- 无标题文档
查看论文信息

论文中文题名:

 黄土高原日光诱导叶绿素荧光时空变化及对干旱的响应    

姓名:

 王钰尧    

学号:

 20210226084    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 植被遥感    

第一导师姓名:

 杨梅焕    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Spatiotemporal variation of SIF and its response to drought in the Loess Plateau    

论文中文关键词:

 黄土高原 ; 日光诱导叶绿素荧光 ; 干旱 ; 时空变化 ; 相关性    

论文外文关键词:

 Loess Plateau ; sunlight-induced chlorophyll fluorescence ; drought ; temporal and spatial changes ; correlation    

论文中文摘要:

日光诱导叶绿素荧光(Solar-induced chlorophyll fluorescence,SIF)是一种有效的植被光合作用探针,能够直接反映植被对极端气候事件地响应过程。利用SIF开展植被生态对全球气候变化背景下极端干旱事件的响应研究,对区域农业生产、生态环境恢复以及水资源的规划和管理等具有重要的理论和现实意义。本文以黄土高原为研究区,以GOSIF数据表征植被光合作用,采用时空趋势分析方法,研究黄土高原2001-2020年SIF时空变化特征,利用黄土高原及周边95个气象站点计算了标准蒸散发指数(SPEI)分析了2001-2020年黄土高原干旱趋势及干旱事件特征,结合植被指数以及植被总初级生产力(GPP)探究了SIF对干旱的响应特征,得到以下结论:

(1)2001-2020年,黄土高原SIF整体呈显著增长趋势,增长趋势为0.00164W⋅m-2⋅μm-1⋅sr-1⋅a-1 (R2=0.920,P<0.001),空间上最大增长趋势率为0.00663W⋅m-2⋅μm-1⋅sr-1⋅a-1 ,增长区域主要位于山西西部区域、陕西北部区域和甘肃南部地带。植被SIF不同月份的增长趋势随着植被物候期变化有所不同,7月份SIF增长速率在所有月份中最大,为0.0442/10a(R2=0.800,P<0.001),Sen空间最大趋势率为0.218/10a,通过了MK显著性检验。不同地貌单元中,河谷平原区植被SIF最高,增长速率最快,为0.00228W⋅m-2⋅μm-1⋅sr-1⋅a-1 (R2=0.921,P<0.001),不同地貌单元SIF增长速率大小排序为:河谷平原区>丘陵沟壑区>晋豫土石山区>高原沟壑区>农业灌溉区>沙地沙漠区。不同植被类型SIF均表现出显著增长趋势,其中以草地SIF变化趋势率最大,为0.00065W⋅m-2⋅μm-1⋅sr-1⋅a-1 (R2=0.78,P<0.001),不同植被SIF增长趋势大小排序为:草地>农田>稀树草原>落叶阔叶林。

(2)2001-2020年,黄土高原SPEI整体呈不显著减缓趋势,仅在内蒙古呼包河套区、宁夏银川平原区、山西省和河南省晋豫河谷区,SPEI表现出不显著变干特征,干旱有增加的风险。不同时间尺度SPEI反映出黄土高原在2001-2010年存在干旱事件,在2003年之后干旱加剧,2005-2007年发生干旱最为严重。小波分析结果显示,2001-2008年SPEI周期变化为4~5a左右,能量主峰出现在2005年,影响时域为2003~2008年,2008年以后进行周期性变化,循环周期为2a。季节干旱表现为春旱和夏旱,月尺度干旱主要发生于1月、3月、5月、9月和12月。黄土高原2001-2020年共发生了16次干旱事件,其中2005-2007年黄土高原发生了连续长时间的干旱事件,期间共发生两次干旱事件,在两场干旱事件中,干旱面积占比均超过50%,属于大面积的区域性干旱。在所有干旱事件中,黄土高原北侧干旱发生时间较长,陕西中部、宁夏干旱时间较短,内蒙古和山西北部干旱发生次数较多。熵权-灰色关联度结果显示,降水对干旱的关联度为0.559,气温对干旱的关联度为0.288,日照时数对干旱的关联度仅为0.008,干旱影响的气象因子主要为气温和降水。

(3)SIF植被相比于传统VIs,SIF指数与干旱的相关性更强,滞后性时间更短,滞后性面积分布更少,即SIF指数具有更好的监测干旱能力。SIF相比于其他VIs,SIF与GPP之间相关性更强,在不同GPP产品间,基于SIF的GPP产品与APAR相关性更强。不同植被类型SIF对干旱的敏感性大小排序为:草地>农田>稀树草原>落叶阔叶林。典型干旱事件期间,SIF标准化距平在干旱初期阶段主要呈负距平,随着干旱程度的加剧,负距平的面积占比增加。典型干旱事件发生初期,草地和农田植被类型SIF下降幅度大于GPP下降幅度,干旱衰退时期,草地、农田、落叶落叶林和稀树草原植被类型SIF上升幅度均大于GPP上升幅度,SIF对干旱响应比GPP更敏感,其中草地对干旱的响应最为敏感,落叶阔叶林植被对干旱的响应较弱,但落叶阔叶林固碳能力较强,干旱也会影响SIF-GPP之间的线性关系,干旱发生会导致植被SIF-GPP关系的减弱,在干旱事件衰退时期相较于干旱未发生时期,SIF-GPP线性关系会加强。

论文外文摘要:

Solar-induced chlorophyll fluorescence (SIF) is an effective probe for vegetation photosynthesis, which can directly reflect the response of vegetation to extreme climate events. Using SIF to study the response of vegetation ecology to extreme drought events under the background of global climate change has important theoretical and practical significance for regional agricultural production, ecological environment restoration and water resources planning and management. In this paper, the Loess Plateau was used as the research area, and the GOSIF data was used to characterize the photosynthesis of vegetation. The spatial and temporal trend analysis method was used to study the spatial and temporal variation characteristics of SIF in the Loess Plateau from 2001 to 2020. The standard evapotranspiration index (SPEI) was calculated by 95 meteorological stations in the Loess Plateau and its surrounding areas. The drought trend and drought event characteristics of the Loess Plateau from 2001 to 2020 were analyzed. The response characteristics of SIF to drought were explored by combining vegetation index and total primary productivity (GPP). The following conclusions were obtained :The main conclusions are as follows :

(1) From 2001 to 2020, the SIF of the Loess Plateau showed a significant growth trend as a whole. The growth trend was 0.00164W⋅m-2⋅μm-1⋅sr-1⋅a-1 (R2=0.920,P<0.001), and the maximum spatial growth trend rate was 0.00663W⋅m-2⋅μm-1⋅sr-1⋅a-1 . The growth area was mainly located in the western region of Shanxi, the northern region of Shaanxi and the southern region of Gansu. The growth trend of vegetation SIF in different months varies with the change of vegetation phenology. The growth rate of SIF in July is the largest in all months, which is 0.0442/10a(R2=0.800,P<0.001), The maximum trend rate of Sen space was 0.218 / 10a, which passed the MK significance test. Among different geomorphic units, the vegetation SIF in the valley plain area is the highest and the growth rate is the fastest, which is 0.00228W⋅m-2⋅μm-1⋅sr-1⋅a-1 (R2=0.921,P<0.001). The order of SIF growth rate in different geomorphic units is as follows :P hilly and gully area > Shanxi and Henan soil and stone mountain area > plateau gully area > agricultural irrigation area > sandy desert area. The SIF of different vegetation types showed a significant growth trend, and the change rate of grassland SIF was the largest, which was 0.00065W⋅m-2⋅μm-1⋅sr-1⋅a-1 (R2=0.78,P<0.001). The order of SIF growth trend of different vegetation types was grassland > farmland > savanna > deciduous broad-leaved forest.

(2) From 2001 to 2020, the SPEI of the Loess Plateau showed an insignificant slowing trend. Only in the Hubaohetao area of Inner Mongolia, Yinchuan Plain area of Ningxia, Shanxi Province and Jinyu River Valley area of Henan Province, SPEI showed no significant drying characteristics, and there was an increased risk of drought. SPEI at different time scales reflects that there were drought events in the Loess Plateau from 2001 to 2010.After 2003, the drought intensified, and the drought was the most serious from 2005 to 2007. The results of wavelet analysis show that the period of SPEI from 2001 to 2008 is about 4 ~ 5a, the main peak of energy appears in 2005, the influence time domain is from 2003 to 2008, and the period of SPEI is 2a after 2008. The seasonal drought is characterized by spring drought and summer drought, and the monthly drought mainly occurs in January, March, May, September and December. A total of 16 drought events occurred in the Loess Plateau from 2001 to 2020.Among them, there were two drought events in the Loess Plateau from 2005 to 2007.In both drought events, the drought area accounted for more than 50 %, which was a large-scale regional drought. Among all the drought events, the drought in the north of the Loess Plateau occurred for a long time, the drought in central Shaanxi and Ningxia was short, and the drought in Inner Mongolia and northern Shanxi occurred more frequently. The results of entropy weight-grey correlation degree show that the correlation degree of precipitation to drought is 0.559, the correlation degree of temperature to drought is 0.288, and the correlation degree of sunshine hours to drought is only 0.008. The meteorological factors affecting drought are mainly temperature and precipitation.

(3) Compared with traditional VIs, SIF vegetation has stronger correlation with drought, shorter lag time and less lag area distribution, that is, SIF index has better ability to monitor drought. Compared with other VIs, SIF has a stronger correlation with GPP.Among different GPP products, GPP products based on SIF have a stronger correlation with APAR. The sensitivity of SIF to drought in different vegetation types was ranked as follows : grassland > farmland > savanna > deciduous broad-leaved forest. During the typical drought event, the SIF standardized anomaly was mainly negative in the early stage of drought, and the area of negative anomaly increased with the increase of drought degree. In the early stage of typical drought events, the decrease of SIF in grassland and farmland vegetation types was greater than the decrease of GPP. During the drought recession period, the increase of SIF in grassland, farmland, deciduous deciduous deciduous forest and savanna vegetation types was greater than the increase of GPP. SIF was more sensitive to drought than GPP, and grassland was the most sensitive to drought. The response of deciduous broad-leaved forest vegetation to drought was weak, but the carbon sequestration capacity of deciduous broad-leaved forest was strong. Drought will also affect the linear relationship between SIF-GPP, and drought will lead to the weakening of vegetation SIF-GPP relationship. The SIF-GPP linear relationship will be strengthened during the recession period of drought events compared to the period when drought did not occur.

参考文献:

[1] Xu Z, Huang F, Liu Q, et al. Global pattern of historical and future changes in rapid temperature variability[J]. Environmental Research Letters, 2020,15(12):124073.

[2] 范月君, 侯向阳, 石红霄, 等. 气候变暖对草地生态系统碳循环的影响[J]. 草业学报, 2012,21(3):294-302.

[3] 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学:地球科学, 2019,49(9):1321-1334.

[4] 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015,26(1):1-11.

[5] 潘竟虎, 李真. 干旱内陆河流域生态系统服务空间权衡与协同作用分析[J]. 农业工程学报, 2017,33(17):280-289.

[6] 尹云鹤, 马丹阳, 邓浩宇, 等. 中国北方干湿过渡区生态系统生产力的气候变化风险评估[J]. 地理学报, 2021,76(7):1605-1617.

[7] Jaime G, Pere Q S, José E M, et al. Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data[J]. Natural Hazards and Earth System Sciences, 2022,22(10):3461-3485.

[8] 杜际增, 崔保山, 隋皓辰. 气候变化背景下青藏高原核心区植被变化的时空特征[J]. 环境生态学, 2019,1(8):10-20.

[9] 刘宪锋, 朱秀芳, 潘耀忠, 等. 农业干旱监测研究进展与展望[J]. 地理学报, 2015,70(11):1835-1848.

[10] 孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原多尺度干旱特征及影响因素[J]. 地理研究, 2019,38(7):1820-1832.

[11] 倪霞, 周本智, 曹永慧, 等. 干旱胁迫对植物光合生理影响研究进展[J]. 江苏林业科技, 2017,44(2):34-39.

[12] De Cannière Simon, Harry V, Pierre D, et al. Remote Sensing of Instantaneous Drought Stress at Canopy Level Using Sun-Induced Chlorophyll Fluorescence and Canopy Reflectance[J]. Remote Sensing, 2022,14(11):2642-2659.

[13] Flood P J. Using natural variation to understand the evolutionary pressures on plant photosynthesis[J]. Current Opinion in Plant Biology, 2019,49(C):68-73.

[14] 袁文平, 蔡文文, 刘丹, 等. 陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014,29(5):541-550.

[15] 刘青瑞, 居为民, 张永光, 等. 日光诱导叶绿素荧光估算中国典型生态系统总初级生产力的能力[J]. 遥感技术与应用, 2017,32(2):363-373.

[16] 孙雷刚, 王绍强, 徐全洪, 等. 基于红光与远红光叶绿素荧光遥感的作物总初级生产力估算研究[J]. 地理与地理信息科学, 2019,35(4):34-42.

[17] 竞霞, 白宗璠, 张腾, 等. 3FLD和反射率荧光指数估测小麦条锈病病情严重度的对比分析[J]. 中国农机化学报, 2019,40(11):136-142.

[18] 刘雷震, 武建军, 周洪奎, 等. 叶绿素荧光及其在水分胁迫监测中的研究进展[J]. 光谱学与光谱分析, 2017,37(9):2780-2787.

[19] RayChaudhuri, B. Remote Sensing of Solar-Induced Chlorophyll Fluorescence at Atmospheric Oxygen Absorption Band Around 760 nm and Simulation of That Absorption in Laboratory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(10):3908-3914.

[20] Ma H, Cui T, Cao L. Monitoring of Drought Stress in Chinese Forests Based on Satellite Solar-Induced Chlorophyll Fluorescence and Multi-Source Remote Sensing Indices[J]. Remote Sensing, 2023,15(4):879-908.

[21] Liu L, Yang X, Zhou H, et al. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy[J]. Science of the Total Environment, 2018,625:1208-1217.

[22] Li H, Huang F, Hong X, et al. Evaluating Satellite-Observed Ecosystem Function Changes and the Interaction with Drought in Songnen Plain, Northeast China[J]. Remote Sensing, 2022,14(22):5887-5904.

[23] Wang S, Zhang Y, Ju W, et al. Temporally corrected long-term satellite solar-induced fluorescence leads to improved estimation of global trends in vegetation photosynthesis during 1995–2018[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022,194(2022):222-234.

[24] Zhang L, Qiao N, Huang C, et al. Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence[J]. Remote Sensing, 2019,11(4):378-396.

[25] 王利娜, 朱清科, 翁白莎, 等. 1961—2012年黄土高原干旱时空分布特征[J]. 水利水电技术, 2018,49(2):15-22.

[26] 张琨, 吕一河, 傅伯杰. 黄土高原典型区植被恢复及其对生态系统服务的影响[J]. 生态与农村环境学报, 2017,33(1):23-31.

[27] 王兆礼, 黄泽勤, 李军, 等. 基于SPEI和NDVI的中国流域尺度气象干旱及植被分布时空演变[J]. 农业工程学报, 2016,32(14):177-186.

[28] 关琳琳. 基于叶绿素荧光的植被总初级生产力估算[D]. 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.

[29] Sabrina W, M C P, Veronika E, et al. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2.[J]. Nature, 2016,538(7626):499-501.

[30] Dai F, Bai R, Kaneko D, et al. Development of Chinese Crop Monitoring Model Using Photosynthetic Production Index[J]. Journal of Robotics, Networking and Artificial Life (JRNAL), 2015,2(3):148-152.

[31] Sun Y, Frankenberg C, Wood J D, et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence[J]. Science, 2017,358(6360):5747-5753.

[32] Dalei H, R. A G, Yelu Z, et al. Potential of hotspot solar‐induced chlorophyll fluorescence for better tracking terrestrial photosynthesis[J]. Global Change Biology, 2021,27(10):2144-2158.

[33] Yang K, Ryu Y, Dechant B, et al. Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy[J]. Remote Sensing of Environment, 2018,216(2018):658-673.

[34] Krause G H, Weis E. Chlorophyll Fluorescence and Photosynthesis: The Basics[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991,42(1):313-349.

[35] 闫雨杏, 吕肖良, 王亚凯, 等. 日光诱导叶绿素荧光研究及应用的文献计量分析[J]. 中国农业气象, 2023,44(2):106-122.

[36] Frankenberg, Christian, Fisher, et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity[J]. Geophysical Research Letters, 2011,38(17):L17706.

[37] 章钊颖, 王松寒, 邱博, 等. 日光诱导叶绿素荧光遥感反演及碳循环应用进展[J]. 遥感学报, 2019,23(1):37-52.

[38] 彭金龙, 李萌, 褚荣浩, 等. 日光诱导叶绿素荧光反演及其在植被环境胁迫监测中的研究进展[J]. 江苏农业科学, 2021,49(24):29-40.

[39] Yu L, Wen J, Chang C Y, et al. High‐Resolution Global Contiguous SIF of OCO‐2[J]. Geophysical Research Letters, 2019,46(3):1449-1458.

[40] Li X, Xiao J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data.[J]. Remote Sensing, 2019,11(5):517-541.

[41] Du S, Liu L, Liu X, et al. The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects[J]. Sensors, 2020,20(3):815-838.

[42] Wood J D, Griffis T J, Baker J M, et al. Multiscale analyses of solar‐induced florescence and gross primary production[J]. Geophysical Research Letters, 2017,44(1):533-541.

[43] K. S S, Hitendra P, A. S K. Space-Borne Sun-Induced Fluorescence:An Advanced Probe to Monitor Seasonality of Dry and Moist Tropical Forest Sites[J]. Current Science, 2017,113(11):2180-2183.

[44] Sun Y, Frankenberg C, Wood J D, et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence[J]. Science, 2017,358(6360):5747-5753.

[45] Li X, Xiao J, He B. Chlorophyll fluorescence observed by OCO-2 is strongly related to gross primary productivity estimated from flux towers in temperate forests[J]. Remote Sensing of Environment, 2018,204(2018):659-671.

[46] Wei J, Tang X, Gu Q, et al. Using Solar-Induced Chlorophyll Fluorescence Observed by OCO-2 to Predict Autumn Crop Production in China[J]. Remote Sensing, 2019,11(14):1715-1729.

[47] Zhang J, Xiao J, Tong X, et al. NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests[J]. Agricultural and Forest Meteorology, 2022,315(2022):108819.

[48] 张存杰, 肖潺, 李帅, 等. 极端气候事件综合危险性等级指标构建及近60年来长江流域极端气候综合分析[J]. 地球物理学报, 2023,66(3):920-938.

[49] 唐朝生. 极端气候工程地质:干旱灾害及对策研究进展[J]. 科学通报, 2020,65(27):3009-3027.

[50] Byakatonda J, Parida B P, Moalafhi D B, et al. Investigating relationship between drought severity in Botswana and ENSO[J]. Natural Hazards, 2020,100(1):255-278.

[51] 张璐, 朱仲元, 张圣微, 等. 半干旱草原型流域土壤水分变异及其影响因素分析[J]. 农业工程学报, 2020,36(13):124-132.

[52] 吴友杰, 杜太生. 西北干旱区农田土壤蒸发量及影响因子分析[J]. 农业工程学报, 2020,36(12):110-116.

[53] 周玉良, 刘立, 周平, 等. 基于帕尔默旱度模式的干旱识别及其特征值频率分析[J]. 农业工程学报, 2014,30(23):174-184.

[54] Jackson R D, Idso S B, Reginato R J, et al. Canopy temperature as a crop water stress indicator[J]. Water Resources Research, 1981,17(4):1133-1138.

[55] 李大鹏, 慕鹏飞, 白涛, 等. 基于标准化降水指数SPI的西江流域多尺度干旱特征及其驱动力分析[J]. 西安理工大学学报, 2020,36(1):41-50.

[56] Vicente-Serrano, M S, Beguería, et al. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate, 2010,23(7):1696-1710.

[57] 杜灵通, 候静, 胡悦, 等. 基于遥感温度植被干旱指数的宁夏2000-2010年旱情变化特征[J]. 农业工程学报, 2015,31(14):209-216.

[58] Zhang Y, Wu Z, P. S V, et al. Agricultural Drought Assessment in a Typical Plain Region Based on Coupled Hydrology–Crop Growth Model and Remote Sensing Data[J]. Remote Sensing, 2022,14(23):5994-6012.

[59] 刘丹, 冯锐, 于成龙, 等. 基于植被指数的春玉米干旱响应遥感监测[J]. 农业工程学报, 2019,35(20):152-161.

[60] 程小强, 周兆叶, 李旺平, 等. 基于MODIS数据的中亚地区旱情监测及影响因素分析[J]. 农业工程学报, 2022,38(10):128-137.

[61] 孙威, 王鹏新, 韩丽娟, 等. 条件植被温度指数干旱监测方法的完善[J]. 农业工程学报, 2006(2):22-26.

[62] 王兆礼, 黄泽勤, 李军, 等. 基于SPEI和NDVI的中国流域尺度气象干旱及植被分布时空演变[J]. 农业工程学报, 2016,32(14):177-186.

[63] Li H, Wang H, Sui H, et al. Mapping the Spatial-Temporal Dynamics of Vegetation Response Lag to Drought in a Semi-Arid Region[J]. Remote Sensing, 2019,11(16):1873-1895.

[64] 陈少丹, 张利平, 汤柔馨, 等. 基于SPEI和TVDI的河南省干旱时空变化分析[J]. 农业工程学报, 2017,33(24):126-132.

[65] 张更喜, 粟晓玲, 郝丽娜, 等. 基于NDVI和scPDSI研究1982-2015年中国植被对干旱的响应[J]. 农业工程学报, 2019,35(20):145-151.

[66] Deng H, Haoyu D, Yunhe Y, et al. Vulnerability of vegetation activities to drought in Central Asia[J]. Environmental Research Letters, 2020,15(8):84005.

[67] 王有恒, 张存杰, 段居琦, 等. 中国北方春玉米干旱灾害风险评估[J]. 干旱地区农业研究, 2018,36(2):257-264.

[68] 高江波, 刘路路, 郭灵辉, 等. 气候变化和物候变动对东北黑土区农业生产的协同作用及未来粮食生产风险[J]. 地理学报, 2022,77(7):1681-1700.

[69] 林艺真, 邱炳文, 陈芳鑫, 等. 干旱胁迫下植物抗逆性大尺度遥感监测方法[J]. 地球信息科学学报, 2022,24(11):2225-2233.

[70] 刘雷震, 武建军, 周洪奎, 等. 叶绿素荧光及其在水分胁迫监测中的研究进展[J]. 光谱学与光谱分析, 2017,37(9):2780-2787.

[71] Yoshida Y, Joiner J, Tucker C, et al. The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances[J]. Remote Sensing of Environment, 2015,166(2015):163-177.

[72] Sun Y, Fu R, Dickinson R, et al. Drought onset mechanisms revealed by satellite solar‐induced chlorophyll fluorescence: Insights from two contrasting extreme events[J]. Journal of Geophysical Research: Biogeosciences, 2015,120(11):2427-2440.

[73] Wang S, Huang C, Zhang L, et al. Monitoring and Assessing the 2012 Drought in the Great Plains: Analyzing Satellite-Retrieved Solar-Induced Chlorophyll Fluorescence, Drought Indices, and Gross Primary Production[J]. Remote Sensing, 2016,8(2):61-78.

[74] 高雅, 高懋芳, 王晓飞, 等. 基于TVDI与荧光的呼伦贝尔市干旱时空动态监测研究[J]. 中国农业信息, 2019,31(1):82-94.

[75] Liu L, Yang X, Zhou H, et al. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy[J]. Science of the Total Environment, 2018,625(2018):1208-1217.

[76] Zhang L, Qiao N, Huang C, et al. Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence[J]. Remote Sensing, 2019,11(4):378-396.

[77] 董恒, 韩超然, 何思聪, 等. 基于日光诱导叶绿素荧光的地理加权回归干旱监测模型[J]. 武汉理工大学学报, 2020,42(11):39-44.

[78] 曹银轩, 黄卓, 徐喜娟, 等. 黄土高原植被日光诱导叶绿素荧光对气象干旱的响应[J]. 应用生态学报, 2022,33(2):457-466.

[79] Jia L, He Y, Liu W, et al. Assessment of Drought Events in Southwest China in 2009/2010 Using Sun-Induced Chlorophyll Fluorescence[J]. Forests, 2022,14(1):49-54.

[80] 李家誉, 佘敦先, 张利平, 等. 黄土高原植被变化对气象干旱多尺度响应特征与机制[J]. 水土保持学报, 2022,36(6):280-289.

[81] 张翀, 雷田旺, 宋佃星. 黄土高原植被覆盖与土壤湿度的时滞关联及时空特征分析[J]. 生态学报, 2018,38(6):2128-2138.

[82] 张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020,75(5):949-960.

[83] 杨艳, 周德成, 宫兆宁, 等. 基于植被生产力的黄土高原地区生态脆弱性及其控制因子分析[J]. 生态环境学报, 2022,31(10):1951-1958.

[84] 陈剑南, 刘益麟, 李朋飞, 等. 1901-2016年黄土高原降雨侵蚀力时空变化[J]. 水土保持研究, 2022,29(4):39-46.

[85] 李强, 张翀, 任志远. 近15年黄土高原植被物候时空变化特征分析[J]. 中国农业科学, 2016,49(22):4352-4365.

[86] 樊莉莉, 耿斌, 王吉林, 等. 2001-2020年黄土高原干旱时空动态及其对气候变化的响应[J]. 水土保持研究, 2022,29(6):183-191.

[87] 毛盛林, 上官周平. 近20年黄土高原土地利用/植被覆盖变化特征及其成因[J]. 水土保持研究, 2022,29(5):213-219.

[88] 孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022,55(3):96-107.

[89] 胡春宏, 张治昊. 论黄河河道平衡输沙量临界阈值与黄土高原水土流失治理度[J]. 水利学报, 2020,51(9):1015-1025.

[90] 张宝庆, 邵蕊, 赵西宁, 等. 大规模植被恢复对黄土高原生态水文过程的影响[J]. 应用基础与工程科学学报, 2020,28(3):594-606.

[91] 刘晓琳, 卢晓妍, 秦张璇, 等. 退耕还林还草背景下黄土高原粮食生产系统可持续性的时空演变[J]. 农业工程学报, 2022,38(10):249-257.

[92] Zeng Y, Badgley G, Dechant B, et al. A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2019,232(C):111209.

[93] 孟翔晨, 刘昊, 程洁. 基于FY-2F数据的中国区域地表温度日变化模型评价及特征研究[J]. 遥感学报, 2019,23(4):570-581.

[94] 杨楠, 王凌雨, 朱琳, 等. 黄河流域近十年 NPP 变化特征及驱动因子分析[J]. 应用基础与工程科学学报, 2023,31(2):280-295.

中图分类号:

 X144    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式