- 无标题文档
查看论文信息

论文中文题名:

 内置封装相变材料的充填体蓄热性能研究    

姓名:

 赵敏    

学号:

 18203057012    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081404    

学科名称:

 工学 - 土木工程 - 供热、供燃气、通风及空调工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 供热 ; 供燃气 ; 通风及空调工程    

研究方向:

 可再生能源利用与能量转换技术    

第一导师姓名:

 张小艳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Study on heat storage performance of backfill body with encapsulated phase change material    

论文中文关键词:

 充填体 ; 相变 ; 蓄热性能 ; 套管换热器 ; 地热潜力预测    

论文外文关键词:

 Backfill body ; Phase change ; Heat storage performance ; Tube-in-tube heat exchanger ; Prediction of geothermal potential    

论文中文摘要:

我国现有的矿产资源开采进度使得采矿工程不断向深部延伸,从而凸显出一系列井下热害问题,然而,矿石开采完毕后形成的巨大地下空区却为深井地热的开采及利用提供了有利条件。为此,基于相变蓄热技术,本研究提出在采空区充填体内预先敷设套管换热器,并利用其环形空间封装相变材料(PCM),在有效提高层状充填体平均储热密度的同时又起到了防止相变材料渗漏的作用。

本文建立了相变充填体多区域耦合传热模型,设计并搭建相变充填体传热模拟实验台验证了模型的合理性。利用FLUENT模拟地热在充填体内的积聚过程,并分析了相变材料、围岩温度、充填体及相变材料蓄热初始温度、采场风流温度及速度和套管换热器结构影响下的充填体蓄热性能变化规律。在此基础上,对非采暖期内实际分层充填体的蓄热过程进行数值模拟,分析其蓄热性能的瞬态特性,并对不同矿山热环境下层状充填体地热储备潜力做出预测。

相变材料对蓄热过程的影响分析表明,在地热积聚过程中,内置的封装相变材料能够引起充填体内部温度场发生波动,这种波动随着相变期的结束而逐渐消失。相变材料还能显著提高充填体的蓄热性能,与普通充填体相比,内置封装相变材料的充填体蓄热速率及蓄热量平均增幅分别为47.83%、8.50%。

矿山热环境影响分析表明,开采深度越大、蓄热初始温度(即采热结束时刻温度)越低、采场风流温度越高、风流速度越小,越有利于地热在相变充填体内的积聚。与围岩温度及蓄热初始温度相比,采场风流的影响较弱。在围岩温度由35℃升高至55℃的过程中,温度每升高5℃,相变充填体蓄热量依次增大34.8%、25.2%、19.9%、16.5%;在蓄热初始温度由15℃升高27℃的过程中,温度每升高3℃,蓄热量依次减小11.1%、12.5%、14.2%、13.2%;在采场风流温度由20℃升高至26℃的过程中,温度每升高3℃,蓄热量依次增大2.9%、2.8%;在采场风流速度由1m/s增大至3m/s的过程中,速度每增大1m/s,蓄热量依次减小2.6%、1.7%。从相变材料封装方式分析,在套管换热器内增设纵翅能加速相变材料熔化,使整个相变期内的液相率增大5.88%,但对蓄热量几乎无明显影响。此外,本文经计算得到在一个非采暖期内的单层相变充填体(15m×3m× 40m)可存储7.31×107kJ地热能,折合2.5吨标准煤,可减少6.5吨二氧化碳排放量。

本论文的研究结果表明可以利用矿山相变充填体的蓄热性能储存相当可观的地热资源,不仅为废弃矿山地热能的提取和利用拓展了思路,同时也为不同矿山热环境下相变充填体地热潜力的预测与研究提供了理论指导与基础数据。

论文外文摘要:

Current mining progress of mineral resources in China makes mining engineering continue to extend to the deep, thus highlighting a series of heat damage problems in underground. However, the huge underground goaf formed after the completion of ore mining provides favorable conditions for the exploitation and utilization of deep geothermal energy. Therefore, based on phase change heat storage technology, an idea of laying tube-in-tube heat exchanger in the backfill body of goaf in advance is proposed, and its annular space is used to encapsulate phase change material (PCM), which can effectively improve the average heat storage density of layered backfill body and prevent the leakage of PCM.

In this paper, a multi region coupled heat transfer model of phase change backfill body was established. An experimental setup of heat transfer for phase change backfill body was designed and built to verify the rationality of the model. The accumulative process of geothermal energy in the backfill body was simulated by FLUENT, and the changeable rules of the heat storage performance for backfill body were analyzed under the influence of the PCM, the temperature of surrounding rock, the initial temperature of backfill body and PCM, the temperature and velocity of the airflow in stope and the structure of tube-in-tube heat exchanger. On this basis, the accumulative process of geothermal energy for the actual layered backfill body in a non heating period was simulated, the transient characteristics of heat storage performance were analyzed, and the geothermal potential of a layered backfill body in different thermal environments was predicted.

The analysis of the influence of PCM on the heat storage process shows that the encapsulated PCM can cause fluctuations in the internal temperature field of backfill body during the process of geothermal accumulation, and the fluctuations gradually disappear with the end of the phase change period. The encapsulated PCM can significantly improve the heat storage performance of the backfill body, compared with the ordinary backfill body, the heat storage rate and heat storage capacity of the backfill body with encapsulated PCM increase by 47.83% and 8.50% respectively.

The analysis of mine thermal environment impact shows that the higher the mining depth, the lower the initial temperature of heat storage (i.e. the lower the temperature at the end of heat release), the higher the temperature and the smaller the velocity of airflow in stope, the more favorable the accumulation of geothermal energy in the phase change backfill body. Compared with the temperature of surrounding rock and the initial temperature of heat storage, the influence of airflow is weaker. When the temperature of surrounding rock rises from 35 ℃ to 55 ℃, the heat storage capacity of phase change backfill body increases by 34.8%, 25.2%, 19.9% and 16.5% successively for every 5 ℃ rise in temperature. When the initial temperature of heat storage rises from 15 ℃ to 27 ℃, the heat storage capacity decreases by 11.1%, 12.5%, 14.2% and 13.2% successively for every 3 ℃ rise in temperature. When the temperature of airflow rises from 20 ℃ to 26 ℃, the heat storage capacity increases by 2.9% and 2.8% successively for every 3 ℃ rise in temperature. When the velocity of airflow increases from 1 m/s to 3 m/s, the heat storage capacity decreases by 2.6% and 1.7% successively for every 1 m/s increase in velocity. According to the packaging method of PCM, adding longitudinal fins in the tube-in-tube heat exchanger can accelerate the melting of PCM, and increase the liquid fraction by 5.88% in the whole phase transition period, but it has little effect on the heat storage capacity. In addition, it is calculated that a layered phase change backfill body (15 m × 3 m × 40 m) can store 7.31×107 kJ of geothermal energy in a non heating period, which is equivalent to 2.5 t of standard coal and can reduce 6.5 t of carbon dioxide emissions.

The research results show that considerable geothermal resources can be stored by using the heat storage performance of phase change backfill in mines, which not only expands the ideas for the extraction and utilization of geothermal energy in abandoned mines, but also provides theoretical guidance and basic data for the prediction and research of geothermal potential of phase change backfill in different mine thermal environments.

参考文献:

[1]耿爱欣,潘文琦,杨红强.中国林木生物质能源替代煤炭的减排效益评估[J].资源科学,2020,42(3):536-547.

[2]X. Su, X. Zhang, A detailed analysis of the embodied energy and carbon emissions of steel-construction residential buildings in China[J]. Energy and Buildings, 2016, 119: 323-330.

[3]中国国家可再生能源中心.中国可再生能源展望2017[EB/OL]. (2017- 10- 18) [2019- 04-05]. http://www.cnrec.org.cn/cbw/zh/2017-10-18-531.html.

[4]国家统计局.中华人民共和国2018年国民经济和社会发展统计公报[J].中国统计, 2019, (3):8-22.

[5]X.D. Yang, J.N. Zhang, S.Y. Ren, Q.Y. Ran, Can the new energy demonstration city policy reduce environmental pollution? Evidence from a quasi-natural experiment in China[J]. Journal of Cleaner Production, 2020, 125015.

[6]姜克隽.一个强有力的2050碳减排目标将非常有利于中国的社会经济发展[J].气候变化研究进展,2019,15 (1):103-106.

[7]国家发展和改革委员会.地热能开发利用“十三五”规划[S].2017.

[8]谢和平.“深部岩体力学与开采理论”研究构想与预期成果展望[J].工程科学与技术,2017,49(2):1-16.

[9]郭平业.我国深井地温特征及热害控制模式研究[D].北京:中国矿业大学(北京),2010.

[10]王美,刘浪,张波,张小艳,郇超,赵玉娇,屠冰冰.矿山载/蓄冷功能性充填基础理论[J].煤炭学报,2020,45(4):1336-1347.

[11]国家发展和改革委员会.煤炭工业发展“十三五”规划[S].2017.

[12]李宝山,肖明松,周志学,徐玉杰,王婷婷,赵栋利,朱家玲.针对废弃矿井的可再生能源综合开发利用[J].太阳能,2019,000(005):13-16.

[13]邱华富,刘浪,张波,张富舜.矿山采空区超前管理与协同利用模式探索[J].技术与创新管理,2020,41(6):625-630.

[14]M. Preene, P. L. Younger, Can you take the heat?–Geothermal energy in mining[J]. Mining Technology, 2014,123(2):107-118.

[15]A.M. Jessop, J.K. Macdonald, H. Spence, Clean energy from abandoned mines at Springhill, Nova Scotia[J]. Energy sources, 1995, 17:93-106.

[16]E.P. Ramos, K. Breede, G. Falcone, Geothermal heat recovery from abandoned mines: a systematic review of projects implemented worldwide and a methodology for screening new projects[J]. Environment Earth Science, 2015, 73:6783-6795

[17]范高龄.煤矿中的地热能回收[C]//中国地源热泵行业高层论坛.中国能源研究会;国际地源热泵协会, 2011.

[18]B.S. Behrooz, D. Elianne, V.B. Jan-jaap, Geothermal use of deep flooded mines[C]. International Symposium on Post-Mining, ISPM, Nancy, France, 2008, 1-10.

[19]K. Kranz, D. Julia, Mine water utilization for geothermal purposes in Freiberg, Germany: determination of hydrogeological and thermophysical rock parameters[J]. Mine Water Environment, 2010, 29:68-76.

[20]N. Burnside, D. Banks, Boyce, Sustainability of thermal energy production at the flooded mine workings of the former Caphouse Colliery, Yorkshire, United Kingdom[J]. International Journal of Coal Geology, 2016, 164:85-91.

[21]J. Menéndez, A. Ordóñez, R. Álvarez, J. Loredo, Energy from closed mines: Underground energy storage and geothermal applications[J]. Renewable and Sustainable Energy Reviews, 2019, 108:498-512.

[22]J. Menéndez, A. Ordóñez, J.M. Fernández-Oro, J. Loredo, M.B. Díaz-Aguado. Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings[J]. Renewable Energy, 2020, 146:1166-1176.

[23]Z. Liu, M. ASCE, J. Meldrum, P.F. Xue, C. Green, Preliminary studies of the use of abandoned mine water for geothermal applications[C]. International Foundations Congress and Equipment Expo, San Antonio, America, 2015.

[24]T. Bao, J. Meldrum, C. Green, S. Vitton, Z. Liu, K. Bird, Geothermal energy recovery from deep flooded copper mines for heating[J]. Energy Conversion and Management, 2019,183:604-616.

[25]D. Banks, H. Skarphagen, R. Wiltshire, C. Jessop, Heat pumps as a tool for energy recovery from mining wastes[A]. Energy, Waste, and the Environment: a Geochemical, 2004.

[26]J. Raymond, R. Therrien, F. Hassani, Overview of geothermal energy resources in Québec (Canada) mining enviroments[C]. Curran Associates Inc., Red Hook NY. Proc. 10th Int.‘Mine water association congress - mine water and the environment’, Karlsbad, Czech Republic, 2008, 99-112.

[27]S.A. Ghoreishi-Madiseh, F.P. Hassani, A. Mohammadian, P.H. Radziszewski, A study into extraction of geothermal energy from tailings ponds[J]. International Journal of Mining, Reclamation and Environment, 2013, 27(4):257-274.

[28]Z.Q. Yang, S.H. Zhai, Q. Gao, M.H. Li, Stability analysis of large-scale stope using stage subsequent filling mining method in Sijiaying iron mine[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7:87-94.

[29]S.A. Ghoreishi-Madiseh, F. Hassani, F. Abbasy, Numerical and experimental study of geothermal heat extraction from backfilled mine stopes[J]. Applied Thermal Engineering, 2015, 90(01):1119-1130.

[30]李全生,李瑞峰,张广军,张凯,杨英明.我国废弃矿井可再生能源开发利用战略[J].煤炭经济研究,2019,39(05):9-14.

[31]姜涛,王福喜,李士省.矿井风井余热综合利用技术研发与应用[J].价值工程,2018,37(21):116-117.

[32]吕向阳,李亚楠,鲍玲玲.基于热管换热技术回收矿井回风低温余热的应用研究[J].煤炭技术,2019,38(03):117-120.

[33]马琳,段朝峰,安邓涛.矿井水热能利用系统在大采深煤矿的应用[J].能源技术与管理,2017,42(01):141-143.

[34]张国平.小庄煤矿水源地热资源开发及利用研究[J].中国煤炭,2019,45(09):84-87.

[35]王瑶.矿井地面空压机余热回收利用的研究[J].机械管理开发,2020,35(01):141-142.

[36]谢友泉,高辉,苏志国,李春,董丽静,朱家玲.废弃矿井地热资源的开发利用[J].太阳能,2020(10):13-18.

[37]刘振利,程立娜,门辰琼,付柏淋.浅谈某深井矿井水地热利用与矿井降温相结合技术[J].矿业工程,2015,13(02):48-50.

[38]P.Y. Guo, M.C. He, L.G. Zheng, N.Zhang, geothermal recycling system for cooling and heating in deep mines[J]. Applied Thermal Engineering, 2017, 116:833-839.

[39]万志军,毕世科,张源,王骏辉,吴栋,王靖超.煤-热共采的理论与技术框架[J].煤炭学报,2018,43(08):2099-2106.

[40]B.Y. Li, J.X. Zhang, S.A. Ghoreishi-Madiseh, M.A.R.D. Brito, X.J. Deng, A.F. Kuyuk. Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines[J]. Journal of Cleaner Production, 2020, 275:12267.

[41]X.Y. Zhang, L. Liu, L. Liu, L. Liu, Y.H. Jia, Numerical simulation of heat release performance of filling body under condition of heat extracted by fluid flowing in buried tube[J]. Journal of Central South University, 2019,26(8):2160-2174.

[42]刘浪,辛杰,张波,张小艳,王美,邱华富,陈柳.矿山功能性充填基础理论与应用探索[J].煤炭学报,2018,43(07):1811-1820.

[43]X.Y. Zhang, M. Zhao, L. Liu, X. Xia, J. Zhang, C.L. Zhao, B.Y. Bo, Phase-change heat storage backfill: Experimental study on rheological properties of backfill slurry with paraffin added[J]. Construction and Building Materials, 2020, 262, 120736.

[44]X.Y. Zhang, M.Y. Xu, L. Liu, C. Huan, Y.J. Zhao, C.C. Qi, K. Song, Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material[J]. Journal of Materials Research and Technology, 2019, 9(2):2164-2175.

[45]X.Y. Zhang, M.Y. Xu, L. Liu, L. Liu, M. Wang, H.W. Ji, The concept, technical system and heat transfer analysis on phase-change heat storage backfill for exploitation of geothermal energy[J]. Energies, 2020, 13. 4755.

[46]张小艳,赵成林,刘利,赵敏,许慕妍,文德.添加石蜡的复合充填材料流变性能实验研究[J].山西建筑,2019,45(08):87-88.

[47]张小艳,王杰,韩子怡,冯云豪,李世芳.添加石蜡的复合充填材料热学性能实验研究[J].山西建筑,2019,45(09):95-97.

[48]李冬怀,袁旭光,韩军.地热资源量评价计算方法评述[J].地球科学前沿,2018,8(3):546-554.

[49]C.O. Ofwona, Resource Assessment of Olkaria I Geothermal Field, Kenya[C]. Proceedings World Geothermal Congress, Antalya, 2005, 24-29.

[50]毕世科. 唐口煤矿深部地热资源利用研究[D].中国矿业大学,2018.

[51]薛超,柴宏有,葛毓,张玉贵,薛宇泽.韩城地区中深层岩溶地热资源热储特征及潜力评价[J].陕西煤炭,2021,40(01):18-21.

[52]J. Raymond, R. Therrien, Low-temperature geothermal potential of the flooded Gaspé Mines, Québec, Canada[J]. Geothermics, 2008, 37:189-210.

[53]P.Y. Guo, L.G. Zheng, X.M. Sun, M.C. He, Y.W. Wang, J.S. Shang, Sustainability evaluation model of geothermal resources in abandoned coal mine[J]. Applied Thermal Engineering, 2018, 144:804-811.

[54]孙颖,许辉熙,刘久荣,薛万蓉,何政伟,张院.中低温地热田的地热资源计算评价——以北京市小汤山地热田为例[J].安徽农业科学,2009,37(14):6535-6537.

[55]R.R. Díez, M.B. Díez-Aguado. Estimating limits for the geothermal energy potential of abandoned underground coal Mines: A simple methodology[J]. Energies, 2014, 7. 4241-4260.

[56]王美,刘浪,张波,张小艳,郇超,赵玉娇,屠冰冰.矿山载/蓄冷功能性充填基础理论[J].煤炭学报,2020,45(04):1336-1347.

[57]M. Wang, L. Liu, X.Y. Zhang, L. Chen, S.Q. Wang, Y.H. Jia, Experimental and numerical investigations of heat transfer and phase change characteristics of cemented paste backfill with PCM[J]. Applied Thermal Engineering, 2019, 150:121-131.

[58]李圣腾. 矿山非均匀沉降胶结充填体热学性能研究[D].西安科技大学,2020.

[59]李伟,李新国,赵军,韩敏霞.土壤蓄热特性与模拟研究[J].太阳能学报,2009,30(11):1491-1495.

[60]C. Tong, X.L. LI, L. Duanmu, Z.S. Wang, Research on Heat Transfer Characteristics of soil thermal storage in the non-heating Season[J]. Procedia Engineering, 2017, 205:3293-3300.

[61]N. Kayaci, H. Demir, Numerical modelling of transient soil temperature distribution for horizontal ground heat exchanger of ground source heat pump[J]. Geothermics, 2018, 73:33-47.

[62]李文欣. 基于岩土蓄热平衡性的地埋管地源热泵系统性能评价研究[D].重庆大学,2018.

[63]L.H. Wang, X.C. Zou, H. Tao, J. Song, Y. Zheng, Experimental Study on Evolution Characteristics of the Heat Storage of Surrounding Soil in Subway Tunnels[J]. Procedia Engineering, 2017, 205:2728-2735.

[64]L. Zhang, P. Xu, J.C. Mao, X. Tang, Z.W. Li, J.G. Shi, A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study[J]. Applied Energy, 2015, 156:213-222.

[65]H.B. Chen, H.W. Ding, S.Y. Liu, W. Wu, L. Zhang, Comparative study on heat and moisture transfer in soil heat charging at high temperature for various soils[J]. Energy Procedia, 2015, 75:3148-3153.

[66]L.W. Zhang, G. Liu, M. Li, Estimation of thermal properties of the ground and backfilling materials from thermal response tests (TRTs) using ground heat exchangers[J]. Energy Procedia, 2019, 158:91-96.

[67]L.L. Liu, G.J. Cai, X.Y. Liu, S.Y. Liu, A.J. Puppala, Evaluation of thermal-mechanical properties of quartz sand-bentonite-carbon fiber mixtures as the borehole backfilling material in ground source heat pump[J]. Energy & Buildings, 2019, 202:109407.

[68]R. Wan, D.Q. Kong, J.Y. Kang, T.Y. Yin, J.F. Ning, J.P. Ma, The experimental study on thermal conductivity of backfill material of ground source heat pump based on iron tailings[J]. Energy & Buildings, 2018, 174:1-12.

[69]S. Ahmad, Z.H. Rizvi, M. A. Khan, J. Ahmad, F. Wuttke, Experimental study of thermal performance of the backfill material around underground power cable under steady and cyclic thermal loading[J]. Materials Today: Proceedings, 2019, 17:85-95.

[70]Y. Al-Ameen, A. Ianakiev, R. Evans, Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems[J]. Energy, 2018, 151:556-568.

[71]李斯,苑翔,赵飞.相变蓄热技术应用于采暖的研究现状[J].节能,2019,38(03):24-27.

[72]徐治国,赵长颖,纪育楠,赵耀.中低温相变蓄热的研究进展[J].储能科学与技术,2014,3(03):179-190.

[73]吴学红,翟亚妨,姜文涛,朱有健,赵中友.套管式相变蓄热器强化传热研究[J].可再生能源,2016,34(07):983-989.

[74]房丛丛,钱焕群.相变蓄热技术及其应用[J].节能,2011,30(Z2):27-30+4.

[75]J. Li, L. Feng, S.Y. Zhong, T.T. Guo, G.B. Chen, Economic analysis of urban phase-level distributed phase-change heat storage stations[J]. Energy Procedia, 2019, 158:1086-1092.

[76]H.S. Carslaw, J.C. Jaeger, Conduction of Heat in solids[M]. New York, Oxford University Press, 1959.

[77]V. Alexiades, A. Solomon, Mathematical modelling of melting and freezing processes[M]. USA, Hemisphere publishing corporation. 1993.

[78]P. Lamberg, K. Sirén, Analytical model for melting in a semi-infinite PCM storage with an internal fin[J]. Heat and Mass Transfer, 2003, 39:167-176.

[79]N. Mallya, S. Haussener, Buoyancy-driven melting and solidification heat transfer analysis in encapsulated phase change materials[J]. International Journal of Heat and Mass Transfer, 2021, 164:120525.

[80]M.K. Zhang, X.B. Liu, K.S. Biswas, J. Warner, A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material[J]. Applied Thermal Engineering, 2019, 162:114297.

[81]M. Bottarelli, M. Bortoloni, Y.H. Su, C. Yousif, A.A. Aydın, A. Georgiev, Numerical analysis of a novel ground heat exchanger coupled with phase change materials[J]. Applied Thermal Engineering, 2015, 88:369-375.

[82]X.L. Li, C. Tong, L. Duanmu, L.K. Liu, Research on U-tube heat exchanger with shape-stabilized phase change backfill material[J]. Procedia Engineering, 2016, 146:640-647.

[83]W.F. Zhao, Z.T. Hu, W. He, S. Zhang, H.C. Yu, G.F. Xu, H.B. Chen, Intermittent mode analysis of a borehole ground heat exchanger with novel phase change backfill materials[J]. Applied Thermal Engineering, 2021, 189:116716.

[84]W.B. Yang, R. Xu, B.B. Yang, J.J. Yang. Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill[J]. Energy, 2019, 174:216-235.

[85]M. Bottarelli, M. Bortoloni, Y.H. Su, Heat transfer analysis of underground thermal energy storage in shallow trenches filled with encapsulated phase change materials[J]. Applied Thermal Engineering, 2015, 90:1044-1051.

[86]E. Bonamente, A. Aquino, F. Cotana, A PCM thermal storage for ground-source heat pumps: simulating the system performance via CFD approach[J]. Energy Procedia, 2016, 101:1079-1086.

[87]郭瑞.国内外充填采矿技术发展现状综述[J].智能城市,2016,2(07):79.

[88]王光程,乔登攀.大红山铜矿点柱式上向水平分层充填采矿法稳定性分析[J].黄金,2014,35(06):36-39.

[89]彭福军,朱天平,王训青.获各琦铜矿上向水平分层充填采矿方法的完善[J].有色金属(矿山部分),2012,64(04):14-16.

[90]李兴尚,吴法春,许家林.上向水平分层充填采矿法的优化研究[J].金属矿山,2006(04):1-3+6.

[91]蓄热技术简介[J]. 粮油加工与食品机械, 1985(08):57-58.

[92]S. Dudka, D.C. Adriano, Environmental impacts of metal ore mining and processing: A Review[J]. Journal of Environmental Quality. 1997, 25:590-602.

[93]P.G. Ranjith, J. Zhao, M. Ju, R.V.S. De Silva, T.D. Rathnaweera, A.K.M.S. Bandara, Opportunities and challenges in deep mining: A Brief Review[J]. Engineering, 2017, 3:546-551.

[94]L.Q. Luo, K.Y. Li, W. Fu, C. Liu, S.Y. Yang, Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials, 2020, 232:117250.

[95]L. Cui, M. Fall, An evolutive elasto-plastic model for cemented paste backfill[J]. Computers and Geotechnics, 2016, 71:19-29.

[96]L. Li, A generalized solution for mining backfill design[J]. International Journal of Geomechanics, 2013, 14(3):04014006.

[97]S.H. Yin, A.X. Wu, K.J. Hu, Y. Wang, Y.K. Zhang, The effect of solid components on the rheological and mechanical properties of cemented paste backfill[J]. Minerals Engineering, 2012, 35:61-66.

[98]陈枭,张仁元,毛凌波.石蜡类相变材料的研究及应用进展[J].材料研究与应用,2008(02):89-92.

[99]蔡莞晨,杨文彬,张凯,范敬辉,吴菊英,邢涛,何韧.石蜡相变熔化过程的实验和数值模拟[J].西南科技大学学报,2018,33(03):6-9+81.

[100]吕玉卓,路原睿,顾兆林.考虑对流换热的水平套管式蓄热体数值模拟[J].石油化工设备,2014,43(03):38-42.

[101]X.Y. Zhang, M. Zhao, L. Liu, C. Huan, Y.J. Zhao, C.C. Qi, K. Song, Numerical simulation on heat storage performance of backfill body based on tube-in-tube heat exchanger[J]. Construction and Building Materials, 2020, 232:117250.

[102]薛远. H59黄铜皮秒激光打孔过程温度场数值模拟及试验研究[D].江苏大学,2017.

[103]P. Liu, S.G. Cui, Z.H. Li, X.F. Xu, C. Guo, Influence of surrounding rock temperature on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high-temperature geothermal tunnel[J]. Construction and Building Materials, 2019, 207:329-337.

[104]J.M. Mahdi, S. Lohrasbi, D.D. Ganji, E.C. Nsofor, Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 124:663-676.

[105]L. Kalapala, J.K. Devanuri, Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage – A review[J]. Journal of Energy Storage, 2018, 20:497-519.

[106]M.J. Hosseini, A.A. Ranjbar, M. Rahimi, R. Bahrampoury, Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems[J]. Energy and Buildings, 2015, 99: 263-272.

[107]江训普. 香格里拉某铜矿采场结构参数及胶结矿柱的优化研究[D].昆明理工大学,2017.

[108]C. Li, Y.L. Guan, R.T. Yang, X. Lu, W.X. Xiong, A.J. Long, Effect of inner pipe type on the heat transfer performance of deep-buried coaxial double-pipe heat exchangers[J]. Renewable Energy, 2020, 145:1049-1060.

中图分类号:

 TK529    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式