- 无标题文档
查看论文信息

题名:

 带有网架屋盖的RC框架结构抗连续倒塌性能研究    

作者:

 葛丽华    

学号:

 22204228062    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 085900    

学科:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 网架结构抗倒塌性能    

导师姓名:

 张淑云    

导师单位:

 西安科技大学    

提交日期:

 2025-06-13    

答辩日期:

 2025-06-08    

外文题名:

 Research on the continuous collapse resistance performance of RC frame structure with grid roof    

关键词:

 网架结构 ; 备用荷载路径法 ; 动力放大系数 ; 抗连续倒塌分析 ; 加固    

外文关键词:

 Grid structure ; Alternate path ; Dynamic increase factor ; Progressive collapse resistance analysis ; Reinforcement    

摘要:

网架结构屋盖在体育场馆、剧院等公共建筑和工业厂房中应用广泛。然而,近年来,网架结构屋盖倒塌事故时有发生,因此确保整体结构具备良好的抗连续倒塌能力尤为重要。本文以一主体为钢筋混凝土框架结构,带有网架屋盖体系的实际工程为背景,建立三维有限元模型,采用备用荷载路径法,研究不同位置构件初始失效,剩余结构在竖向荷载作用下的抗连续倒塌能力,并计算采用非线性静力分析方法时的动力放大系数;另探讨该结构在地震作用下的抗连续倒塌能力,分析杆件加固对结构抗连续倒塌性能的影响。主要研究内容及结论如下:

建立结构整体弹塑性分析模型,基于应力敏感性分析计算杆件的敏感性指标和重要性系数,确定结构的关键杆件,结果表明,结构的关键杆件为跨中及支座处的上弦杆,跨中下弦杆和支座处的腹杆。

采用备用荷载路径法,拆除网架结构不同位置的关键杆件和下部框架柱,对剩余结构进行抗连续倒塌分析。结果表明,单根跨中上弦杆和短边中柱的初始失效会引起网架结构的连续倒塌破坏,单根下弦杆、支座处上弦杆或腹杆以及角柱和长边中柱的初始破坏不会造成剩余结构的连续倒塌。双根跨中下弦杆或支座腹杆的连续失效会使结构发生连续性的倒塌破坏。

通过与非线性动力分析结果比较,对采用非线性静力分析方法时的动力放大系数取值进行了研究。结果表明,支座杆件、跨中下弦杆、角柱和长边中柱失效情况下,动力放大系数分别取1.2、1.3、1.3和1.4时,非线性静力分析和动力分析结果最为接近。

采用增量动力分析法对结构进行了单向、双向和三向地震作用下抗连续倒塌分析,研究了杆件加固对结构抗连续倒塌性能的影响。结果表明,结构在单、双、三向地震作用下的破坏皆由上部网架屋盖倒塌引起,倒塌临界荷载分别是1.4g、0.9g、0.9g。网架结构在地震作用下的倒塌为杆件塑性发展导致的强度破坏,左下角区域腹杆为结构的薄弱部位。杆件加固后,在竖向荷载作用下,网架节点最大竖向位移比原结构减小了6.33%,极限承载力提高了8.57%,在单向、双向和三向地震作用下的倒塌临界荷载分别提高了14.29%、22.22%、22.22%,杆件加固能有效提高结构的抗连续倒塌能力。本文所取得的结论对保证网架结构的安全性具有积极的工程意义。

外文摘要:

Grid structure roofs are widely used in public buildings such as stadiums, theaters and industrial plants. However, in recent years, collapse accidents of grid structure roof have occurred frequently, so it is particularly important to ensure that overall structures have good resistance to progressive collapse. In this paper, a three-dimensional finite element model has been established based on the actual engineering of a reinforced concrete frame structure with a grid roof system. The alternate path method has been employed to investigate the progressive collapse resistance of the remaining structure under vertical load due to the initial failure of members at different positions, and to calculate the value of the dynamic increase factor used in the nonlinear static analysis method. Additionally, the study has explored the progressive collapse resistance of the structure under seismic actions and analyzed the impact of member strengthening on the progressive collapse resistance of the structure. The main research contents and conclusions are as follows:

(1)The overall elastic-plastic analysis model of the structure has been established. Based on the stress sensitivity analysis, the sensitivity index and importance coefficient of members have been calculated, and the key members of the structure have been determined. The results show that the key members include the mid-span upper chords, support upper chords, mid-span lower chords, and support web members.

(2) The key members and lower frame columns at different positions of the grid structure have been removed by using the alternate path method, and the progressive collapse resistance of the remaining structure has been analyzed. The results show that the initial failure of a single mid-span upper chord and short side middle column will cause the progressive collapse of the grid structure, while the initial failure of a single lower chord, upper chord or web member at the support, corner column and long side middle column will not cause the progressive collapse of the remaining structures. However, the continuous failure of double mid-span lower chord or support web members will led to structural collapse.

(3) Through comparison with nonlinear dynamic analysis results, appropriate dynamic increase factor has been determined for nonlinear static analysis. The results indicate that under the failure scenarios of support members, mid-span lower chord, corner columns, and middle columns along the long side, the nonlinear static analysis results most closely align with dynamic analysis outcomes when dynamic increase factors of 1.2, 1.3, 1.3, and 1.4 are adopted, respectively.

(4) The progressive collapse resistance of the structure under unidirectional,  bidirectional, and tri-directional seismic actions has been analyzed by using the incremental dynamic analysis method, and the influence of member strengthening on the progressive collapse resistance of the structure have been studied. The results show that structural failure under all three seismic loading scenarios is primarily triggered by the collapse of the upper grid roof. The critical collapse accelerations are determined as 1.4g, 0.9g, and 0.9g for unidirectional, bidirectional, and tri-directional seismic actions, respectively. The collapse mechanism under seismic loading is attributed to strength failure caused by plastic development in members, with the diagonal web members in the lower-left corner identified as the structurally vulnerable zones. After the reinforcement of the members, the maximum vertical displacement of the grid nodes is reduced by 6.33% compared to the original structure under vertical load, and the ultimate bearing capacity is increased by 8.57%. The critical collapse accelerations under unidirectional, bidirectional, and tri-directional earthquake action are increased by 14.29%, 22.22%, and 22.22%, respectively. Member reinforcement can effectively improve the structure's ability to resist progressive collapse. The conclusions drawn in this paper have positive engineering significance for ensuring the safety of grid structures.

参考文献:

[1]董石麟,罗尧治,赵阳.大跨度空间结构的工程实践与学科发展[J].空间结构,2005,11(4):3-10,15.

[2]贾建坡, 闫发林.多层网架的结构特性及在高铁站房钢屋盖中的应用[J]. 建筑结构, 2021, 51(S1): 531-534.

[3]周列武.正放四角锥网架结构连续倒塌机理与抗倒塌设计研究[D]. 徐州:中国矿业大学,2014.

[4]陈骥.美国哈特福德城体育馆网架结构失稳事故分析[J].钢结构,1997,(4):20-25,42.

[5]于振兴,刘文锋,付兴潘.工程结构倒塌案例分析[J].工程建设,2009,41(2):1-7,23.

[6]黄远,陈庆.框支框架结构抗连续倒塌性能分析[J].沈阳建筑大学学报(自然科学版),2023,39(05):800-809.

[7]黄咏政,梁子晗,王森钠,等.主要设计参数对规则RC框架结构抗连续倒塌性能的影响[J].工程力学,2023,40(S1):184-190.

[8]郑义凡,曾滨,周臻,等.基于非线性屈曲材料模型的张弦桁架连续倒塌分析[J].工程力学,2022,39(10):152-160.

[9]Adam J M, Parisi F, Sagaseta J, et al. Research and practice on progressive collapse and robustness of building structures in the 21st century[J]. Engineering Structures, 2018, 173: 122-149.

[10]FU Y G, F. GOMEZ, B.F. SPENCER. Instability monitoring of space grid structures under blizzards[C]. // The 7th World Conference on Structural Control and Monitoring (7WCSCM). 2018: 2192-2202.

[11]谭政,钟炜辉,高垚,等.不对称跨度多层钢框架抗倒塌性能试验研究[J].建筑结构学报,2025,46(03):117-129.

[12]何庆锋.钢筋混凝土框架结构抗倒塌性能试验研究[D].长沙:湖南大学,2010.

[13]ASCE 7-16, Minimum design loads for buildings and other structures[S]. American Society of Civil Engineers, New York, 2016.

[14]JGJ 3-2010,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.

[15]UWE STAROSSEK. Typology of progressive collapse[J]. Engineering structures, 2007, 29(9): 2302-2307.

[16]Kolakkattil R, Tsavdaridis K D, Sanjeevi A J. A state-of-the-art review of progressive collapse research and guidelines for single-layer lattice shell structures[C]. // Structures. Elsevier, 2023, 56: 104945.

[17]江晓峰,陈以一.建筑结构连续性倒塌及其控制设计的研究现状[J].土木工程学报,2008,41(6):1-8.

[18]Murtha-Smith E. Alternate path analysis of space trusses for progressive collapse[J]. Journal of Structural Engineering, 1988, 114(9): 1978-1999.

[19]胡晓斌,钱稼茹.结构连续倒塌分析与设计方法综述[J].建筑结构,2006,36(S1):573-577.

[20]杜义欣,温凌燕,伍俊.重要建筑物恐怖袭击下的防连续倒塌设计[C].//中国力学学会爆炸力学专业委员会,中国土木工程学会防护工程分会.第七届全国工程结构安全防护学术会议论文集,2009:373-379.

[21]石永久,高阳,王元清,等.拱壳杂交钢结构的防连续倒塌分析[J].沈阳建筑大学学报(自然科学版),2010,26(5):817-822.

[22]丁阳,葛金刚,李忠献.空间网格结构连续倒塌分析的瞬时移除构件法[J].建筑结构,2011,44(6):471-476.

[23]蔡建国,王蜂岚,张晋,等. 大跨空间结构连续倒塌分析若干问题探讨[J].工程力学,2012,29(3):143-149.

[24]庄丽萍.网架结构的鲁棒性及其抗连续倒塌性能研究[D].南京:东南大学,2013.

[25]Liu M. A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse[J]. Engineering Structures, 2013, 48:666-673.

[26]Kim J, Kim T. Assessment of progressive collapse-resisting capacity of steel moment frames[J]. Journal of Constructional Steel Research, 2009, 65: 169-179.

[27]张月强,丁洁民,张峥.大跨度钢结构抗连续倒塌动力分析关键问题研究[J].建筑结构学报,2014,35(4):49-56.

[28]丁北斗,吕恒林,李贤,等.基于重要杆件失效网架结构连续倒塌动力试验研究[J].振动与冲击,2015,34(23):106-114.

[29]Fu F, Parke GAR. Assessment of the progressive collapse resistance of double-layer grid space structures using implicit and explicit methods[J]. International Journal of Steel Structures, 2018, 18: 831-842.

[30]郭艳坤,夏益兵,马跃强.基于备用荷载路径法的核心筒悬挂钢结构连续倒塌研究[J].建筑结构,2021,51(18):69-73.

[31]Vaezzadeh A, Dolatshahi K M. Progressive collapse resistance of cable net structures[J]. Journal of Constructional Steel Research, 2022, 195: 107347.

[32]Zhang Z, Chen G, Cai Q, et al. Robustness study of fabricated single-layer grid shell structures based on component sensitivity and vulnerability[J]. Thin-Walled Structures, 2022, 180: 109753.

[33]姚志恒.基于关键杆件加固的双层网壳结构抗倒塌分析研究[D].北京:北京建筑大学,2023.

[34]Malla R, Wang B. Response of space structures under sudden local damage[C].// Engineering Construction and Operations in Space III. Reston: ASCE, 1992.

[35]GIONCU V. Progressive collapse in space structures[C]. //IASS-APCS, Beijing, 2006.

[36]冯飞,蔡建国,冯健,等.网架结构荷载动力放大系数研究[J].空间结构,2011,17(01):28-32.

[37]熊进刚,钟丽媛,张毅,等.网架结构连续倒塌性能的试验研究[J].南昌大学学报(工科版),2012,34(04):369-372.

[38]王学斌.斜拉网架结构的抗连续倒塌能力及设计方法研究[D].南京:东南大学,2012.

[39]张士辉.网架结构的连续性倒塌分析[D].保定:河北大学,2015.

[40]张学哲.网架结构敏感性分析及抗连续倒塌性能研究[D].天津:天津大学,2016.

[41]Wei J, Tian L, Hao J. Improving the progressive collapse resistance of long-span single-layer spatial grid structures[J]. Construction and Building Materials, 2018, 171: 96-108.

[42]徐方冉.网架结构抗连续性倒塌设计优化及分析[D].合肥:合肥工业大学,2020.

[43]罗文辉,陈治茂,周浩,等.含局部网架的混凝土框架抗连续倒塌性能研究[J].工程建设,2021,53(6):1-5,11.

[44]陈振明,梁安锐,李纪元,等.网架结构拆除倒塌数值模拟研究[J].工业建筑,2022,52(10):61-70.

[45]Zhou G P, Song Q E, Li A Q, et al. Assessment on the Progressive Collapse Resistance of a Long-Span Curved Spatial Grid Structure with Main Trusses[J]. KSCE Journal of Civil Engineering, 2022, 26(3): 1239-1253.

[46]胡昌德.大跨度建筑中空间网架结构的稳定性与优化设计分析[J].城市建设理论研究(电子版),2025,(09):200-202.

[47]张文津,李向冰,贾宝莹,等.机场航站楼大跨度钢屋盖结构抗倒塌性能评估[J].施工技术(中英文),2025,54(02):43-49.

[48]汪毅俊.网架结构失效模式的判别准则及设计改进研究[D].杭州:浙江大学,2010.

[49]黄兴淮,徐赵东,杨明飞.多维地震下大跨网格结构倒塌分析与抗倒塌措施[J].东南大学学报(自然科学版),2012,42(01):109-113.

[50]张卫中. 网架结构在强震作用下的倒塌破坏机理研究[D].北京:北京工业大学,2012.

[51]王孟鸿,曹笑楠,黄亚澜.黏滞阻尼器在网架结构抗倒塌中的应用研究[J].钢结构,2019,34(04):60-64+106.

[52]李军,罗青青.地震作用下相贯节点网架结构性能水准划分[J].中国水运,2022,22(24):112-113.

[53]昌洋.大跨度预应力网架屋盖—框架结构的抗连续倒塌性能研究[D].合肥:合肥工业大学,2023.

[54]Liu R, Guo L, Wang G. Influence of Center-Hung Scoreboard on Seismic Response of Space Truss Structure under Vertical Earthquake[J].Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47: 2273–2285.

[55]周乐.大跨度网架结构加固设计及抗垮塌能力分析[D].北京:北京建筑大学,2024.

[56]乐风江,陈崧,杨富儒,等.地震作用下网架结构失效模式的判定方法[J].工程抗震与加固改造,2024,46(03):64-71.

[57]童少轩.钢筋混凝土框架结构抗连续倒塌分析方法研究[D].西安:西安建筑科技大学,2012.

[58]ASCE 41-17. Seismic Evaluation and Retrofit of Existing Buildings[S]. USA, Reston, American Society of Civil Engineers, Structural Engineering Institute, 2017.

[59]JGJ 7-2010,空间网格结构技术规程[S].北京:中国建筑工业出版社,2011.

[60]GB 50017-2017,钢结构设计标准[S].北京:中国建筑工业出版社,2017.

[61]GSA2013, Alternate path analysis and design guidelines for progressive collapse analysis [S]. Washington, General Services Administration, 2013.

[62]T/CECS 392-2021,建筑结构抗倒塌设计标准[S].北京:中国计划出版社,2021.

[63]DOD2016, Design of buildings to resist progressive collapse. Unified Facilities Criteria (UFC) 4-023-03[S].USA, Washington, Department of Defense, 2016.

[64]王泽龙.双层球面网壳结构施工过程中抗连续倒塌分析[D].天津:天津大学,2014.

[65]刘建波.带有叠合柱的局部错层RC框架结构地震易损性分析[D].西安:西安科技大学,2023.

[66]GB 50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社, 2016.

[67]任浩,田勤虎,张炜超,等.基于IDA方法的钢筋混凝土框架结构地震易损性分析[J].建筑结构,2019,49(S2):350-355.

[68]GB 50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社, 2015.

[69]刘巍.钢筋混凝土框架结构地震倒塌易损性分析[J].低温建筑技术,2024,46(05):79-82.

[70]邓夕胜,赖馨粤,袁凯,等.罕遇地震下高层RC框架结构双地震动强度参数易损性分析[J].世界地震工程,2022,38(03):19-29.

中图分类号:

 TU393.3    

开放日期:

 2028-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式