- 无标题文档
查看论文信息

论文中文题名:

 基于ISSA-Taylor的煤矿井下人员定位算法研究    

姓名:

 汪博林    

学号:

 20206223059    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085210    

学科名称:

 工学 - 工程 - 控制工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 控制工程    

研究方向:

 矿井人员定位    

第一导师姓名:

 邵小强    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Research on underground personnel Location Algorithm of Coal mine based on ISSA-Taylor    

论文中文关键词:

 矿井人员定位 ; UWB ; 麻雀搜索算法 ; NLOS ; 卡尔曼滤波    

论文外文关键词:

 Location of mine personnel ; UWB ; Sparrow search algorithm ; NLOS ; Kalman filter    

论文中文摘要:

煤矿井下人员定位算法研究有助于在发生矿难后快速开展救援工作,挽救矿难人员生命,最大化程度降低损失。同时高精度定位系统有利于生产过程中人员、设备的调度和管理,对煤矿智能化高效生产具有重大意义。本文具体工作如下:

(1)选用超宽带(Ultra Wide Band,UWB)通信技术和信号到达时间(Time of Arrival,TOA)定位方法对矿井下测距信息进行获取。TOA定位方法易受时钟同步、计时偏移和非视距(Non Line of Sight,NLOS)传播等影响,因此在采用非对称双边双程测距(ADS-TWR)方法有效消除同步时延和计时误差的基础上,针对矿井巷道内NLOS环境对UWB信号传输产生干扰影响测距精度的问题,利用NLOS环境下距离测量值的标准差远大于视距(Line of Sight,LOS)环境下的标准差这一特性,构建误差模型,根据Wylie法原理对NLOS环境下数据进行判别,在卡尔曼滤波(Kalman Filtering,KF)算法构建的测量噪声协方差矩阵中引入NLOS误差转换因子,约束卡尔曼增益及测量残差,补偿NLOS因素造成的正向偏差,提高测距精度。经仿真验证,改进后算法将平均测距误差降低了0.24m,达到了滤除NLOS环境下测距误差的目的。

(2)由于实际定位环境中测距误差不可能完全消除,因此通过研究坐标解析算法以进一步提高定位精度。本文通过抑制NLOS误差后的测距信息构造TOA定位方程,对常用坐标解析算法进行对比分析,发现单一算法在井下系统中定位精度易受基站数目、位置等因素的影响,无法达到理想效果,因此采用麻雀搜索算法(Sparrow Search Algorithm, SSA)为Taylor算法提供初始值,引入佳点集算法对麻雀个体进行排序,同时加入动态学习因子,提高算法收敛速度及全局搜索能力,提出一种ISSA-Taylor定位算法,引入权重系数,通过改进扩展卡尔曼滤波,对定位结果进行误差抑制及数据平滑处理。并通过实验对比证明所提算法对定位精度进行了提高。

(3)针对上述所提算法进行了仿真实验。通过静态实验,本文所提算法在x轴方向和y轴方向的平均误差分别为9.14cm和12.25cm,最大误差分别为14.24cm和19.22cm,平均均方根误差为15.73cm,符合国家矿山安全监察局规定的精确定位要求,且定位精度得到提升;在动态实验中,本文所提算法相较Chan-Taylor算法在误差为20cm的累积分布函数提高了48.76%。实验结果表明本文所提算法可以实现矿井NLOS环境下的高精度定位。

论文外文摘要:

The research of personnel location algorithm in underground coal mine is helpful to carry out the rescue work quickly after the occurrence of mine accident, save the lives of mine accident personnel and reduce the loss to the maximum extent. At the same time, the high-precision positioning system is conducive to the scheduling and management of personnel and equipment in the production process, which is of great significance to the intelligent and efficient production of coal mine. The specific work of this paper is as follows:

(1) Ultra Wide Band (UWB) communication technology and Time of Arrival (TOA) positioning method were used to obtain the ranging information of underground mine. TOA positioning method is easily affected by clock synchronization, timing offset and Non Line of Sight (NLOS) propagation, etc. In this paper, on the basis of effectively eliminating synchronization delay and timing error by using asymmetric bilateral distance measurement (ADS-TWR) method, Aiming at the problem that the NLOS environment in mine roadway interferes with the signal transmission of UWB and affects the ranging accuracy, the error model is constructed based on the characteristic that the standard deviation of distance measurement value in NLOS environment is much larger than that in Line of Sight (LOS) environment, and Wylie method is used to discriminate the data in NLOS environment. The NLOS error conversion factor was introduced into the measurement noise covariance matrix constructed by Kalman Filtering (KF) algorithm to restrict the Kalman gain and measurement residual, and to compensate the forward deviation caused by NLOS factors to improve the ranging accuracy. The simulation results show that the proposed algorithm reduces the average ranging error by 0.24m and achieves the purpose of filtering the ranging error in NLOS environment.

(2) Since the ranging error cannot be completely eliminated in the actual positioning environment, coordinate analysis algorithm is studied to further improve the positioning accuracy. In this paper, the TOA positioning equation is constructed by the distance measurement information after the suppression of NLOS error, and the common coordinate analysis algorithms are compared and analyzed. It is found that the positioning accuracy of a single algorithm is easily affected by the number and location of the base station and other factors in the downhole system, and can not achieve the ideal effect. In this paper, Sparrow Search Algorithm (SSA) is used to provide initial value for Taylor algorithm, and a good point set algorithm is introduced to sort individual sparrows. At the same time, dynamic learning factors are added to improve the convergence speed and global search ability of the algorithm. An ISSA-Taylor positioning algorithm is proposed. By introducing the weight coefficient and improving the extended Kalman filter, the error suppression and data smoothing are carried out. The experimental results show that the proposed algorithm improves the positioning accuracy.

(3) A large number of simulation experiments have been carried out for the proposed algorithm. Through static experiments, the average error of the proposed algorithm in x axis direction and y axis direction is 9.14cm and 12.25cm, the maximum error is 14.24cm and 19.22cm, and the average root mean square error is 15.73cm, which meets the precise positioning requirements stipulated by the National Administration of Mine Safety, and the positioning accuracy has been improved. In the dynamic experiment, compared with the Chan-Taylor algorithm, the cumulative distribution function of 20cm is improved by 48.76%. Experimental results show that the proposed algorithm can achieve high precision location in mine NLOS environment.

参考文献:

[1]梁玲.bp发布《2022年世界能源统计报告》[J].世界石油工业,2022,29(04):78.

[2]尤文顺.国家能源集团打造“1235”煤矿智能化建设模式加快推进煤炭工业高质量发展[J].智能矿山,2022,3(02):26-33.

[3]梅燕雄,裴荣富,魏然,等.关键矿产与能源资源安全[J].中国矿业,2022,31(11):1-8.

[4]付恩三,白润才,刘光伟,等.“十三五”期间我国煤矿事故特征及演变趋势分析[J].中国安全科学学报,2022,32(12):88-94.

[5]邢震,韩安,陈晓晶,等.基于工业互联网的智能矿山灾害数字孪生研究[J].工矿自动化,2023,49(02):23-30+55.

[6]张勇.煤矿与非煤矿山安全生产形势对比分析研究[J].中国矿业,2022,31(12):15-20.

[7]施赛杰.基于WSN的煤矿井下安全监测系统研究与设计[D].银川:宁夏大学,2015.

[8]姜卫平.卫星导航定位基准站网的发展现状、机遇与挑战[J].测绘学报,2017,46(10):1379-1388.

[9]赵海,张宽,朱剑,等.基于TDOA的超声波测距误差分析与改进[J].东北大学学报(自然科学版),2011,32(06):802-805.

[10]翟亚芳,顾钊源,张大伟.基于粒子滤波的微小型移动机器人红外定位研究[J].郑州大学学报(理学版),2019,51(04):63-67.

[11]张保,张安思,梁国强,等.激光雷达室内定位技术研究及应用综述[J/OL].激光杂志,2023,14(3):1-10.

[12]刘智勇,张卫.新型无线电测向定位研究[J].实验室研究与探索,2017,36(12):29-32.

[13]张玉,杨维.矿井巷道综合衰减模型与无线传输误码率性能综合比较[J].煤炭学报,2011,36(09):1581-1586.

[14]田子建,朱元忠,张向阳,等.非视距误差抑制方法在矿井目标定位中的应用[J].工矿自动化,2015,41(06):78-82.

[15]于海存,王官.新型矿井安全无线监测系统的设计[J].计算机测量与控制,2013,21(03):614-616.

[16]Alotaibi Majid,Murad Mohsin,Alhuthali Shakir A.H,et al.MIMO Radio Frequency Identification:A Brief Survey[J].Sensors,2022,22(11):4115-4115.

[17]Mishra Durga Prasad,Das Tanmaya Kumar,Behera Santanu Kumar,et al.Modified rectangular resonator based 15‐bit chipless radio frequency identification transponder for healthcare and retail applications[J].International Journal of RF and Microwave Computer‐Aided Engineering,2022,32(6).

[18]Rowan Wilken.Communication infrastructures and the contest over location positioning[J]. Mobile Media&Communication, 2019,7(3):341-361.

[19]郭慧玲.一种基于Wi-Fi的井下人员精确定位算法研究[J].技术与市场,2014,21(09):91+93.

[20]Zhi-An Deng,Yu-Bin Xu,Lin Ma.Joint Access Point Selection and Local Discriminant Embedding for Energy Efficient and Accurate Wi-Fi Positioning[J]. KSII Transactions on Internet and Information Systems(TIIS),2012,6(3):794-814.

[21]谭浩.基于Zigbee井下人员定位系统构建与开发[D].西安:西安工业大学,2015.

[22]Qinyang Zhou,Liming Wang,Ping Yu,et al.Unmanned Patrol System Based on Kalman Filter and ZigBee Positioning Technology[J].Journal of Physics:Conference Series,2019,1168(3):032063-032063.

[23]Li Jinwang,Gao Tongyue,Wang Xiaobing,et al.Study on the UWB location algorithm in the NLOS environment[J].Journal of Physics:Conference Series,2022,2400(1).

[24]贺洁茹.基于UWB技术的井下精确定位方法研究[D].徐州:中国矿业大学,2021.

[25]郭彩霞.UWB定位技术在矿井中的应用[J].能源与节能,2022,No.203(08):198-200.

[26]李云鹏.基于APIT的无线传感器网络混合定位算法[J].计算机系统应用,2021,30(10):254-258.

[27]Ou Xianfeng,Wu Meng,Chen Siyuan,et al.An improved cuckoo search algorithm based on DV-Hop for location in WSN[J].Software Impacts,2022,29(11):14-18.

[28]姜文旭,柳迪,赵书锐,等.基于RSSI的无线传感器网络质心定位算法优化[J].计算机系统应用,2022,31(06):294-299.

[29] Wei,Qiyuan,Zhang,et al.Yosida-regularization based differential equation approach to generalized equations with applications to nonlinear convex programming.Journal[J].Numerical Algorithms:Volume,Issue prepublish,2022,25(5):1-25.

[30]余修武,余昊,刘永,等.基于加权混合滤波和重心法的APIT定位算法[J].北京邮电大学学报,2019,42(04):32-37+75.

[31]金锋,巨尔寅.多通信半径DV-Hop定位算法的改进[J].山西师范大学学报(自然科学版),2022,36(03):52-56.

[32]任晓奎,于百川,李岩.基于RSSI的加权质心定位算法的改进[J].传感器与微系统,2021,40(11):150-153.

[33]叶娟,陈元琰,王明,等.多通信半径与角度修正的凸规划改进定位算法[J].计算机科学,2019,46(S1):317-320.

[34]岳俊梅,彭新光,李庆义,等.基于RSSI测距的煤矿井下定位研究[J].煤炭工程,2018,50(08):122-125.

[35]赵轩.基于RSSI的煤矿井下人员定位算法研究[D].西安:西安科技大学,2021.

[36]S.M.Chithra,S.Sridevi,S.Satheesh,et al.An Evaluation on Game Theory Problem of RSSI Localization Technique in Wireless Sensor Networks[J].International Journal of Innovative Technology and Exploring Engineering (IJITEE),2019,8(12):5729-5733.

[37]李康乐.基于TOA的煤矿井下人员定位算法研究[D].西安:西安科技大学,2019.

[38]Yanbin Zou,Huaping Liu.An Efficient NLOS Errors Mitigation Algorithm for TOA-Based Localization[J].Sensors,2020,20(5):1403-1403.

[39]Sun Yimao,Ho Dominic K.C,Wan Qun.Eigenspace Solution for AOA Localization in Modified Polar Representation[J].IEEE Transactions on Signal Processing,2020,68:1-1.

[40]刘世森.基于AOA的矿井人员精确定位技术[J].煤矿安全,2019,50(07):140-142+146.

[41]Mingyi Y,Annan L.A robust TDOA based solution for source location using mixed Huber loss[J].Journal of Systems Engineering and Electronics,2021,32(06):1375-1380.

[42]Qian Li,Baixiao Chen,Minglei Yang.Improved two-step constrained total least-squares TDOA localization algorithm based on the alternating direction method of multipliers[J]. IEEE Sensors Journal,2020,PP(99):1-1.

[43]邵小强,赵轩,聂馨超,等.基于改进加权混合滤波的矿井RSSI定位方法[J].煤炭工程,2021,53(10):137-142.

[44]于涛,郭文强,朱晓章.一种UWB稀疏阵列天线虚拟中心阵元到达角估计方法[J].计算机科学,2019,46(S1):321-324.

[45]李康乐,邵小强,潘红光,等.自适应抗差卡尔曼滤波对井下定位NLOS时延抑制方法的研究[J].西安科技大学学报,2020,40(01):173-180.

[46]许佩佩.基于TOA方案的超宽带室内定位技术研究[D].南京:东南大学, 2016.

[47]高健,陆阳,李庆巧,等.采用三次通信的TOF与TDOA联合定位算法[J].电子测量与仪器学报,2020,34(03):66-73.

[48]陈浩,李起伟,王子龙.基于改进TDOA在煤矿井下超宽带定位算法的研究[J].电子测量技术,2021,44(06):96-102.

[49]Garg H.A hybrid GSA-GA algorithm for constrained optimization problems[J].Information Sciences, 2019, 478(1): 499-523.

[50]Asadi S,Shahrabi J.A novel ACO algorithm for rule induction[J].Knowledge-Based Systems,2016,97(1):175-187.

[51]JLF Martínez, Gonzalo E G,JPF Álvarez,et al.A powerful algorithm to solve geophysical inverse problems:Application to a 1D-DC resistivity case[J].Journal of Applied Geophysics,2010,71(1):13-25.

[52]Jiankai Xue,Bo Shen.A Novel Swarm Intelligence Optimization Ap-proach:Sparrow Search Algorithm[J].Systems Science&ControlEngineering an Open Access Journal, 2020,8(1):22-34.

[53]吕鑫,慕晓冬,张钧,等.混沌麻雀搜索优化算法[J].北京航空航天大学学报,2021,47(8):1712-1720.

[54]黄敬宇.融合t分布和Tent混沌映射的麻雀搜索算法研究[D].兰州:兰州大学,2021.

[55]余修武,谢晓永,梁北孔,等.基于粒子群优化和巷道分区的深井WSN定位算法[J].中国安全科学学报,2019,29(02):166-171.

[56]石琴琴,徐强,张建平.基于距离修正及灰狼优化算法对DV-Hop定位的改进[J].传感技术学报,2019,32(10):1549-1555.

[57]康婷,魏胜非.基于混沌粒子群与Taylor算法的协同定位算法研究[J].仪表技术与传感器,2019,No.432(01):118-121.

[58]韦子辉,王世昭,叶兴跃等.基于超宽带的TDOA相邻单元协同定位技术[J].电子测量技术,2022,45(01):77-83.

[59]李金奎.基于超声波时差法定位系统设计[J].自动化应用,2022(10):11-14.

[60]Butera Iliza M,Larson Eric D,DeFreese Andrea,et al.Functional localization of audiovisual speech using near infrared spectroscopy[J].Brain topography,2022,35(4):416-430.

[61]Cai X,Gong Q,Li Z,et al.Multi-Base stations Bluetooth location method based on full convolutional neural network[J].The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2022,XLVI-3/W1-2022:1-6.

[62]Changsheng Zhang,Yaoxian Li.RFID Localization System Based on K-Nearst Neighbor Algorithm and Extreme Learning Machine Algorithm with Virtual Reference Tags[J]. American Scientific Research Journal for Engineering,Technology,and Scien-ces(ASRJETS),2019,54(1):82-91.

[63]Hernández Noelia,Parra Ignacio,Corrales Héctor. WiFiNet:WiFi-based indoor localisation using CNNs[J].Expert Systems With Applications,2021,177.

[64]王飞.基于UWB测距的矿井精确定位方法研究[J].自动化仪表,2022,43(08):62-66.

[65]M.S.Khan,A.D.Capobianco,A.Naqvi,et al.Compact planar UWB MIMO antenna with on-demand WLAN rejection[J].Electronics Letters.2015,52(13):963-964.

[66]Wang Chenxin,Fu Wenxing,Zhang Tong,et al.An AOA Optimal Positioning Method Incorporating Station Error and Sensor Deployment[J].Aerospace.2022,9(12):766-766.

[67]Achroufene Achour.RSSI-based geometric localization in wireless sensor networks[J].The Journal of Supercomputing.2022,79(5):5615-5642.

[68]谢晓辉.改进TWR-TDOA的UWB井下机车定位[J].佳木斯大学学报,2022,40(04):145-147.

[69]畅田田,王威,高婧洁,等.基于信道测量实验的NLOS误差消除方法对比研究[J].西北工业大学学报,2022,40(04):865-874.

[70]Shunsuke Nansai,Hiroshi Itoh.Foot Location Algorithm considering Geometric Constraints of Facade Cleaning[J].Journal of Advanced Simulation in Science and Engi-neering,2019,6(1):177-188.

[71]Zhang Haiyang,Qi Xiaogang,Wei Qian,et al.TOA NLOS mitigation cooperative localisation algorithm based on topological unit[J].IET Signal Processing, 2020,14(10):765-773.

[72]Jianhua Zhang,Feng Gao,Yang Li,et al.Simulation of multilateration system based on Chan algorithm and conjugate gradient optimisation algorithm[J].International Journal of Simulation and Process Modelling,2019,14(5).

[73]宋运忠,王仁辉.基于差分误差抑制优化方法的井下目标定位[J].工矿自动化,2020,46(09):64-68.

[74]李荣冰,王念曾,刘建业,等.面向相对导航的UWB测距误差估计与补偿方法[J].仪器仪表学报,2019,40(05):28-35.

[75]殷臻,黄慧哲,李伟等.基于SDS-TWR算法的TOF精确定位系统[J].实验技术与管理,2017,34(05):95-98.

[76]林正鸿,黄麟淇,李涵,等.基于超宽带非对称双边双程测距的矿山井下定位跟踪算法研究[J].黄金,2023,44(04):28-33.

[77]M.P.Wylie,J.Holtzman.The non line of sight problem in mobile location estimation[C]//Proceedings of ICUPC-5th International Conference on Universal Personal Communications,Cambridge,1996,2:827-831.

[78]邵小强,李康乐,陈熙,等.基于改进卡尔曼滤波和参数拟合的矿井TOA定位方法[J]. 煤炭学报, 2019,44(5):1616-1624.

[79]Zhao Qiaomei,Cheng Yun,Zhou Taoyun.Research on Node localization Algorithm in WSN Based on TDOA[J].Journal of Physics:Conference Series,2021,1757(1):42-48.

[80]Cheng Hua,Kun Zhao,Danan Dong,et al.Multipath Map Method for TDOA Based Indoor Reverse Positioning System with Improved Chan-Taylor Algorithm[J].Sensors,2020, 20(11):3223-3223.

[81]胡荣明,苏瑞鹏,竞霞等.融合改进小波去噪与T-Taylor的井下定位算法[J].测绘通报,2023,No.551(02):46-51.

[82]孙家泽,王刚.利用佳点集遗传算法的白盒测试用例优先排序[J].计算机工程与科学,2018,40(10):1815-1821.

中图分类号:

 TD76    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式