- 无标题文档
查看论文信息

论文中文题名:

 西安市主城区热环境时空演变特征及驱动力研究    

姓名:

 许珅燊    

学号:

 20210010011    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070503    

学科名称:

 理学 - 地理学 - 地图学与地理信息系统    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 地理学    

研究方向:

 定量遥感应用    

第一导师姓名:

 李崇贵    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-12-13    

论文答辩日期:

 2023-11-24    

论文外文题名:

 Study on the spatiotemporal evolution characteristics and driving forces of thermal environment in the main urban area of Xi'an    

论文中文关键词:

 城市热环境 ; 地表温度 ; 时空变化 ; 影响因素 ; 地理探测器    

论文外文关键词:

 Urban thermal environment ; Land surface temperature ; Temporal and spatial change ; Influencing factor ; geographic detector    

论文中文摘要:

近年来,城镇化快速发展促使土地利用类型发生了明显变化。由于城市发展对用地需求增加,原有植被和水体区域逐渐被建设用地所侵占。城镇化发展使工矿企业的增加和城市人口数量的剧增,必然向城市排放更多的废气和热量,这些因素导致城市地表温度成逐年升高趋势,从而严重威胁到人类生存环境质量。西安市作为“一带一路”的起点,逐步发展成为国际大都市,城市用地不断向外扩张,导致大量植被及水体区域成为建设用地,工矿企业及城市人口快速增长,城市环境质量有所下降。因此,开展西安市地表温度时空变化及驱动力研究对城市可持续科学发展意义重大,以期为西安市生态保护提供重要的指导意义。本文采用遥感(RS)和地理信息系统技术(GIS)对2005年、2010年、2016年和2021年四期Landsat夏季遥感影像进行处理,从中提取到土地利用、植被覆盖度(FVC)、归一化建筑指数(NDBI)和改进归一化差异水体指数(MNDWI)等数据,再结合人口密度、夜间灯光和兴趣点(POI)数据,利用地表温度反演模型、景观格局指数、双变量空间自相关和地理探测器等方法研究西安市主城区地表温度时空演变特征及驱动力,结果表明:

(1)通过2005年、2010年、2016年和2021年遥感影像数据源分析发现,西安市主城区土地利用变化显著,除建设用地面积有所增加外,其它地类均表现出减少的趋势。耕地面积减少最多,2005年至2010年间耕地共减少39.72km2、2010至2021年间耕地共减少59.43km2,2005至2021年间耕地转为建设用地117.17km2。水域变化次之,2005至2021年间共减少17.27km2。林地减少最少,共减少16.56km2。综合土地利用变化从1.38%减少到1.04%,说明增长趋势减缓。

(2)利用2005年、2010年、2016年和2021年四期遥感影像数据,引入辐射传输方程模型反演得到西安市主城区相应年度地表温度,并采用均值-标准差法将其划分为高温区、次高温区、中温区、次低温区、低温区5个等级区域。通过对比分析实验结果发现,2005-2021年期间,次高温区域、高温区域面积有所上升,低温区域、中低温区域和中温区域面积有所下降。主城区的热环境方向主轴转为“东北-西南”走向,总体上标准差椭圆的扁率有所下降。与2005年相比,2021年西安市主城区热力景观的优势性逐渐散失,但低温区、中温区与高温区的优势性扩大。2021年的城市热力景观形状相对于2005年趋于规则化,但中温区和次高温区的热力景观形状趋于复杂。热力景观具有破碎化发展的趋势,低温区、次低温区和次高温区是发生破碎化的主要区域。同时,热力景观多样性增加,其中高温区热力景观丰富度变化最显著。

(3)通过遥感影像反演结果对比土地利用类型分析发现,土地利用类型的不同对地表温度的影响作用也不同,且差异性较为显著。综合统计2005年、2010年、2016年和2021年四期数据实验结果发现:建设用地的地表平均温度最大,水域的地表平均温度最低,同一年份不同土地利用类型中地表温度的最大平均值和最小平均值相差较大,最大相差达到6℃左右;高程与地表温度在空间上具有负相关关系,高程由西北向东南逐步增加,地表温度由西北向东南逐步减小;植被覆盖度与地表温度在空间上呈现负相关关系;归一化建筑指数与地表温度之间呈正相关关系;改进归一化差异水体指数与地表温度呈现负相关关系;人口密度、夜间灯光和POI核密度与地表温度在空间上存在正相关关系。

(4)利用地理探测器模型分析2005、2021年两期数据城市热环境相关因子的影响力q和显著水平p。2005年,各驱动因子的影响力从大到小依次为NDBI>FVC>MNDWI>夜间灯光>POI密度>人口密度>土地利用>高程;2021年,从大到小依次为NDBI>FVC>MNDWI>夜间灯光>高程>POI密度>人口密度>土地利用。两期探测因子的p值同样均为0,说明探测因子对地表温度影响显著。对比2005、2021年q值发现,2021年相较2005年各驱动因素的解释力有所变化。与单因子相比,所有驱动因子交互后对地表温度具有协同增强的作用,其作用力都高于70%,并以非线性增强的方式而增长。

研究结果表明城市扩张侵占了植被覆盖区,城市热环境重心“东北-西南”迁移,并对热环境相关影响因子进行科学排序。研究结果对西安市主城区的现状以及未来发展都具有一定的参考价值,可为合理地进行城市规划布局提供科学依据。

论文外文摘要:

 

In recent years, the rapid development of urbanization has led to significant changes in the type of land use. Due to the increasing demand for land for urban development, the original vegetation and water area are gradually occupied by construction land. As a result of urbanization development, the increase of industrial and mining enterprises and the sharp increase of urban population will inevitably emit more heat and waste gas to the city. These factors lead to the rising trend of urban surface temperature year by year, which seriously threatens the quality of human living environment. Xi 'an, as the starting point of "The Belt and Road", has gradually developed into an international metropolis, and the urban land has continuously expanded, resulting in a large number of vegetation and water areas becoming construction land, rapid growth of industrial and mining enterprises and urban population, and a decline in urban environmental quality. Therefore, it is of great significance to study the spatio-temporal variation and driving force of Xi 'an land surface temperature for the sustainable scientific development of the city, in order to provide important guiding significance for the ecological protection of Xi 'an. In this paper, remote sensing (RS) and geographic information system (GIS) were used to process Landsat summer remote sensing images in 2005, 2010, 2016 and 2021. Data such as land use, vegetation cover (FVC), normalized Building Index (NDBI) and improved normalized Differential Water Body Index (MNDWI) are extracted from the data, and combined with population density, night light and point of interest (POI) data, Using land surface temperature inversion model, landscape pattern index, bivariate spatial autocorrelation and geographic detector, the spatio-temporal evolution characteristics and driving forces of land surface temperature in the main urban area of Xi 'an were studied. The results show that:

(1) Through the analysis of remote sensing image data sources in 2005, 2010, 2016 and 2021, it was found that the land use change was significant in the main urban area of Xi 'an, except the construction land area increased, other land types showed a trend of decrease. The arable land area decreased the most, with a total decrease of 39.72km2 from 2005 to 2010, 59.43km2 from 2010 to 2021, and 117.17km2 converted into construction land from 2005 to 2021. Water area changes are the next largest, with a total loss of 17.27km2 between 2005 and 2021. Forest land decreased the least, a total of 16.56km2. In terms of comprehensive land use change, it decreased from 1.38% in 2005-2010 to 1.04% in 2010-2021, indicating a slowing growth trend.

(2) Based on the remote sensing image data of 2005, 2010, 2016 and 2021, the corresponding annual land surface temperature in the main urban area of Xi 'an was obtained by using the radiative transfer equation model, and the mean-standard deviation method was used to divide the land surface temperature into five regions: high temperature region, low temperature region, middle temperature region, low temperature region and low temperature region. Through comparative analysis of experimental results, it is found that during 2005-2021, the area of sub-high temperature region and high temperature region has increased, while the area of low temperature region, middle low temperature region and middle temperature region has decreased. The main axis of the thermal environment direction in the main urban area turns to "northeast-southwest" trend, and the oblate of the standard deviation ellipse decreases in general. Compared with 2005, the dominance of thermal landscape in the main urban area of Xi 'an in 2021 gradually loses, but the dominance of low temperature area, middle temperature area and high temperature area expand. Compared with 2005, the shape of urban thermal landscape in 2021 tends to be regular, but the shape of thermal landscape in middle-temperature and sub-high temperature regions tends to be complex. The thermal landscape has the tendency of fragmentation, and the low temperature area, sub-low temperature area and sub-high temperature area are the main areas of fragmentation. At the same time, the diversity of thermal landscape increased, and the richness of thermal landscape in high temperature region changed most significantly.

(3) By comparing the land use type with the remote sensing image inversion results, it is found that different land use types have different effects on land surface temperature, and the difference is significant. According to the experimental results of the four periods of data in 2005, 2010, 2016 and 2021, the average surface temperature of construction land is the highest, and that of water area is the lowest. In the same year, the maximum and minimum average surface temperature of different land use types differ greatly, with the maximum difference reaching about 6℃. There is a negative spatial correlation between elevation and land surface temperature, the elevation gradually increases from northwest to southeast, and the land surface temperature gradually decreases from northwest to southeast. There is a negative correlation between vegetation coverage and land surface temperature in space. There is a positive correlation between normalized building index and surface temperature. The improved normalized differential water index was negatively correlated with land surface temperature. Population density, night light and POI core density are spatially positively correlated with surface temperature.

(4) The geographical detector model was used to analyze the weights of the thermal environment related factors of the two data cities in 2005 and 2021. In 2005, the q values of the impact factors were ranked in descending order which is NDBI, FVC, MNDWI, nighttime lighting, POI density, population density, land use elevation. In 2021, the q values of the impact factors were ranked in descending order which is NDBI, FVC, MNDWI, nighttime lighting, elevation, POI density, population density, land use. The p values of the detection factors in the two periods are also 0, indicating that the data in the two periods have strong reliability. Comparing the q values of 2005 and 2021, it is found that the explanatory power of each driving factor in 2021 has changed compared with that in 2005. Compared with the single factor, the interaction of all driving factors has a synergistic enhancement effect on land surface temperature, and the force is higher than 70%, and increases in a nonlinear way.

The results show that the urban expansion encroaches on the vegetation-covered area, the thermal environmental center of gravity migrates and the ranking of the influencing factors have certain reference value for the present situation and future development of the main urban area of Xi 'an, and can provide scientific basis for rational urban planning and layout.

参考文献:

[1] 段四波, 茹晨, 李召良,等. Landsat卫星热红外数据地表温度遥感反演研究进展 [J]. 遥感学报,2021,25(08): 1591-1617.

[2] Chen H J, Liu L, Zhang Z Y, et al. Spatio-temporal correlation between human activity intensity and land surface temperature on the north slope of Tianshan Mountains [J]. Journal of Geographical Sciences, 2022, 32(10):1935-1955.

[3] 付景保. 黄河流域生态环境多主体协同治理研究 [J]. 灌溉排水学报,2020,39(10): 130-137.

[4] 刘宇翔, 杨英宝, 胡佳,等. 基于长时序MODIS数据的中国城市昼夜热岛强度时空特征 [J]. 地球信息科学学报,2022,4(05): 981-995.

[5] 周玄德, 郭华东, 孜比布拉·司马义. 城市扩张过程中不透水面空间格局演变及其对地表温度的影响——以乌鲁木齐市为例 [J]. 生态学报,2018,38(20): 7336-7347.

[6] 陈明辉. 利用Landsat卫星影像进行东莞市地表温度反演与变化分析 [J]. 测绘通报,2021,No.528(03): 60-68.

[7] 郭继强, 潘洁. 基于CA-Markov模型的南京市热环境格局演变及预测分析 [J]. 大气与环境光学学报,2020,15(02): 143-153.

[8] 匡文慧. 城市土地利用/覆盖变化与热环境生态调控研究进展与展望 [J]. 地理科学, 2018, 38(10): 1643-1652.

[9] 杨丽萍, 白宇兴, 朱江山,等. 基于优选植被指数和TVDI的额济纳绿洲旱情监测 [J]. 兰州大学学报(自然科学版),2021,57(06): 727-734.

[10] Zhu J, Tang W. Conflict and compromise in planning decision-making: How does a Chinese local government negotiate its construction land quota with higher-level governments[J] Environment and Urbanization, 2018, 30(1), 155–174.

[11] Mathew A, Khandelwal S, Kaul N. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India[J]. Sustainable Cities & Society, 2016, 26: 264-277.

[12] Pal S, Ziaul S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre[J]. Egyptian Journal of Remote Sensing and Space Science,2017, 20(1), 125–145.

[13] Bonan G B. Effects of land use on the climate of the United States[J]. Climatic Change, 1997, 37(3): 449-486.

[14] [14] anthropogenic land cover change on climate[J]. Journal of Climate, 2007, 20(14): 3621-3634.

[15] 谭睿. 中国老年人口失能状况及变化分析——基于第六次、第七次全国人口普查数据[J].卫生经济研究, 2023, 40(03): 6-11.

[16] 吴凡, 常勇, 姚磊, 等. 京津冀地区地表热环境时空分布格局[J/OL].西安理工大学学报, 2019, 11(03): 1-12.

[17] 匡文慧, 杨天荣, 刘爱琳, 等. 城市地表覆盖结构组分与热环境调控模型(EcoCity)研究——以北京城市为例[J]. 中国科学: 地球科学, 2017, 47(07): 847-859.

[18] Janos U, Zoltan S, Judit Z. Temperature cross-section features in an urban area[J]. Atmospheric Research. 2001, 58(06): 117-127.

[19] Bottyan Z, Unger J. A multiple linear statistical model for estimating the mean maximum urban heat island[J]. Theoretical and Applied Climatology. 2003, 75(12): 233-243.

[20] Balling R C, Vose R S, Weber G R. Analysis of long-term European temperature records:1751-1995[J]. Climate research, 1998, 10(15): 193-200.

[21] 龚志强, 何介南, 康文星, 等. 长沙市城区热岛时间分布特征分析[J].中国农学通报, 201l, 27(14): 200-204.

[22] 袁文涛, 刘滨辉, 刘燕玲, 等.黑龙江省1960—2000年地表温度的变化趋势[J].东北林业大学学报,2011,39(02):67-71.

[23] 刘玉彻, 王连仲, 杨柳, 等. 沈阳2007年城市热岛研究[J].环境科学与技术, 2011, 34(06): 96-101.

[24] Kazuya T, Harunori Y. Measurement of thermal environment inKyoto city and its prediction by CFD simulation[J]. Energy and Buildings, 2004(36):771-779.

[25] Susanne G C, Zehnder J A, Stefanov W. L.et al. Urban modifications in amesoscale meteorological model and the effects on near-surface variables in an aridmetropolitan region[J]. Journal of Applied Meteorology. 2005, 44(09):1281-1297.

[26] Thomas H, Gregoire P. Mapping urban climate zone sand quantifying climate behaviors-An application on Toulouse urban area (France) [J]. Environmental Pollution, 2011, 3(05): l-13.

[27] Atsuko N. Impact of land use and land cover changes on the ambient temperature in a middle scale city, Takamatsu, in South west Japan[J]. Environment Manage, 2009, 90(03): 297-304.

[28] Srivastava P K, Majumdar T J, Bhattacharya A K. Surface temperature in Singhbhum Shear Zone of India using Landsat-7ETM+thermal infrared data [J]. Advances in Space Research, 2009, 43(10): 1563-1574.

[29] 毛克彪, 严毅博, 赵冰, 等. 中国地表温度时空变化及驱动因素分析[J].灾害学, 2018, 36(01): 1-21.

[30] 伍健恒, 孙彩歌, 樊风雷. 西藏地表温度时空演变特征及影响因子[J].冰川冻土, 2022, 44(05): 1523-1538.

[31] 伍明飞, 林杰. 基于Landsat影像的杭州市主城区地表温度和热岛效应研究[J].科学技术与工程, 2022, 22(24): 10812-10817.

[32] 田浩, 刘琳, 张正勇, 等. 2001-2020年中国地表温度时空分异及归因分析[J].地理学报, 2022, 77(07): 1713-1729.

[33] 冯晓刚, 周在辉, 李凤霞, 等.西咸一体化驱动的咸阳市热力景观格局时空分异分析[J].西安建筑科技大学学报(自然科学版),2021,53(03):413-420.

[34] 李玉杰, 卢娟, 陈思佳, 等.海口市热力景观时空格局与分异特征[J].浙江农林大学学报,2021,38(04):712-722.

[35] 邓睿, 刘亮, 徐二丽.基于Landsat时间序列数据的重庆市热力景观格局演变分析[J].生态环境学报,2017,26(08):1349-1357.

[36] 乔治, 黄宁钰, 徐新良, 等.2003-2017年北京市地表热力景观时空分异特征及演变规律[J].地理学报,2019,74(03):475-489.

[37] 杨丽萍, 王乐, 孙晓辉, 等.基于遥感的西安市热力景观格局演变[J].水土保持研究,2017,24(01):250-255+264.

[38] 李雪松, 陈宏, 张苏利. 城市空间扩展与城市热环境的量化研究——以武汉市东南片区为例[J].城市规划学刊, 2014, 21(35): 71-77.

[39] 李蓉. 城市化对上海城市热岛时空动态的影响[D].上海:华东师范大学,2009.

[40] 陈燕红, 蔡芫镔. 福州主城区绿色空间演化的热环境效应差异[J].生态学杂志, 2019, 38(07): 2149-2158.

[41] 李翔泽, 李宏勇, 张清涛, 等. 不同地被类型对城市热环境的影响研究[J].生态环境学报, 2014, 23(01): 106-112.

[42] 孙芹芹, 吴志峰, 谭建军. 不同土地利用类型的城市热环境效应研究——以广州市为例[J].国土资源遥感, 2010, 879(04): 67-72.

[43] 张曼玉, 王泓, 杨元建, 等. 长三角地区夏季地表热环境的季节内和日夜变化特征[J].中国科学技术大学学报, 2019, 49(11): 920-929.

[44] 邓玉娇, 王捷纯, 何全军,等. 基于MODIS资料分析近15年广州城市热岛特征及演变规律[J].热带气象学报, 2018, 34(06): 755-762.

[45] 乔治, 贺曈, 卢应爽, 等. 全球气候变化背景下基于土地利用的人类活动对城市热环境变化归因分析——以京津冀城市群为例[J].地理研究, 2022, 41(07): 1932-1947.

[46] Han Fei, Zheng Xinqi, Li Jiayang, et al. Study on Urban Thermal Environment in Beijing Based on Local Climate Zone Method[J]. Sustainability, 2022, 14(15): 33-39.

[47] Chen H J, Liu L, Zhang Z Y, et al. Spatio-temporal correlation between human activity intensity and land surface temperature on the north slope of Tianshan Mountains[J]. Journal of Geographical Sciences, 2022, 32(10):87-99.

[48] Liu J C, Zhang S M, Yin L, et al. Exploring the relationship between seasonal variations of land surface temperature and urban morphological factors in complex urban areas.[J]. Environmental science and pollution research international, 2023. 18(09):101-115.

[49] 黄少鹏, 安芷生. 长期地温监测在地球科学研究中的重要意义[J].地球环境学报,2010,1(01):1-7.

[50] 唐鑫雨. 成都市土地覆被类型的热环境效应研究[D].西南科技大学, 2022.

[51] Mahdavi E B, Mohammad P, Razavi N. Change detection in a rural landscape: A case study of processes and main driving factors along with its response to thermal environment in Farim, Iran.[J]. Environmental science and pollution research international,2022, 34(02): 228-234.

[52] 李雪松, 陈宏, 张苏利. 城市空间扩展与城市热环境的量化研究——以武汉市东南片区为例[J].城市规划学刊, 2014,11(03): 71-76.

[53] 冉磊. 基于RS和GIS技术城市热岛效应的研究进展[J].智慧中国, 2023,28(01): 81-83.

[54] 赵毅, 冯晓刚, 杨永佺,等. 热环境视角下的西安城市发展策略[J].地理空间信息, 2021, 19(12): 18-21.

[55] 袁梦雨, 李金玺, 曾璐, 等. 西安市主城区土地利用时空变化及驱动力分析[J].科学技术与工程, 2022, 22(31): 13846-13855.

[56] 杨瑾, 左坤, 崔斌, 等. 西安市土地资源承载力时空变化研究[J].西北师范大学学报(自然科学版), 2019, 55(01): 121-128.

[57] 郑治中. 西安城市景观格局与热环境效应研究[D].西安工程大学, 2016.

[58] 黄小刚, 邵天杰, 赵景波, 等. 基于GAM模型的西安市O3浓度影响因素解析[J].环境科学, 2020, 41(04): 1535-1543.

[59] 孙泽兴, 李汶怡, 刘嘉敏, 等. 陕西省生态恢复综合效益评估[J].生态学报, 2022, 42(07): 2718-2729.

[60] 朱一梅, 张孝中, 孙虎. 陕西省汉中市水土保持区划[J].水土保持通报, 2018, 38(05): 149-153.

[61] 周鹏, 谢元礼, 高志远, 等. 西安市不透水面的变化及其驱动力[J].水土保持通报, 2020, 40(03): 274-281.

[62] 王瑛, 何艳芬. 西部地区中心城市碳排放与经济发展关系研究——以西安市为例[J].生态科学, 2019, 38(04): 217-224.

[63] 邱雨荷, 王森, 刘婉玉, 等. 西安市大气PM_(2.5)中元素的污染特征及其来源分析[J].环境科学与技术, 2021,20(15): 1-14.

[64] 路春燕, 许燕婷, 林晓晴,等. 基于DMSP/OLS夜间灯光数据的环渤海城市群时空演变研究[J].国土资源遥感, 2019, 31(04): 218-226.

[65] 孙铭浩. 基于FY-3D数据的NDVI时间序列重建方法研究[D].河北地质大学,2022.

[66] 袁运许, 朱小龙, 侯春华,等. 矿业密集区地表热环境时空演变特征及驱动力分析[J].科学技术与工程, 2022, 22(32): 14537-14548.

[67] 王竹依, 樊彦国, 单宝艳. 基于遥感影像的城市建筑空间分布格局对热环境的影响研究——以济南市中心城区为例[J].激光与光电子学进展, 2023, 60(02): 380-386.

[68] Erukala K K, Mishra P K, Dewangan H C, et al. Damaged composite structural strength enhancement under elevated thermal environment using shape memory alloy fiber[J]. Acta Mechanica, 2022, 233(08): 656-661.

[69] Yu H X, Zahidi I, Liang D F. Spatiotemporal variation of vegetation cover in mining areas of Dexing City, China[J]. Environmental Research, 2021, 7(04): 349.

[70] 童开林, 夏钟毓, 李显鲜, 等. 杨凌城市绿地信息及景观格局动态变化研究[J].西北林学院学报, 2022, 37(05): 258-265.

[71] 梁建设, 白永平, 杨雪荻, 等. 基于多源数据的城市扩张中热环境演变及响应[J].环境科学, 2022, 43(06): 3365-3374.

[72] 向炀, 周志翔. 基于地理探测器的城市热岛驱动因素分析——以武汉市为例[J].长江流域资源与环境, 2020, 29(08): 1768-1779.

[73] 何咪, 何萍, 赵琳, 等. 昆明市主城区热环境效应及影响因素分析[J].环境工程技术学报, 2023, 13(01): 403-412.

[74] 池腾龙, 曾坚, 刘晨. 近30年武汉市热环境格局演化机制及扩散模式研究[J].国土资源遥感, 2017, 29(04): 197-204.

[75] 雷金睿, 陈宗铸, 吴庭天, 等. 1989-2015年海口城市热环境与景观格局的时空演变及其相互关系[J].中国环境科学, 2019, 39(4): 1734-1743.

[76] 马冰然, 马安青, 于欣鑫, 等. 子牙河流域湿地动态变化特征分析[J].中国海洋大学学报(自然科学版), 2018, 48(09): 108-117.

[77] 李子君, 刘金玉, 鲁成秀, 等. 基于土地利用变化的沂河流域景观格局与径流关系的分析[J].中国农业大学学报, 2020, 25(10): 11-19.

[78] 张月, 张飞, 王娟, 等. 近40年艾比湖湿地自然保护区生态干扰度时空动态及景观格局变化[J].生态学报, 2017, 37(21): 7082-7097.

[79] 于明洋, 卢晓琛, 邢华桥, 等. 济南市中心城区地表热环境时空变化分析[J].测绘科学, 2021, 46(04): 100-107.

[80] 梁洪武, 阿里木江·卡斯木, 赵禾苗, 等. 基于地理探测器的乌鲁木齐市主城区地表温度及其影响因素[J].兰州大学学报(自然科学版), 2022, 58(03): 356-363.

[81] 罗瑶, 彭文甫, 董永波, 等. 基于地理探测器下的川西高原地表温度空间格局及影响因子分析——以西昌市为例[J].干旱区地理, 2020, 43(03): 738-749.

[82] 马壮林, 高阳, 安韬, 等. 基于DPSIR模型的国家中心城市绿色交通水平测度研究——以西安市为例[J].生态经济, 2022, 38(04): 85-93.

[83] 刘纪远, 张增祥, 张树文, 等. 中国土地利用变化遥感研究的回顾与展望——基于陈述彭学术思想的引领[J].地球信息科学学报, 2020, 22(04): 680-687.

[84] 辛儒鸿, 曾坚, 李凯, 等. 城市热环境调节服务供需失衡关键区识别与优先级划分[J].地理研究, 2022, 41(11): 3124-3142.

[85] 杨朝斌. 城市空间结构对城市热环境时空异质性分布影响研究[J].测绘学报, 2022, 51(05): 788-799.

[86] 张晓东, 赵银鑫, 马风华, 等. 基于遥感数据的银川市城市公园对城市热环境降温效应分析[J].水土保持通报, 2021, 41(05): 338-347.

[87] 杨智威, 陈颖彪, 吴志峰, 等. 基于自然区块的城市热环境空间分异性研究[J].地理科学进展, 2019, 38(12): 1944-1956.

[88] 闫广华, 苏俊如, 管敦颐. 大连市中山区城市建筑垂直特征对城市热环境效应的影响[J].地理科学, 2019, 39(01): 125-130.

[89] 卫新东, 关嘉敏, 冯小龙, 等. 秦岭陕西段耕地质量时空变化特征及其驱动力[J].地球科学与环境学报,2021, 39(10): 85-88.

[90] 王艳丽. 基于多源数据的淮河流域地表温度时空变化研究[D].安徽理工大学, 2021.

[91] 熊鹰, 章芳. 基于多源数据的长沙市人居热环境效应及其影响因素分析[J].地理学报, 2020, 75(11): 2443-2458.

[92] 乐柯君, 方陆明, 何小兵, 等. 森林城市景观格局与热环境的关系——以龙泉市为例[J].应用生态学报, 2019, 30(09): 3066-3074.

[93] 卢惠敏, 李飞, 张美亮, 等. 景观格局对杭州城市热环境年内变化的影响分析[J].遥感技术与应用, 2018, 33(03): 398-407.

中图分类号:

 P237    

开放日期:

 2023-12-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式