论文中文题名: | 孟村煤矿深埋煤层采动覆岩能量场分布演化致灾机制研究 |
姓名: | |
学号: | 19203077021 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081901 |
学科名称: | 工学 - 矿业工程 - 采矿工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 动力灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-03-07 |
论文答辩日期: | 2022-12-08 |
论文外文题名: | Study on disast-causing mechanism of mining overburden energy field distribution evolution in deep buried coal seam of Mengcun Coal Mine |
论文中文关键词: | |
论文外文关键词: | deep coal seam ; energy field ; micro-seismic monitoring ; rock bursts prevention |
论文中文摘要: |
深部煤炭资源开采与工程建设中,采掘扰动引发煤岩体内应力变化、促使局域系统内能量集中-传导-释放,诱发煤岩破坏发生动力灾害。针对深埋煤层采动覆岩能量场分布演化诱发冲击地压等的动力灾害问题,以现场调研与理论分析为指导、结合煤样力学实验、物理相似模拟实验以及数值模拟实验,依托声发射、微震等测试装置,分别开展了覆岩破断过程中声发射和微震能量分布研究,以揭示覆岩采掘扰动诱发能量场分布演化规律及致灾机制。 论文以孟村煤矿深埋煤层综放面为背景开展工程调研,对深埋煤层采动覆岩能量场分布规律及其致灾机制进行了深入研究。通过煤样力学实验,得出了煤样发生破坏是由于大量能量的积聚所导致。构建物理相似模拟实验揭示了受采动影响工作面覆岩垮落能量演化特征,微震大部分能量分布采空区上方,此区域内微震大能量事件集中较为密集,破坏较为剧烈,故在实际开采过程中此区域范围重点监测,且受采动影响,部分微震事件分布在工作面前方100m至188m;当顶板砌体梁垮落长度过大,造成顶板能量的大量积聚,诱发动力灾害问题,导致周期性的微震或冲击地压活动。揭示了不同推进度的深埋煤层工作面冲击危险性特征。针对孟村煤矿采动覆岩能量场致灾机制,采用压裂防治技术,促使高应力区围岩聚集的弹性能得到提前释放,为冲击地压的防治提供了新的方向。 本研究揭示了孟村煤矿深埋煤层能量场分布规律以及致灾机理,为研究深埋煤层工作面下能量场分布规律和致灾机制提供了有效方法,确保了工作面安全高效开采,为孟村煤矿深埋煤层的安全开采提供了参考。 |
论文外文摘要: |
In the mining and engineering construction of deep coal resources, mining disturbance causes the change of internal stress of coal and rock mass, promotes the concentration, conduction and release of energy in local system, and induces the dynamic disaster of coal and rock failure. Considering the dynamic disaster of rock burst induced by the evolution of energy field distribution of ground pressure in deep coal seam mining strata, the study on the distribution of acoustic emission and microseismic energy in the process of overburden rock breakage was carried out under the guidance of field investigation and theoretical analysis, combined with the mechanical experiment of coal sample, physical similarity simulation experiment and numerical simulation experiment, and relying on the test equipment of acoustic emission and microseismic, to reveal the distribution and evolution law of energy field induced by mining disturbance of complex rock and the disaster mechanism. Based on the fully mechanized caving face of deep coal seam in Mengcun Coal Mine, this paper carries out an engineering investigation, and makes an in-depth study on the energy field distribution law and disaster mechanism of overlying rock in deep coal seam mining. Through the mechanical experiment of coal sample, it is concluded that the failure of coal sample is caused by the accumulation of a large amount of energy. The physical similarity simulation experiment reveals the evolution characteristics of overlying rock caving energy under the influence of mining, and most of the microseismic energy is distributed above the goaf. In this area, the concentration of large microseismic energy events is more intensive and the damage is more severe. Therefore, in the actual mining process, this area is mainly monitored and affected by mining. Some microseismic events are distributed 100m to 188m in front of the working face. When the roof beam collapse length is too large, it will cause a large amount of roof energy accumulation, induce dynamic disaster, and lead to periodic microseismic or rock burst activities. The impact hazard characteristics of deep coal seam working face with different degrees of advance are revealed. In view of the disaster mechanism caused by the energy field of overlying rock in Mengcun Coal mine, the fracturing prevention technology is adopted to promote the elastic energy of surrounding rock accumulation in high stress area to be released in advance, which provides a new direction for the prevention of rock burst. This study reveals the energy field distribution law and disaster causing mechanism of Mengcun Coal mine's deep buried coal seam, provides an effective method for studying the energy field distribution law and disaster causing mechanism of deep buried coal face, ensures safe and efficient mining of the working face, and provides a reference for the safe mining of Mengcun coal mine's deep buried coal seam. |
参考文献: |
[1] 潘俊锋, 齐庆新, 刘少虹, 等. 我国煤炭深部开采冲击地压特征、类型及分源防控技术[J]. 煤炭学报, 2020, 45(1): 111-121. [2] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报, 2020, 45(7): 2331-2345. [3] 刘见中, 孙海涛, 雷毅, 等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报, 2020, 45(1): 258-267. [4] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. [5] 赵阳升, 冯增朝, 常宗旭. 试论岩体动力破坏的最小能量原理[J]. 岩石力学与工程学报, 2002, 21(S1): 1931-1933. [12] 王书文, 鞠文君, 潘俊锋, 等. 构造应力场煤巷掘进冲击地压能量分区演化机制[J]. 煤炭学报, 2019, 44(7): 2000-2010. [13] 施天威, 潘一山, 王爱文, 等. 基于能量贮存及释放主体的煤矿冲击地压分类[J]. 煤炭学报, 2020, 45(2): 524-532. [14] 华安增. 地下工程周围岩体能量分析[J]. 岩石力学与工程学报, 2003, 22(7): 1054-1059. [15] 范勇, 卢文波, 王义昌, 等. 不同开挖方式下即时型和时滞型岩爆的孕育特征比较[J]. 岩石力学与工程学报, 2015, 34(s2): 3715-3723. [16] 武成家, 秦涛, 刘振文, 等. 不同冲击倾向性煤样力学特性与能量演化规律研究[J]. 中国矿业, 2021, 30(2): 160-166. [17] 陈光波, 李谭, 张国华, 等. 煤岩组合体破坏前能量积聚规律试验研究[J]. 煤炭学报. 2021. 1-14. [18] 王爱文, 高乾书, 潘一山, 等. 预制钻孔煤样冲击倾向性及能量耗散规律研究. 煤炭学报. 2021. 1-14. [19] 来兴平, 孙欢, 单鹏飞, 等. 急倾斜坚硬岩柱动态破裂“声-热”演化特征试验[J]. 岩石力学与工程学报, 2015, 34(11): 2285-2292. [20] 魏辉. 不同煤岩系统的冲击显现机理及能量演化特征分析[J]. 煤矿安全, 2020, 51(05): 197-202. [21] 王桂峰, 窦林名, 蔡武, 等. 冲击地压的不稳定能量触发机制研究[J]. 中国矿业大学学报, 2018, 47(1): 190-196. [22] 齐庆新, 李一哲, 赵善坤, 等. 矿井群冲击地压发生机理与控制技术探讨[J]. 煤炭学报, 2019, 44(1): 141-150. [23] 张宗文, 王元杰, 赵成利, 等.微震和声发射综合监测在冲击地压防治中的应用[J]. 煤炭科学技术, 2011, 39(1): 44-47. [24] 周春华, 李云安, 尹建民, 等. 荒沟抽水蓄能电站地下厂房开挖过程微震及电磁辐射活动特征研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3583-3594. [25] 袁亮, 姜耀东, 何学秋, 等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报, 2018, 43(2): 306-318. [26] 于洋, 冯夏庭, 陈炳瑞, 等. 深部岩体隧洞即时型岩爆微震震源体积的分形特征研究[J]. 岩土工程学报, 2017, 39(12): 2173-2179. [27] 刘金海, 翟明华, 郭信山, 等. 震动场、应力场联合监测冲击地压的理论与应用[J]. 煤炭学报, 2014, 39(2): 353-363. [28] 王同旭, 刘文杰, 刘钒, 等. 冲击地压现场监测方法分析与选择原则[J]. 山东科技大学学报, 2014, 33(3): 43-47. [29] 姜耀东, 潘一山, 姜福兴, 等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报, 2014, 39(2): 205-213. [30] 魏立科, 姜德义, 王翀, 等. 煤矿冲击地压灾害风险监察智能分析系统关键技术架构研究[J]. 煤炭学报, 2020, 1-12. [31] 杨光宇, 姜福兴, 李琳, 等. 煤矿冲击地压危险性的工程判据研究[J]. 采矿与安全工程学报, 2018, 35(6): 1200-1207+1216. [32] 谭云亮, 郭伟耀, 辛恒奇, 等. 煤矿深部开采冲击地压监测解危关键技术研究[J]. 煤炭学报, 2019, 44(1): 160-172. [37] 袁亮. 煤矿典型动力灾害风险判识及监控预警技术研究进展[J]. 煤炭学报, 2020, 45(5): 1557-1566. [38] 朱斯陶, 姜福兴, 刘金海, 等. 我国煤矿整体失稳型冲击地压类型、发生机理及防治[J]. 煤炭学报, 2020, 45(11): 3667-3677. [39] 崔峰, 贾冲, 来兴平, 等. 基于加卸载响应比的冲击地压矿井急倾斜巨厚煤层推进速度研究[J]. 煤炭学报, 2022, 47(2): 745-761. [41] 崔峰, 贾冲, 来兴平, 等. 缓倾斜冲击倾向性顶板特厚煤层重复采动下覆岩两带发育规律研究[J]. 采矿与安全工程学报, 2020, 37(3): 514-524. [44] 张宏伟, 杜凯, 荣海, 等. 冲击地压的构造应力条件[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(2): 165-169. [45] 潘立友, 孙刘伟, 范宗乾. 深部矿井构造区厚煤层冲击地压机理与应用[J]. 煤炭科学技术, 2013, 41(9): 126-128. [46] 袁瑞甫, 李化敏, 李怀珍. 煤柱型冲击地压微震信号分布特征及前兆信息判别[J]. 岩石力学与工程学报, 2012, 31(1): 80-85. [53] 宋大钊. 冲击地压演化过程及能量耗散特征研究[D]. 中国矿业大学, 2012. |
中图分类号: | TD324 |
开放日期: | 2023-03-08 |