题名: |
房屋建筑施工事故致因因素耦合作用机理及耦合风险度量方法研究
|
作者: |
曹东强
|
学号: |
20120089022
|
保密级别: |
保密(2年后开放)
|
语种: |
chi
|
学科代码: |
083700
|
学科: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位: |
工学博士
|
学位年度: |
2024
|
学校: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
安全管理与安全系统工程
|
导师姓名: |
成连华
|
导师单位: |
西安科技大学
|
提交日期: |
2024-06-17
|
答辩日期: |
2024-05-26
|
外文题名: |
Coupling Mechanism and Coupling Risk Assessment Method of Accident Causative Factors in Building Construction
|
关键词: |
房屋建筑施工 ; 事故致因因素 ; 耦合风险度量 ; 事故致因模型 ; 复杂网络
|
外文关键词: |
Building construction ; Accident causative factors ; Coupling risk assessment ; Accident causation model ; Complex network
|
摘要: |
︿
建筑业是我国国民经济的支柱之一,由于其施工的复杂性、动态性、流动性等特点,使得建筑施工安全管理难度大,安全生产形势较为严峻。房屋建筑工程在我国房屋市政工程领域占比大,其施工安全风险依然较高,针对房屋建筑施工安全风险管控相关研究有待加强。本研究收集并整理近年来房屋建筑施工事故数据,提取事故致因因素,分析事故致因因素的耦合性,识别出关键事故致因因素及其耦合作用路径。在此基础上,提出房屋建筑施工事故致因因素的耦合风险分级度量方法,构建基于累积效应的房屋建筑施工事故致因模型,分析风险管控措施实施效果。研究结果对于增强房屋建筑施工项目的风险管控能力和事故防控能力具有重要意义。论文主要包含以下工作内容:
(1)房屋建筑施工事故致因因素的耦合性分析。采用扎根理论提取房屋建筑施工事故致因因素,根据国内外学者关于耦合理论的相关研究,界定了事故致因因素的耦合度,划分4种耦合类型。分别运用Apriori算法、信息熵理论、基于耦合效应的数学模型提出房屋建筑施工事故致因因素的耦合度计算方法,分析事故致因因素的耦合性。基于此,对比不同事故致因因素的耦合度计算方法的优缺点。
(2)房屋建筑施工事故致因因素耦合网络模型构建及分析。基于复杂系统思想,从事故致因因素“耦合前-耦合中-耦合后”三个层面,解释了房屋建筑施工事故致因因素耦合作用过程。依据事故致因因素间的作用关系建立事故致因因素耦合作用路径,构建房屋建筑施工事故致因因素耦合网络模型。在此基础上,运用多种拓扑参数识别出关键事故致因因素及其耦合作用路径,分析房屋建筑施工事故致因因素的耦合特征。
(3)房屋建筑施工事故致因因素的耦合风险分级度量方法提出。确定出风险累积基本方式,制定了风险累积分析框架,分析了房屋建筑施工风险累积过程。基于大量的事故数据,将复杂网络拓扑参数经数据处理后,内嵌于改进的风险矩阵,综合考虑风险可能性、后果和耦合性,制定风险等级的划分标准,提出房屋建筑施工耦合风险度量方法;引入累积效应,动态量化分析了风险累积过程中的系统风险。基于此,以华东某集团公司所属的三个施工项目进行实例应用,验证评价方法的科学性和合理性。
(4)基于累积效应的房屋建筑施工事故致因模型构建。基于大量典型房屋建筑施工事故案例统计,划分事故分析层级。引入累积效应、能量传递、复杂系统等思想,借鉴事故致因模型的提出防护屏障和事故分析层级,考虑了事故致因因素的耦合效应,以及事故致因因素的风险累积,提出事故的触发条件,以时间维度刻画事故演化与风险累积过程之间的对应关系,从“致因因素散状分布→风险链式累积→交叉链式耦合风险”描述风险累积过程,构建了一种房屋建筑施工领域的事故致因模型,并经实例验证模型的可行性和适用性。
(5)房屋建筑施工项目风险管控能力提升实例应用。基于成熟度模型,划分风险管控能力成熟度等级,从五个维度构建了风险管控能力测量体系,运用组合数有序加权(COWA)算子计算得到风险管控路径系数,构建出风险管控系统动力学模型,仿真不同风险管控措施下的系统风险变化趋势。基于风险的解耦思想,采用网络模型去除关键节点的方法,构建事故致因因素耦合故障网络模型,分析风险管控措施的实施效果。
论文针对房屋建筑施工事故致因因素耦合作用过程及管控中存在的薄弱环节,综合运用耦合理论、信息熵理论、累积效应、复杂网络、系统动力学、关联规则算法、ABC分类法、数理统计等多学科交叉理论开展了房屋建筑施工事故致因因素耦合作用机理及耦合风险度量方法研究。研究成果对于房屋建筑施工项目风险超前管控和风险管理能力的提升提供理论支撑。
﹀
|
外文摘要: |
︿
The construction industry is one of the pillars of our national economy, due to the complexity, dynamic and fluidity of its construction, it makes the construction safety management difficult, and the safety work situation is more severe. Building construction engineering accounts for a large proportion in the field of building municipal engineering in China, and its construction safety risk is still high. The relevant research on the safety risk control of building construction needs to be strengthened. This study collected and sorted out the data of building construction accidents in recent years, extracted the accident causative factors, analyzed the coupling of accident causative factors, and identified the key accident causative factors and their coupling paths. On this basis, the coupling risk classification assessment method of the accident causative factors of building construction is proposed, and the cumulative effect based on the building construction accident causation model is built to analyze the implementation effect of risk control measures. The research results are of great significance to enhance the risk control capacity and accident prevention and control capacity of building construction projects. The thesis mainly includes the following work contents:
(1) Coupling analysis of accident causative factors in building construction. The grounded theory is be utilized for extracting the accident causative factors of building construction. According to the research on coupling theory of domestic and foreign scholars, the concept of coupling degree of accident causative factor are defined, and four types of coupling are divided. Using Apriori algorithm, information entropy theory and mathematical model based on coupling effect, the coupling degree calculation method is proposed to analyze the coupling of the accident causative factors the building construction. On the basis of this, the advantages and disadvantages of coupling degree calculation methods for different accident causative factors are compared.
(2) Construction and analysis of coupling network model of accident causative factors in building construction. Based on the thought of complex system, this paper explains the coupling process of the accident causative factors of building construction from three aspects: "before coupling, during coupling and after coupling". In term of the relationship between the factors, the coupling path of the accident causative factors is established, and the coupling network model of the accidents causative factors in building construction is constructed. On this basis, a variety of topological parameters are used to identify the key factors and their coupling paths, and analyze the coupling characteristics of the accident causative factors the building construction.
(3) A method for measuring the coupling risk classification of the accident causative factors of building construction is proposed. The basic way of risk accumulation is determined, the risk accumulation analysis frame is formulated, and the risk accumulation process of building construction is analyzed. Based on a lot of accident data, after data processing, the complex network topology parameters are embedded in the improved risk matrix. Consider risk possibility, consequence and coupling, the division standard of risk level is established, and the coupling risk assessment method of building construction is proposed. By introducing the accumulation effect, the system risk in the process of risk accumulation is analyzed dynamically and quantitatively. In accordance with this, three construction projects belonging to a group company in east China are applied to verify the scientificity and rationality of the assessment method.
(4) Building construction accident causation model based on cumulative effect. Based on a large number of typical building construction accident case statistics, the accident analysis level is divided. The ideas of cumulative effect, energy transfer and complex system are introduced, the protective barrier and the accident analysis level are proposed by referring to the accident causation models, the coupling effect of accident causative factors and the risk accumulation of accident causative factors are considered. The triggering conditions of the accident are proposed, and the corresponding relationship between accident evolution and risk accumulation process is described in time dimension. Risk accumulation process is described from "scattered distribution of contributing factors → risk chain accumulation → cross-chain coupling risk". A type of accident causation model in the field of building construction is constructed, and the feasibility and applicability of the model are verified by an example.
(5) Building construction project risk management and control capacity improvement example application. Based on the maturity model, this paper divides the maturity level of risk management and control capability, constructs a risk management and control capability measurement system from five dimensions. Furthermore, the combination ordered weighted averaging (COWA) operator is applied to calculate the risk management and control path coefficient, and constructs a risk management and control system dynamic model. It contributes to simulate the change trend of system risk under different risk management and control measures. Based on the decoupling idea of risk, the method of removing key nodes by network model is used to construct the coupling failure network model of assessment, and the implementation effect of risk management and control is analyzed.
This paper aims at the weak link in the coupling action process and control of accident causative factors building construction. The coupling mechanism and coupling risk assessment methods of building construction accidents are studied by comprehensive application of coupling theory, information entropy theory, cumulative effect, complex network, system dynamics, association rule algorithm, ABC classification, mathematical statistics and other interdisciplinary theories. The research results provide theoretical support for the improvement of risk advance control and risk management capacity of building construction projects.
﹀
|
参考文献: |
︿
[1] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[EB/OL]. https://www.stats.gov.cn/sj/zxfb/202402/t20240228_1947915.html. [2] 赵丽军. 房屋建筑工程施工安全模块化管理研究[D]. 杭州: 浙江大学, 2018. [3] Loosemore M, Malouf N. Safety training and positive safety attitude formation in the Australian construction industry[J]. Safety Science, 2019, 113: 233-243. [4] 中华人民共和国住房与城乡建筑部. 房屋市政工程生产安全事故情况的通报[EB/OB]. http://www.mohurd.gov.cn/index.html. [5] 全国工程质量安全监督信息平台公共服务门户. 房屋市政工程生产安全事故情况[EB/OL]. https://zlaq.mohurd.gov.cn/fwmh/bjxcjgl/fwmh/pages/ default/index.html. [6] 李晓东, 陈琦. 我国建筑生产安全事故的主要类型及其防范措施[J]. 土木工程学报, 2012, 45(S2): 245-248. [7] 李润求, 施式亮. 建筑安全技术与管理[M]. 徐州:中国矿业大学出版社, 2020. [8] 王根霞, 张海蛟, 王祖和. 基于风险偏好信息的建筑施工现场安全评价指标权重[J]. 系统工程理论与实践, 2015, 35(11): 2866-2873. [9] 樊运晓, 卢明, 李智, 等. 基于危险属性的事故致因理论综述[J]. 中国安全科学学报, 2014, 24(11): 139-145. [10] 傅贵, 索晓, 贾清淞, 等. 10种事故致因模型的对比研究[J]. 中国安全生产科学技术, 2018, 14(2): 58-63. [11] Greenwood M, Woods H M. The incidence of industrial accidents upon individuals with specific reference to multiple accidents[M]. London. Industrial Fatigue Research Board, 1919. [12] Heinrich H W. Industrial accident prevention a scientific approach[M]. New York. McGraw-Hill Book Company,1959. [13] Bird J F. Management Guide to Loss Control[M]. Atlanta. Institute Press, 1974. [14] Adams J G U. Risk and Freedom the record of road safety regulation[M]. Trasport Publishing Projects, 1985. [15] 吴超. 安全科学原理[M]. 北京: 机械工业出版社, 2018. [16] Gibson J J. The contribution of experimental psychology to the formutation of the problems of safety, A brief for basic research. Behavioral approaches to accident research[J]. Association for the Aid of Crippled Children, New York, NY, 1960. [17] Surry J. Industrial accident research a human engineering appralsal. Canada: University of Toronto, 1969. [18] Benner L. Safety, risk and regulation. Transportation Research Forum Proceedings, Chicago, 13:1, 1972. [19] 陈宝智. 安全原理[M]. 北京:冶金工业出版社第2版, 140, 2002. [20] Reason J. Human error[M]. Cambridge: Cambridge University Press, 1990:173-188. [21] Rasmussen J. Risk management in a dynamic society: A modelling problem[J]. Safety Science,1997, 27 (2–3): 183–213. [22] Rasmussen J, Svedung I. Graphic representation of accident scenarios: mapping system structure and the causation of accidents[J]. Safety Science, 2002, 40: 397-417. [23] Shappell S A, Wiegmann D A. A human error analysis of classification system(HFACS)[R]. The report of Office of aviation medicine federal aviation administration, 2000. [24] Leveson N. A new accident model for engineering safer systems[J]. Safety Science, 2004, 42(4): 237-270. [25] 傅贵, 王秀明, 李亚. 事故致因“2-4”模型及其事故原因因素编码研究[J]. 安全与环境学报, 2017, 17(3): 1003-1008. [26] Smith D, Veitch B, Khan F, et al. Understanding industrial safety: Comparing fault tree, Bayesian network, and FRAM approaches[J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 88-101. [27] 袁亚楠. 基于事故致因理论的建筑施工安全评价研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [28] Wong L, Wang Y, Law T, et al. Association of root causes in fatal fall-from-height construction accidents in Hong Kong[J]. Journal of Construction Engineering and Management, 2016, 142(7): 1-12. [29] Zhao D, McCoy A P, Kleiner B M, et al. Decision-making chains in electrical safety for construction workers[J]. Journal of Construction Engineering and Management, 2016, 142(040150551), 1-11. [30] Park I, Kim J, Han S, et al. Analysis of fatal accidents and their causes in the Korean construction industry [J]. Sustainability, 2020, 12(8): 1-13. [31] 曹秀峰, 申建红, 杜怡萱. SVM在高层建筑施工安全风险分类中的应用[J]. 青岛理工大学学报, 2013, 34(3): 22-26. [32] 李皓燃, 李启明, 陆莹. 基于SEM的装配式建筑施工安全关键风险分析[J]. 中国安全科学学报, 2019, 29(4): 171-176. [33] 陈晓勇, 施式亮, 李润求, 等. 基于修正的HFACS与SPA的建筑施工安全人因分析[J]. 湖南科技大学学报(自然科学版), 2020, 35(3): 63-69. [34] 李聪, 陈建宏. 联系数的物元模型在建筑安全评价及预测中的应用[J]. 安全与环境学报, 2016, 16(2): 71-75. [35] 唐芳. 建筑工程项目承包商风险识别与评价[J]. 建筑经济, 2007(8): 62-64. [36] 曾凡奎, 王婷. 基于DEMATEL和ISM的支模脚手架高处坠落事故致灾因素建模[J]. 沈阳工业大学学报, 2021, 43(3): 342-348. [37] 赵平, 刘康, 黎晓东. 基于MM的建筑施工企业现场安全管理量化分析[J]. 安全与环境工程, 2017, 24(1): 134-140. [38] 赵挺生, 周炜, 徐凯, 等. 复杂社会技术系统下的塔吊安全思考[J]. 中国安全科学学报, 2018, 28(6): 153-159. [39] 姜东民, 张哲, 何栋良. 装配式建筑安全事故承灾体脆弱性评价指标体系构建——基于Apriori算法[J]. 沈阳建筑大学学报(社会科学版), 2020, 22(3): 259-264. [40] Li W, Yuan J F, Ji C, et al. Agent-Based Simulation Model for Investigating the Evolution of Social Risk in Infrastructure Projects in China: A Social Network Perspective[J]. Sustainable Cities and Society, 2021, 73(2021) 103112. [41] Guo Y L, Jin Y X, Hu S P, et al. Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN[J]. Reliability Engineering and System Safety, 2023, 229(2023): 108850. [42] Wang Q L, Chen S H, Chen F, et al. A dynamic assessment method for risk evolution in chemical processes based on MFM-HAZOP-FDBN[J]. Chemical Engineering Research and Design, 2024, 04(2024): 471-486. [43] Zhong W, Cai J W, Song Y F, et al. Risk evolution of crude oil pipeline under periodic maintenance based on dynamic bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2024, 87(2024): 105229. [44] Xia N N, Patrick Zou X W, Liu X, et al. A hybrid BN-HFACS model for predicting safety performance in construction projects[J]. Safety Science, 2018, 101(2018): 332-343. [45] Zhou C, Kong T, Jiang S G, et al. Quantifying the evolution of settlement risk for surrounding environments in underground construction via complex network analysis[J]. Tunnelling and Underground Space Technology, 2020, 103(2020): 103490. [46] 高军, 吴欣桐. 基于系统动力学模型的工程项目风险演化评价[J].统计与决策, 2020, 36(4): 185-188. [47] 邵志国, 艾长芹, 李梦笛. 基于系统动力学模型的青岛某隧道工程项目社会稳定风险情景模拟[J]. 工业建筑, 2024, 54(2): 8-17. [48] 李珏, 王幼芳. 基于文本挖掘的建筑施工高处坠落事故致因网络分析[J]. 安全与环境学报, 2020, 20(4): 1284-1290. [49] 李珏, 李世杰. 基于文本挖掘的高处坠落事故致因及关联规则分析[J]. 长沙理工大学学报(自然科学版), 2020, 17(2): 61-67+74. [50] 陈文瑛, 李泳暾, 宋志光. 基于复杂网络的生产安全事故致因研究:以北京市某城区为例[J]. 中国安全科学学报, 2020, 30(7): 7-12. [51] 褚召强, 杨高升. 基于有向加权网络的高处坠落事故致因分析[J]. 工程管理学报, 2021, 35(3): 105-110. [52] 罗秋实, 杨高升. 坍塌事故风险演化复杂网络模型及消减对策研究[J]. 工程管理学报, 2020, 34(4): 28-33. [53] 马舒琪, 刘澎, 吕淑然, 等. 基于ISM-DBN的古建筑群火灾风险演化模型[J]. 安全与环境工程, 2022, 29(3): 55-61. [54] Lee E, Park Y, Shin J G. Large engineering project risk management using a Beyesian belief network[J]. Expert Systems with Applications, 2009, 36(3): 5880-5887. [55] Eybpoosh M, Dikmen, Birgonul M T. Identification of risk paths in international construction projects using structural equation modeling[J]. Journal of Construction Engineering and Management, 2011, 137(12): 1164-1175. [56] Xu N, Tang X J. Evolution analysis of societal risk events by risk maps[J]. Journal of Systems Science and Systems Engineering, 2020, 29(4): 455-467. [57] 张伟, 张潇, 薛楠楠, 等. 塔吊安全事故致因网络模型构建与分析[J]. 中国安全科学学报, 2020, 30(12): 1-7. [58] 梁松, 王钰龙, 吴娇, 等. 基于 SNA 的建筑施工安全关键风险因素研究[J]. 重庆建筑, 2021(1): 35-37. [59] 吴秀宇, 葛亚红, 路曦越. 多元制度逻辑下农村自建房安全风险形成机理研究[J]. 安全与环境学报, 2022, 22(4): 2040-2049. [60] 刘澎, 吕淑然, 马舒琪. 面向高层建筑物的火灾演化路径研究[J]. 安全与环境学报, 2021, 21(3): 1130-1137. [61] 江新, 吴园莉. 水电工程项目群交叉作业风险演化机理研究[J]. 中国安全科学学报, 2015, 25(12): 157-163. [62] 翟越, 杜菁, 高甲艳. 基于改进贝叶斯网络的高处作业施工风险评价方法[J]. 安全与环境学报, 2022, 22(2): 541-549. [63] Pinto A, Nunes I L, Ribeiro R A. Occupational risk assessment in construction industry–Overview and reflection[J]. Safety Science, 2011, 49(5): 616-624. [64] Sadeghi H, Mohandes S R, Hosseini M R, et al. Developing an ensemble predictive safety risk assessment model: case of Malaysian construction projects[J]. International Journal of Environmental Research and Public Health, 2020, 17(22): 1-25. [65] Tah V, Carr J H M. A proposal for construction project risk assessment using fuzzy logic, Construction Management and Economics, 2000, 18: 4,491-500. [66] Ning X, Qi J, Wu C. A quantitative safety risk assessment model for construction site layout planning[J]. Safety Science, 2018,104: 246-259. [67] Zavadskas E K, Turskis Z, Tamošaitiene J. Risk assessment of construction projects[J]. Journal of Civil Engineering and Management, 2010, 16(1): 33-46. [68] Sawicki M, Szóstak M. Quantitative assessment of the state of threat of working on construction scaffolding[J]. International Journal of Environmental Research and Public Health, 2020, 17(16): 1-19. [69] Li W, Li Q, Liu Y, et al. Construction safety risk assessment for existing building renovation project based on entropy-unascertained measure theory[J]. Applied Sciences, 2020, 10(8): 1-17. [70] 蔡久顺, 张执国, 师鹏. 基于改进风险度模型的高层建筑施工安全风险评价研究[J]. 数学的实践与认识, 2015, 45(23): 81-87. [71] 郭红领, 张知田, 郁润. 基于危险系数的施工工人不安全行为评估[J]. 清华大学学报(自然科学版), 2019, 59(11): 873-879. [72] 陈哲, 孟祥瑞, 王向前, 等. 基于可拓理论的建筑施工现场安全研究[J]. 辽宁工业大学学报(社会科学版), 2018, 20(3): 36-39. [73] 杜婷, 宋艳红, 李智莹, 等. 基于模糊综合评价法的建筑项目施工安全评价[J]. 土木工程与管理学报, 2019, 36(6): 61-66+78. [74] 胡庆国, 蔡孟龙, 何忠明. 基于组合赋权法与集对分析的装配式建筑施工安全风险评价[J]. 长沙理工大学学报(自然科学版), 2019, 16(4): 16-26. [75] 杨斯玲, 黄和平, 刘伟, 等. 基于结构熵权和修正证据理论的装配式建筑施工安全风险评价[J]. 安全与环境工程, 2019, 26(6): 143-149+153. [76] 杨莉琼, 李世蓉, 贾彬. 基于二元决策图的建筑施工安全风险评估[J]. 系统工程理论与实践, 2013, 33(7): 1889-1897. [77] 袁宁, 杨立兵. 基于粗糙集-人工神经网络的建筑施工安全评价及应用[J]. 安全与环境工程, 2012, 19(1): 60-64. [78] Tokdemir O B, Erol H, Dikmen I. Delay risk assessment of repetitive construction projects using line-of-balance scheduling and monte carlo simulation[J]. Journal of Construction Engineering and Management, 2019, 145(2) :1943-7862. [79] 李艺彤, 郭永成, 司马艳, 等. 基于改进LEC评价法的高层建筑施工危险源评估与管控[J]. 三峡大学学报(自然科学版), 2019, 41(4): 55-59. [80]吴小刚, 李洵, 张土乔, 等. 建筑工程安全的风险识别及评价方法研究[J]. 中国安全科学学报, 2004(8): 58-61+2. [81] Alizadeh S S, Mortazavi S B, Mehdi Sepehri M. Assessment of accident severity in the construction industry using the Bayesian theorem[J]. International Journal of Occupational Safety and Ergonomics, 2015, 21(4): 551-557. [82] Wang Z Z, Chen C. Fuzzy comprehensive Bayesian network-based safety risk assessment for metro construction projects[J]. Tunnelling and Underground Space Technology, 2017, 70: 330-342. [83] Guan L, Liu Q, Abbasi A, et al. Developing a comprehensive risk assessment model based on fuzzy Bayesian belief network (FBBN)[J]. Journal of Civil Engineering and Management, 2020, 26(7): 614-634. [84] Zhang J J, Xu K L, You G, et al. Causation analysis of risk coupling of gas explosion accident in Chinese underground coal mines[J]. Risk Analysis, 2019, 39(7), 1634-1646. [85] Qiao W G. Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory[J]. Reliability Engineering & System Safety, 2021, 208: 1-10. [86] Fang M, Zhang Y, Zhu M J, et al. Cause mechanism of metro collapse accident based on risk coupling[J]. International Journal of Environmental Research and Public Health, 2022, 19(4), 1-18. [87] Xue Y T, Xiang P C, Jia F Y, et al. Risk assessment of high-speed rail projects: A risk coupling model based on system dynamics[J]. International Journal of Environmental Research and Public Health, 2020, 17(15), 1-26. [88] 周慧充. 基于蒙特卡罗法的建筑施工风险估计研究[J]. 项目管理技术, 2020, 18(4): 98-103. [89] 袁心怡,黄喜兵.考虑脆弱性的复杂工程项目风险耦合研究[J]. 工程管理学报, 2023, 37(4): 96-100. [90] 向鹏成, 刘熠林. 跨区域重大工程项目风险耦合机理研究[J]. 建筑经济, 2018, 39(7): 97-101. [91] Luo Z, Li K, Ma X, et al. A new accident analysis method based on complex network and cascading failure[J]. Discrete Dynamics in Nature and Society, 2013, 2013. [92] Zhou C, Ding L, Skibniewski M J, et al. Characterizing time series of near-miss accidents in metro construction via complex network theory[J]. Safety Science, 2017, 98: 145-158. [93] Long T, Pan H, Dong C, et al. Exploring the competitive evolution of global wood forest product trade based on complex network analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 525: 1224-1232. [94] Yu K, Zhou L, Hu C, et al. Analysis of influencing factors of occupational safety and health in coal chemical enterprises based on the analytic network process and system dynamics[J]. Processes, 2019, 7(1): 1-16. [95] Fraccascia L, Giannoccaro I, Albino V. Resilience of complex systems: state of the art and directions for future research[J]. Complexity, 2018, 1-45. [96] Hu X B, Gheorghe A V, Leeson M S, et al. Risk and safety of complex network systems[J]. Mathematical Problems in Engineering, 2016, 2016. [97] Guo S Y, Zhou X Y, Tang B, et al. Exploring the behavioral risk chains of accidents using complex network theory in the construction industry[J]. Physica A: Statistical Mechanics and its Applications, 2020, 560(125012): 1-12. [98] 周新宇, 郭聖煜. 房建工程事故行为致险链作用机理研究[J]. 工程管理学报, 2019, 33(1): 112-116. [99] 姚浩, 陈超逸, 宋丹妮. 基于复杂网络的超高层建筑施工安全风险耦合评估方法[J]. 安全与环境学报, 2021, 21(3): 957-968. [100]周红波, 杨奇, 杨振国, 等. 基于复杂网络和N-K模型的塔吊安全风险因素分析与控制[J]. 安全与环境学报, 2020, 20(3): 816-823. [101]严小丽, 胡兴俊, 王银志. 建设项目施工安全风险耦合及其应对——基于人因视角[J]. 安全与环境工程, 2016, 23(6): 106-113. [102]Canter L W, Kamath J. Questionnaire checklist for cumulative impacts[J]. Environmental Impact Assessment Review, 1995, 15(4), 311-339. [103]Pradhan N, Habib H, Venkatappa M, et al. Framework tool for a rapid cumulative effects assessment: case of a prominent wetland in Myanmar[J]. Environmental Monitoring and Assessment, 2015, 187(6), 1-18. [104]Menegon S, Depellegrin D, Farella G, et al. A modelling framework for MSP-oriented cumulative effects assessment[J]. Ecological Indicators, 2018, 91, 171-181. [105]Charak R, De Jong J T V M, Berckmoes L H, et al. Assessing the factor structure of the childhood trauma questionnaire, and cumulative effect of abuse and neglect on mental health among adolescents in conflict-affected Burundi[J]. Child Abuse & Neglect, 2017, 72, 383-392. [106]成连华, 郑庆, 郭慧敏, 等. 基于累积效应的事故进程研究[J]. 中国安全科学学报, 2019, 29(12): 35-39. [107]成连华, 左敏昊. 基于扎根理论的瓦斯爆炸风险累积效应研究[J]. 中国安全生产科学技术, 2021, 17(10): 53-59. [108]冀成楼, 张宏. 工业事故调查与分析的发展历程及趋势[J]. 中国安全生产科学技术, 2011, 7(6): 151-155. [109]Jo B, Lee Y, Kim J, et al. Trend analysis of construction industrial accidents in Korea from 2011 to 2015[J]. Sustainability, 2017, 9(8), 1-12. [110]王玮. 基于聚类分析的建筑施工安全事故统计分析[J]. 蚌埠学院学报, 2017, 6(1): 34-37. [111]成连华, 郭阿娟, 郭慧敏, 等. 煤矿瓦斯爆炸风险耦合演化路径研究[J]. 中国安全科学学报, 2022, 32(4): 59-64. [112]李金德, 秦晶. SPSS统计分析与应用[M]. 北京: 清华大学出版社, 2019: 155, 184-185. [113]许浒, 陈宇航, 何佳斌, 等. 基于频数统计和χ~2-PCC的建筑施工高处坠落事故特征分析[J]. 中国安全科学学报, 2023, 33(4): 91-99. [114]霍增辉, 陈佳敏. 中国省域建筑安全生产水平的动态综合评价及策略分析[J]. 安全与环境学报, 2019,19(3):893-901. [115]程勇. 房屋建筑工程施工安全管理的模块化应用研究[D]. 重庆: 重庆交通大学, 2016. [116]刘昭如, 张树平. 房屋建筑学[M]. 北京: 中国建筑工业出版社, 2016. [117]李云, 刘霁, 姜安民. 基于变异系数法与模糊理论的建筑工人安全能力评价研究[J]. 铁道科学与工程学报, 2020, 17(8): 2162-2170. [118]贺晓飞, 程庆祝. 建筑工程安全事故分析与预防措施[J]. 商品与质量, 2009(S3): 33-34. [119]董利飞, 陈飞宇, 王苗, 等. 建筑施工安全事故死亡人数预测与影响因素分析[J]. 安全与环境学报, 2022, 22(3): 1430-1435. [120]张仕廉, 王玉合, 唐笑宇, 等. 中国建筑业工匠精神的兴衰原因研究[J]. 建筑经济, 2018, 39(5): 10-15. [121]Yahia H, Hu X, Long D B, et al. Causal factors and risk assessment of fall accidents in the U.S. construction industry: A comprehensive data analysis (2000–2020)[J]. Safety Science, 146, 2022, 1-18. [122]乔万冠. 煤矿事故风险因子耦合作用分析及其耦合风险的仿真研究[D]. 徐州: 中国矿业大学, 2014. [123]Liang J C, Sheu T W, Tzeng J W, et al. 5W1H, GRA and GSM in the evaluation and identify on optimal design of bike lamps[J]. Journal of Convergence Information Technology, 2011, 6(12): 266-274. [124]Strauss A L. Qualitative analysis for social scientists[M]. Cambridge: Cambridge University Press, 1987. [125]成连华, 曹东强, 李欣. 房屋建筑施工事故致因因素分类研究[J]. 中国安全科学学报, 2023, 33(2): 16-22. [126]王建东. 工程建设耦合系统安全风险演化研究[D]. 武汉: 华中科技大学, 2015. [127]李小雪, 雷可, 谭忠盛, 等. 城市地下空间施工风险因素耦合效应研究[J]. 土木工程学报, 2021, 54(S1): 76-86. [128]陶若祎, 崔华莹, 李浩源, 等. 基于贝叶斯网络和耦合度模型的城市暴雨内涝风险影响机制研究[J]. 中国安全生产科学技术, 2024, 20(3):163-171. [129]侯公羽, 刘伟, 李乐, 等. 多风险因素耦合的地铁施工安全系统脆弱性分析[J]. 土木工程学报, 2022, 55(2): 111-119. [130]陈伟珂, 张欣. 危化品储运火灾爆炸事故多因素耦合动力学关系[J]. 中国安全科学学报, 2017, 27(6): 49-54. [131]李智. 基于复杂网络的灾害事件演化与控制模型研究[D]. 长沙: 中南大学, 2010. [132]成连华, 曹东强. 农村自建房安全风险因素重要度分级评判方法[J]. 西安科技大学学报, 2023, 43(1): 73-80. [133]Xiao Q, Luo F, Li Y, et al. Risk prediction and early warning of pilots’ unsafe behaviors using association rule mining and system dynamics[J]. Journal of Air Transport Management, 2023, 110: 102422. [134]Jin R, Zou P X W, Piroozfar P, et al. A science mapping approach based review of construction safety research[J]. Safety Science, 2019, 113: 285-297. [135]郭涛, 张代远. 基于关联规则数据挖掘Apriori算法的研究与应用[J]. 计算机技术与发展, 2011, 21(6): 101-103+107. [136]Namdari A, Li Z J. A review of entropy measures for uncertainty quantification of stochastic processes[J]. Advances in Mechanical Engineering, 2019, 11(6): 1-14. [137]Witten E. A mini-introduction to information theory[J]. Rivista Del Nuovo Cimento, 2020, 43(4): 187-227. [138]孟祥坤, 陈国明, 朱红卫. 海底管道泄漏风险演化复杂网络分析[J]. 中国安全生产科学技术, 2017, 13(4): 26-31. [139]肖国清, 黄仁和, 陈春燕. 基于N-K模型改进的FRAME建筑火灾风险评估[J]. 安全与环境学报, 2022, 22(3): 1139-1146. [140]张乐. 基于风险传播的系统风险评估方法研究[D]. 天津: 中国民航大学, 2021. [141]王婉青. 商业综合体火灾风险多因素耦合致灾机理与评价模型研究[D]. 北京: 首都经济贸易大学, 2020. [142]乔万冠, 李新春, 石甜, 等. 基于系统动力学煤矿事故风险耦合度量研究[J]. 数学的实践与认识, 2019, 49(6): 191-198. [143]汪伟忠, 卢明银, 张国宝, 等. 风险因素交互耦合下机加工车间安全评估[J]. 中国安全生产科学技术, 2015, 11(12): 174-179. [144]朱晓寒, 李向阳, 王诗莹. 自然灾害链情景态势组合推演方法[J]. 管理评论, 2016, 28(8): 143-151. [145]Zhou Y, Li C, Ding L, et al. Combining association rules mining with complex networks to monitor coupled risks[J]. Reliability Engineering & System Safety, 2019, 186: 194-208. [146]Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442. [147]Albert R, Barabasi A L. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. [148]贠程, 王倩琳, 陈锋, 等. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. [149]Zhang W, Xue N, Zhang J, et al. Identification of critical causal factors and paths of tower-crane accidents in China through system thinking and complex networks[J]. Journal of Construction Engineering and Management, 2021, 147(12), 1-13. [150]陈全, 李馨玉. 基于复杂网络的化工事故致因分析[J]. 现代化工, 2020. 40(S1): 12-15. [151]谭章禄, 陈孝慈. 基于复杂网络分析的煤矿安全隐患管理研究[J]. 工矿自动化, 2019, 45(6): 86-90+108. [152]Watts D J. Small worlds: The dynamics of networks between order and randomness[M]. Princeton University Press, 1999. [153]Lehmann J, Bernasconi J. Stochastic load-redistribution model for cascading failure propagation[J]. Physical Review E, 2010, 81(3), 031129. [154]Langville A, Meyer C. Deeper inside PageRank[J]. Internet Mathematics, 2004, 1(3): 335-380. [155]Yung K L, Ho G T S, Tang Y M, et al. Inventory classification system in space mission component replenishment using multi-attribute fuzzy ABC classification[J]. Industrial Management and Data Systems, 2021, 121(3): 637-656. [156]雷可, 谭忠盛, 丁勇, 等. 基于马尔科夫链的风险演化模型探讨及其应用[J]. 公路, 2021, 66(11): 214-221. [157]席永涛, 张靓, 付姗姗, 等. 基于SFN-SD的北极冰区船舶航行风险传递路径研究[J]. 中国安全科学学报, 2023, 33(4): 52-60. [158]杨琳, 周炬诺. 复杂工程项目风险传递机理[J]. 科技管理研究, 2021, 41(16): 209-217. [159]Mitropoulos P, Abdelhamid T S, Howell G A. Systems model of construction accident causation[J]. Journal of Construction Engineering and Management, 2005, 131(7): 816-825. [160]Manu P, Ankrah N, Proverbs D, et al. An approach for determining the extent of contribution of construction project features to accident causation[J]. Safety Science, 2010, 48(6): 687-692. [161]魏玖长. 风险耦合与级联:社会新兴风险演化态势的复杂性成因[J]. 学海, 2019, (4): 125-134. [162]王军武, 陆超. 关联性视角下装配式建筑工程吊装事故致因机理分析[J]. 安全与环境学报, 2021, 21(3): 1158-1164. [163]方俊, 郭佩文, 朱科, 等. 基于结构方程模型-模糊认知图的矿山法地铁隧道施工安全风险分析[J]. 安全与环境学报, 2023, 23(7): 2191-2202. [164]李秋晖, 韩华, 马媛媛, 等. 基于引力模型及相对路径数的节点重要度评估算法[J]. 计算机应用研究, 2022, 39(3): 764-769. [165]杨燕霞, 王政, 徐一凡, 等. 化工园区事故链重要节点及关键传播路径研究[J]. 高校化学工程学报, 2020, 34(2): 503-511. [166]罗聪, 綦春明, 卜波. 基于系统动力学的建筑施工安全系统脆弱性仿真分析[J]. 安全与环境工程, 2021, 28(1): 1-7+43. [167]Hudson P T W, Reason J T, Bentley P D, et al. Tripod Delta: Proactive approach to enhanced safety[J]. Journal of Petroleum Technology, 1994, 46(1), 58-62. [168]刘燕, 庄越. 三脚架事故致因模型的结构化重构研究[J]. 中国安全科学学报, 2016, 26(4): 60-65. [169]Peace C. The risk matrix: uncertain results?[J]. Policy and Practice in Health and Safety, 2017, 15(2): 131-144. [170]Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1): 77. [171]Ratnayake R M C, Antosz K. Development of a risk matrix and extending the risk-based maintenance analysis with fuzzy logic[J]. Procedia Engineering, 2017, 182: 602-610. [172]Qazi A, Akhtar P. Risk matrix driven supply chain risk management: Adapting risk matrix based tools to modelling interdependent risks and risk appetite[J]. Computers & Industrial Engineering, 2020, 139: 105351. [173]Roman L, Hardesty B D, Schuyler Q. A systematic review and risk matrix of plastic litter impacts on aquatic wildlife: A case study of the Mekong and Ganges River Basins[J]. Science of The Total Environment, 2022: 1-15. [174]Ibrahim M. Risk matrix for factors affecting time delay in road construction projects: owners' perspective[J]. Applied Mechanics and Materials, 2011, 18(6): 609-617. [175]Koulinas G K, Demesouka O E, Sidas K A, et al. A TOPSIS—risk matrix and Monte Carlo expert system for risk assessment in engineering projects[J]. Sustainability, 2021, 13(20): 11277. [176]Qazi A, Dikmen I. From risk matrices to risk networks in construction projects[J]. IEEE Transactions on Engineering Management, 2019, 68(5): 1449-1460. [177]Bao C, Li J, Wu D. A fuzzy mapping framework for risk aggregation based on risk matrices[J]. Journal of Risk Research, 2018, 21(5): 539-561. [178]Li W, Ye Y, Wang Q, et al. Fuzzy risk prediction of roof fall and rib spalling: based on FFTA–DFCE and risk matrix methods[J]. Environmental Science and Pollution Research, 2020, 27(8), 8535-8547. [179]刘进, 高轩能. 基于改进风险矩阵法的医院建筑火灾风险评价[J]. 数学的实践与认识, 2012, 42(1): 115-121. [180]Lu L, Liang W, Zhang L, et al. A comprehensive risk evaluation method for natural gas pipelines by combining a risk matrix with a bow-tie model[J]. Journal of Natural Gas Science and Engineering, 2015, 25, 124-133. [181]孟祥坤, 陈国明, 郑纯亮, 等. 基于风险熵和复杂网络的深水钻井井喷事故风险演化评估[J]. 化工学报, 2019, 70(1): 388-397. [182]Li Q, Song L, List G F, et al. A new approach to understand metro operation safety by exploring metro operation hazard network (MOHN)[J]. Safety Science, 2017, 93: 50-61. [183]葛及, 郭迪. 基于风险矩阵法的化工企业综合安全评价模型及其应用[J]. 安全与环境学报, 2016, 16(5): 21-24. [184]李欣, 石军胜, 曹东强, 等. 基于事故成因的房屋建筑施工风险耦合评价方法[J]. 安全, 2023, 44(2): 30-36+42. [185]杨臣剑, 王志荣, 庄春吉, 等. 大型游乐设施风险评估与分级方法研究[J]. 安全与环境学报, 2017, 17(3): 845-849. [186]杨高升, 张梦雨. 建筑工人—岗位安全匹配研究[J]. 工程管理学报, 2019, 33(4): 138-142. [187]陈劲飙, 胡强. 建筑施工中人为失误因素的敏感性分析[J]. 广西工学院学报, 2007(3): 85-87+91. [188]张子琛, 郭聖煜, 周新宇, 等. 工程不安全行为风险后果量化评价[J]. 土木工程与管理学报, 2021, 38(5): 125-129+139. [189]熊坚, 彭一鸣, 蔡晶. 基于MICMAC-FCMs的建筑施工风险动态演化及干预模拟研究[J]. 铁道科学与工程学报, 2023, 20(11): 4356-4366. [190]陈志远, 王铁骊. 基于文本挖掘和复杂网络的事故致因重要度评估方法——以房屋市政较大以上事故为例[J]. 中国安全生产科学技术, 2022, 18(4): 224-230. [191]陈长坤, 谢明峰, 赵冬月. 基于风险矩阵的灾害演化网络定量分析方法[J]. 灾害学, 2022, 37(1): 13-17. [192]孙逸林, 郑小强, 郭向国, 等. 城市燃气管道泄漏爆炸事故风险演化机制研究[J]. 武汉理工大学学报(信息与管理工程版), 2022, 44(5): 718-727. [193]李珏, 韩梅. 建筑坍塌事故发生机理的尖点突变模型及应用[J]. 铁道科学与工程学报, 2022, 19(9): 2766-2775. [194]Gibson J J. The contribution of experimental psychology to the formutation of the problems of safety, A brief for basic research. Behavioral approaches to accident research[J]. Association for the Aid of Crippled Children, New York, 1960. [195]Parker D, Reason J T, Manstead A S, et al. Driving errors, driving violations and accident involvement[J]. Ergonomics, 1995, 38(5), 1036-1048. [196]李树刚, 成连华, 林海飞. 安全科学原理[M]. 西安: 西北工业大学, 2014. [197]吴贤国, 吴克宝, 沈梅芳, 等. 基于N-K模型的地铁施工安全风险耦合研究[J].中国安全科学学报, 2016, 26(4): 96-101. [198]李凤. 城市地下燃气管网多风险因素耦合分析及其动态仿真研究[D]. 重庆: 重庆大学, 2021. [199]孔锋. “人类世”背景下的灾害风险科学复杂性及前沿议题[J/OL]. 灾害学, 2024, 1-8. [200]黄兰, 多英全, 杨国梁, 等. 危化企业安全风险分级管控实施工作程序与评估方法研究[J]. 中国安全生产科学技术, 2021, 17(S1): 155-159. [201]张宇栋, 吕淑然, 刘芳茗. 系统安全风险管控能力成熟度模型研究[J]. 中国安全科学学报, 2017, 27(12): 56-61. [202]田震, 沈艳洋, 赖恩. 基于相对风险管控能力的化工企业风险分级方法[J]. 安全与环境学报, 2023, 23(8): 2598-2606. [203]何叶荣, 孟祥瑞, 李慧宗, 等. 煤矿企业安全管理能力风险因素结构模型[J]. 中国安全生产科学技术, 2015, 11(3): 135-140. [204]李舒亮. 建设项目的风险管理效率研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. [205]上海市应急管理局. 关于印发上海市企业安全风险分级管控实施指南的[R/OL].[2019-11-01].http://yjglj.sh.gov.cn/xxgk/xxgkml/zcfg/aqbz/20191101/003733304.html. [206]王乾坤, 亢显卫, 朱科. 地铁深基坑施工风险耦合评价方法[J]. 东北大学学报(自然科学版), 2021, 42(8): 1152-1158. [207]Forrester J W. System dynamics, systems thinking, and soft OR[J]. System Dynamics Review, 1994, 10(2‐3): 245-256. [208]王乾坤, 朱科, 郭佩文, 等. 基于IM-FCM的装配式建筑施工安全风险评估[J]. 安全与环境学报, 2023, 23(7): 2202-2211. [209]杨琴. 基于全面风险管理理念的城市公共安全评估方法研究[D]. 广州: 华南理工大学, 2021. [210]刘慧, 田元荣, 米允龙, 等. 考虑间接关系的RD网络风险传播规律研究[J]. 系统工程理论与实践, 2023, 43(10): 3024-3039. [211]李政道, 郭振超, 苏栋, 等. 利益相关者视角下地铁施工及运营风险管理研究[J]. 安全与环境学报, 2023, 23(8): 2819-2829. [212]刘伟芳, 王建廷. 基于SNA的装配式建筑项目多主体行为风险分析[J]. 天津城建大学学报, 2020, 26(2): 112-117. [213]Cheng L H. Cao D Q. Evolution model and quantitative assessment of risk network in housing construction accidents[J]. Engineering, Construction and Architectural Management, 2022, 31(1): 227-246.
﹀
|
中图分类号: |
TU714
|
开放日期: |
2026-06-17
|