature of surface oxides during coal char oxidation by high-resolution XPS[J]. Carbon, 2015, 90:181-196.

[161]Liu X F, Song D Z, He X Q, et al. Insight into the macromolecular structural differences between hard coal and deformed soft coal[J]. Fuel, 2019, 245:188-197.

[162]Jones R B, McCourt C B, Swift P. XPS studies of nitrogen and sulphur in coal, Proceedings[J]. International Conference on Coal Science, 1981, 657-662.

[163]Wang X Q, Zhu Y M, Song Y. Structure and partial ordering of terrestrial kerogen: Insight from high-resolution transmission electron microscopy[J]. Fuel, 2020, 281: 118759.

[164]Zhang Y, Zhang X Q, Zhong Q F, et al. Structural differences of spontaneous combustion prone inertinite-rich Chinese lignite coals: insights from XRD, solid-State 13C NMR, LDIMS, and HRTEM[J]. Energy and Fuels, 2019, 33(5): 4575-4584.

[165]Masaharu N. Molecular mobility of high-volatile bituminous coals accompanying drying[J]. Fuel, 1994, 73(1):57-62.

[166]Masaharu N, Larsen J W. Association of aromatic structures in coals[J]. Energy& Fuels, 1990, 4(1):100-106.

[167] Foster R. Organic charge-transfer complexes[M]. Academic Press: London, 1969.

[168]Quinga E M Y, Larsen J W. Noncovalent interactions in high-rank coals[J]. Energy& Fuels, 1987, 1(3):300-304.

[169]Mallya N, Stock L M. The alkylation of high-rank coals. Noncovalent bonding interactions[J]. Fuel, 1986, 65(5):736-738.

[170]Wang J, He Y Q, Li H, et al. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques[J]. Fuel, 2017, 203:764-773.

[171]Liu S Q, Zhang Y J, Tuo K Y, et al. Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal[J]. Fuel Processing Technology, 2018, 178:139-147.

[172]Diaz J, Paolicelli G, Ferrer S, et al. Separation of the sp/sup3/ and sp/sup2/ components in the C1s photoemission spectra of amorphous carbon films[J]. Physical Review B, 1996,54(11):8064-8069.

[173]Kauzmann W. Quantum Chemistry[M]. Academic Press: New York, 1957.

[174]Li C, Zhu Y Y, Yi H P, et al. Strong stacking between F···H−N hydrogen-bonded foldamers and fullerenes: formation of supramolecular nano networks[J]. Chemistry: A European journal, 2007, 13(35): 9990-9998.

[175]Shteingolts S A, Stash A, Tsirelson V G, et al. Orbital-free quantum crystallographic view on noncovalent bonding: Insights into hydrogen bonds, π−π and reverse electron lone pair−π interactions[J]. Chemistry A European Journal, 2021, 27(28): 7789-7809.

[176]Cheng Y F, Chen X, Yang N, et al. Sandwich-like low-sensitive nitroamine explosives stabilized by hydrogen bonds and π–π stacking interactions[J]. CrystEngComm, 2021, 23(9):1953-1960.

[177]Kolattukady P E. Biopolyester membranes of plants: cutin and suberin[J]. Science, 1980, 208: 990-1000.

[178]de Leeuw J W, Largeau C. A review of macromolecular compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In: Organic Geochemistry[M]. Plenum Press: New York, 1993.

[179]Wang C A, Huddle T, Lester E H, et al. Quantifying curvature in high-Resolution transmission electron microscopy lattice fringe micrographs of coals[J]. Energy & Fuels, 2016, 30(4):2694-2704.

[180]Wang C A, Huddle T, Huang C H, et al. Improved quantification of curvature in high-resolution transmission electron microscopy lattice fringe micrographs of soots[J]. Carbon, 2017,117:174-181.

[181]Leyssale J M, Costa J P D, Germain C, et al. Structural features of pyrocarbon atomistic models constructed from transmission electron microscopy images[J]. Carbon, 2012, 50(12):4388-4400.

[182]Jason Y W L, Paolo E, Angela V. Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion[J]. Physical chemistry chemical physics:PCCP, 2014, 16(17): 7969-7979.

[183]Singh R, Frenklach M. A mechanistic study of the influence of graphene curvature on the rate of high-temperature oxidation by molecular oxygen[J]. Carbon, 2016, 101:203-212.

[184]Hunter C A, Sanders J K M. The nature of π-π interactions[J]. Journal of the American Chemical Society, 1990, 112: 5525-5534.

[185]Wang C G, Lan L, Liu Y P, et al. Defect-guided wrinkling in graphene[J]. Computational Materials Science, 2013, 77:250-253.

[186]Kelemen S R, Afeworki M, Gorbaty M L, et al. Thermal transformations of nitrogen and sulfur forms in peat related to coalification[J]. Energy and Fuels, 2006, 20(2):635-652.

[187]Lusk M T, Carr L D. Nanoengineering defect structures on graphene[J]. Physical review letters, 2008, 100(17):175503.

[188]Pappano P J, Mathews J P, Schobert H H. Structure determination of Pennsylvania anthracites[J]. Preprints of Papers−American Chemical Society Division of Fuel Chemistry, 1999, 44: 567-568.

[189]徐芳. 霍林河褐煤分子模型构建及其热解反应分子动力学模拟[D]. 哈尔滨工业大学, 2020.

[190]连露露, 秦志宏, 李春生, 等. 煤族组分骨架结构的分子模型构建及分子动力学模拟[J]. 煤炭学报, 2021,46(09):2776-2792.

[191]Philippe U, Julien C, Marianna Y. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity[J]. Energy & Fuels, 2015,29(1):91-105.

[192]Chen C, Gao J, Yan Y. Role of noncovalent bonding in swelling of coal[J]. Energy & Fuels, 1998, 12 (6):1328-1334.

[193]Kashimura N, Toshimasa T A, Saito I. Effect of noncovalent bonds on the thermal extraction of subbituminous coals[J]. Energy & Fuels, 2006, 20 (4):942-945.

[194]Takanohashi T, Iino M, Nakamura K. Simulation of interaction of coal associates with solvents using the molecular dynamics calculation[J]. Energy & Fuels, 1998, 12 (6):1168-1173.

[195]Wu J, Liu J, Yuan S, et al. Theoretical investigation of noncovalent interactions between low-rank coal and water[J]. Energy & Fuels, 2016, 30(9):7118-7124.

[196]Schobert H H. Chemistry of fossil fuels and biofuels[M]. Cambridge University Press: New York, 2013.

中图分类号:

 TQ530.2    

开放日期:

 2024-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式