- 无标题文档
查看论文信息

论文中文题名:

 油浸煤尘爆炸特性研究    

姓名:

 杨勇    

学号:

 19220089042    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体与粉尘燃爆防控    

第一导师姓名:

 罗振敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-05-30    

论文外文题名:

 study on explosion characteristics of oil-immersed coal dust    

论文中文关键词:

 油浸煤尘 ; 爆炸下限浓度 ; 最大爆炸压力 ; 最大压力上升速率 ; 热效应    

论文外文关键词:

 Oil-immersed coal dust ; Lower explosion limit ; Maximum explosion pressure ; Maximum pressure rise rate ; Thermal effect    

论文中文摘要:

由于煤油共生矿井中煤层局部含有原油,开采过程中存在油浸煤现象,这导致煤油共生矿井中煤尘燃爆风险与普通矿井存在差异。本文以黄陵矿样品为例,首先利用20L球型爆炸试验系统,研究了不同粒径、粉尘云浓度、浸油浓度下的油浸煤尘爆炸下限和爆炸压力特性。然后对油浸煤尘进行TG-DTG-DSC热分析实验测试,研究粒径、浸油浓度对油浸煤尘热效应的影响;对爆炸固体产物并进行扫描电镜和红外光谱等微观测试,对其微观形貌进行了表征。从热效应与微观特征的角度分析了油浸煤尘爆炸特性参数的变化。研究成果有助于提升对油浸煤尘燃爆的认识,对煤油共生矿区油浸煤尘燃爆防控具有一定现实意义。

随浸油浓度增加,50μm的油浸煤尘爆炸下限浓度呈现“M”型变化趋势,在6%浸油浓度下煤尘爆炸下限浓度有最小值,爆炸危险性增强。75μm和98μm的油浸煤尘爆炸下限浓度随浸油浓度增加呈现先上升后降低再上升趋势,6%浸油浓度下油浸煤尘爆炸下限浓度均处于最高值,爆炸危险性减弱。

随粒径增加,一定粉尘浓度下的油浸煤尘的最大爆炸压力和最大压力上升速率整体上均呈现出缓慢下降趋势,粒径越小最大爆炸压力和最大压力上升速率越大。随着浸油浓度增加,油浸煤尘最大爆炸压力与最大压力上升速率变化趋势不同,6%的浸油浓度对煤尘Pmax和(dP/dt)m的影响程度大于其他浸油浓度。

浸油浓度对煤尘热效应、爆炸固体产物微观形貌有明显影响,主要体现在:油浸煤尘燃烧总热量变化受粒径和浸油浓度的影响,随着浸油浓度增加,50μm和98μm的油浸煤尘总热量呈现“W”型变化趋势,75μm的油浸煤尘热总热量现先降低后升高再降低的变化趋势。当浸油浓度为6%时,不同粒径的油浸煤尘的燃烧总热量均最大,这在一定程度上解释了浸油浓度对煤尘最大爆炸压力的影响。浸油浓度为6%的煤尘爆炸固体产物球型颗粒大小相当且分布均匀,数量比其他浸油浓度下的多。在原煤和油浸煤尘爆炸过程中,芳香类官能团的变化主要体现在苯环上,苯环上发生了氢原子取代;含氧官能团官能团的变化主要是醚类结构参与了爆炸反应;羟基类官能团中OH-N和自由羟基主要参与了反应;参与反应的脂肪结构种类基本不变。

论文外文摘要:

Because the coal seam in coal-oil coexisting mine contains crude oil locally, there is the phenomenon of oil immersed coal in the mining process, which leads to the difference of coal dust combustion and explosion risk between the coal-oil coexisting mine and the ordinary mine. Taking Huangling Mine sample as an example, firstly, the lower explosion limit and explosion pressure characteristics of oil-immersed coal dust under different particle size, dust cloud concentration and oil-immersed concentration are studied by using 20L spherical explosion test system. Then, TG-DTG-DSC thermal analysis experiment was carried out to study the effects of particle size and oil-immersed concentration on the thermal effect of oil-immersed coal dust. The explosive solid products were tested by scanning electron microscope and infrared spectrum, and their micro morphology was characterized. The variation of explosion characteristic parameters of oil-immersed coal dust is analyzed from the perspective of thermal effect and micro characteristics. The research results help to improve the understanding of oil-immersed coal dust combustion and explosion, and have certain practical significance for the prevention and control of oil-immersed coal dust combustion and explosion in coal-oil coexisting mining areas.

With the increase of oil-immersed concentration, the lower explosion limit concentration of 50 μm oil-immersed coal dust shows an “M” trend. At 6% oil-immersed concentration, the lower explosion limit concentration of coal dust has a minimum value, and the explosion risk is enhanced. To 75 μm and 98 μm, the lower explosion limit concentration of oil-immersed coal dust increases first, then decreases and then increases with the increase of oil-immersed concentration. Under 6% oil-immersed concentration, the lower explosion limit concentration of oil-immersed coal dust is at the highest value, and the explosion risk is weakened.

With the increase of particle size, the maximum explosion pressure and maximum pressure rise rate of oil immersed coal dust under a certain dust concentration show a slow downward trend as a whole. The smaller the particle size is, the greater the maximum explosion pressure and maximum pressure rise rate are. With the increase of oil immersion concentration, the variation trend of maximum explosion pressure and maximum pressure rise rate of oil immersed coal dust is different. The influence of 6% oil-immersed concentration on Pmax and (dP/dt)m of coal dust is greater than that of other oil immersion concentrations.

The oil-immersed concentration has a significant impact on the thermal effect of coal dust and the micro morphology of explosive solid products, which is mainly reflected in: the change of total combustion heat of oil-immersed coal dust is affected by particle size and oil-immersed concentration. With the increase of oil-immersed concentration, as for 50 μm and 98 μm, the total heat of oil-immersed coal dust shows a “W” type change trend, The total heat of oil-immersed coal dust of 75 μm decreases first, then increases and then decreases. When the oil-immersed concentration is 6%, the total combustion heat of oil-immersed coal dust with different particle sizes is the largest, which explains the influence of oil-immersed concentration on the maximum explosion pressure of coal dust to a certain extent. The spherical particles of coal dust explosion solid products with oil-immersion concentration of 6% are equal in size and evenly distributed, and the quantity is more than that under other oil-immersed concentrations. During the explosion of raw coal and oil-immersed coal dust, the changes of aromatic functional groups are mainly reflected in the benzene ring, which is replaced by hydrogen atoms; The change of oxygen-containing functional groups is mainly due to the ether structure participating in the explosion reaction; OH-N and free hydroxyl groups in hydroxyl functional groups are mainly involved in the reaction; The type of fat structure involved in the reaction is basically unchanged.

参考文献:

[1]赵懿明,刘毅飞,杨振欣,等.点火能量对煤尘爆炸火焰传播规律的影响[J].中北大学学报(自然科学版),2022,43(1):70-75.

[2]杨龙龙.煤尘瓦斯爆炸反应动力学特征及致灾机理研究[D].北京:中国矿业大学, 2018.

[3]国家矿山安全监察局.国家矿山安全监察局公布2020年全国煤矿事故十大典型案例[EB/OL], http://www.mkaq.org/html/2021/01/26/555249.shtml,2022-01-20.

[4]国家矿山安全监察局.国家矿山安全监察局公布2021年全国煤矿事故十大典型案例[EB/OL], http://www.mkaq.org/html/2022/01/20/608228.shtml,2022-01-20.

[5]徐永亮,王少坤,余明高,等.煤油共生矿区含油煤层自燃特性试验研究[J].中国安全科学学报,2015,25(4):47-52.

[6]Fan S X, Wen H, Zhang D, et al. Effects of crude oil on the microstructure and spontaneous combustion characteristics of coal: a case study of weakly caking coal in the Huangling No.2 mine, China[J]. Journal of Thermal Analysis and Calorimetry, 2020,144(2):539-551.

[7]王坤.焦坪矿区瓦斯赋存特征与抽放方法研究[D].西安:西安科技大学, 2009..

[8]陈冬冬.煤油气共生矿井围岩气多因素耦合区域预测技术[J].煤田地质与勘探, 2018,46(2): 50-53.

[9]张立志,李学文,张琪.煤油气共生矿井油型气爆炸极限的测定[J].煤矿安全. 2018, 49(5):198-205.

[10]Qian J F, Liu Z T, Lin S, et al. Study on microstructure characteristics of material evidence in coal dust explosion and its significance in accident investigation [J]. Fuel, 2020, 265: 116992.

[11]Zhang J J, David C, Xu K L, et al. Focusing on the patterns and characteristics of extraordinarily severe gas explosion accidents in Chinese coal mines [J]. Process Safety and Environmental Protection, 2018, 117: 390-398.

[12]Liu T, Liu S M. The impacts of coal dust on miners’ health: A review [J]. Environmental Research, 2020; 190: 109849.

[13]Hong S, Liu Z T, Zhao E L, et al. Comparison of behavior and microscopic characteristics of first and secondary explosions of coal dust[J]. Journal of Loss Prevention in the Process Industries, 2017, 49.

[14]艾存慧.煤尘爆炸特征及预防措施[J].煤炭技术, 2005, 24(7):57-58.

[15]Sikandar A, Devi P M. Effects of particle size, dust concentration and dust-dispersion-air pressure on rock dust inertant requirement for coal dust explosion suppression in underground coal mines [J]. Process Safety and Environmental Protection, 2019, 126:35–43.

[16]Morzzo C. Acount of a violent explosion which happened in a flour warehouse at Turin[J]. Lé répertoire dos Arts et Manufactures.1795, 2:416-432.

[17]Faraday M, Lyell C. Explosions in Coal Mines[J]. Philosophical Magazine, 1845,26:16-35.

[18]刘浩雄,刘贞堂,钱继发,等.煤尘二次爆炸特性研究[J].工矿自动化,2018,44(6):80-86.

[19]景国勋,彭乐,班涛.煤质指标对煤尘爆炸最大压力上升速率的影响[J].煤矿安全, 2020,51(1):42-46.

[20]Li Q Z, Yuan C C, Tao Q L, et al. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors[J]. Fuel-Guildford, 2018,215:417-428.

[21]何琰儒,朱顺兵,李明鑫,等.煤粉粒径对粉尘爆炸影响试验研究与数值模拟[J].中国安全科学学报,2017,27(1):53-58.

[22]李雨成,刘天奇,陈善乐,等.煤质指标对煤尘爆炸火焰长度影响作用的主成分分析[J].中国安全生产科学技术,2015,11(3):40-46.

[23]刘天奇,李雨成,罗红波.煤尘层最低着火温度变化规律实验研究[J].高压物理学报,2018,32(3):1-7.

[24]Olugbemide D I. A CFD study of the effects of pipe bending angle on pressure piling in coal dust explosions in interconnected vessels [J]. Fire Safety Journal,2022,128:103540.

[25]刘贞堂,周西方,李晓亮,等.不同粒径肥煤及其爆炸残留物的爆炸条件和产物分析[J].煤矿安全,2020,51(7):200-204+209.

[26]Michael J. S, Eric S. Weiss, Kenneth L, et al. Experimental mine and laboratory dust explosion research at NIOSH[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3): 229-242.

[27] Manju M. Limiting oxygen concentration for coal dusts for explosion hazard analysis and safety [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1106-1112.

[28]王育德,曲志明.煤尘浓度和粒度对煤尘燃烧爆炸特性影响的实验研究[J].中国矿业, 2013, 22(8): 136-140.

[29]Li Q Z, Wang K, Zheng Y N, et al. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust [J].Powder Technology, 2016, 292:290-297. DOI:10.1016/j.powtec.2016.01.035.

[30]李海涛,陈晓坤,邓军,等.开放管道内煤粉云形成机制及爆炸过程火焰动态行为数值模拟[J]. 煤炭学报,2021,46(8):2600-2613

[31]曹卫国,黄丽媛,梁济元.球形密闭容器中煤粉爆炸特性参数研究[J].中国矿业大学学报,2014,43(1):113-119.

[32]刘贞堂,郭汝林,喜润泽.煤尘爆炸特征参数影响因素研究[J].工矿自动化,2014,40(8): 30-33.

[33]Liu Z T, Lin S, Zhang S S, et al. Observations of microscopic characteristics of post-explosion coal dust samples [J].Journal of Loss Prevention in the Process Industries, 2016, 43: 378-384. DOI:10.1016/j.jlp.2016.06.021

[34]王克全.煤尘与矿井特大爆炸伤亡事故的关系[J],工业安全与防尘,1998,1:25-28.

[35]李润之.不同挥发分煤尘层最低着火温度变化规律研究[J].安全与环境学报,2017, 17(3):954-957.

[36]姜海鹏,司荣军,李润之.挥发分对煤尘云最低着火温度的影响[J].煤矿安全, 2014,45(2):8-11.

[37]马祯,刘佳.煤质成分对煤尘爆炸特性影响实验分析[J].当代化工研究,2018(6):2-3.

[38]周从章,张瑞萍,于永芳.关于粉尘云爆炸下限浓度的讨论[J].中国安全科学学报, 1995,(3):39-42.

[39]何朝远,张引合.煤尘爆炸特性与挥发分的关系[J].工业安全与防尘,1997,(11):24-27.

[40]司荣军.矿井瓦斯煤尘爆炸传播规律研究[D].青岛:山东科技大学,2007.

[41]吴红波.甲烷火焰及其诱导的煤尘燃烧爆炸机理的实验研究[D].淮南:安徽理工大学, 2002.

[42]Zhao Q, Liu J, Huang CY, Zhang HM, et al.. Characteristics of coal dust deflagration under the atmosphere of methane and their inhibition by coal ash[J].Fuel,2021,291(1):120121.

[43]景国勋,彭乐,班涛,贺祥,等.甲烷煤尘耦合爆炸传播特性及伤害研究[J].中国安全科学学报,2022,32(1):72-78

[44]李庆钊,翟成,吴海进,等.基于20L球形爆炸装置的煤尘爆炸特性研究[J].煤炭学报,2011,36(S1):119-124.

[45]Ajrash M J, Zanganeh J, Moghtaderi B. Methane-coal dust hybrid fuel explosion properties in a large scale cylindrical explosion chamber[J]. Journal of Loss Prevention in the Process Industries, 2016,40:317-328.

[46]王洋.黄陵矿含油煤自燃标志性气体指标优选研究[D].淮南:安徽理工大学,2018.

[47]罗振敏,张蔓,郝强强,等.煤油共生矿区含油煤尘云最低着火温度试验研究[J].中国安全生产科学技术,2020,16(3):55-60.

[48]王长安,刘银河,车得福.低氧浓度下煤燃烧特性的热重实验研究[J].工程热物理学报,2010,31(10):1785-1788.

[49]文虎,黄遥,张玉涛,等.氧气体积分数与升温速率对弱黏煤燃烧特性的影响[J].煤炭学报2017,42(9):2362-2368.

[50]张佳丽,张如意,谌伦建.用热重法研究型煤燃烧特性[J].洁净煤技术,2005(3):65-68.

[51]樊越胜,邹峥,高巨宝,等.煤粉在富氧条件下燃烧特性的实验研究[J].中国电机工程学报,2005,25(24):118-121.

[52]姜秀民,杨海平,刘辉,等.煤粉颗粒粒度对燃烧特性影响分析[J].中国电机工程学报,2002,22(12) :142-145.

[53]李铖.煤热解过程热效应的实验研究[D].济南:山东大学,2020.

[54]姜峰,尚芳兰,李珍宝,等.热重-FTIR法分析不粘煤氧化特性参数[J].燃烧科学与技术,2021,27(1):35-42.

[55]邓军,刘乐,王彩萍,等.贫煤氧化燃烧热效应及热动力学参数研究[J].煤矿安全,2021,52(12):35-41.

[56]王威.利用热重分析研究煤的氧化反应过程及特征温度[D].西安:西安科技大学,2005.

[57]赵婧昱.淮南煤氧化动力学过程及其微观结构演化特征研究[D].西安:西安科技大学,2017.

[58]谢克昌.煤结构与反应性[M].北京:科学出版社,2002.

[59]严志宇.海上溢油风化过程的研究及模拟[D].大连:大连海事大学,2001.

[60]Kotyczka-MoraÃska M, Tomaszewicz M. Comparison of the first stage of the thermal decomposition of Polish coals by diffuse reflectance infrared spectroscopy[J]. Journal of the Energy Institute.2018,91(2):240-250.

[61]邓军,周佳敏,白祖锦,等.瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J/OL].煤炭科学技术:1-11[2022-04-18].DOI:10.13199/j.cnki.cst.2022-0119.

[62]Ibarra J, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J] Organic Geochemistry. 1996, 24(6): 725-735

[63]Painter P, Sobkowiak M, Youtcheff J FT-IR study of hydrogen bonding in coal[J] Fuel.1987,66(7):973-978.

[64]Ren S J, Wang C P, Xiao Y, et al. Thermal properties of coal during low temperature oxidation using a grey correlation method[J]. Fuel.2020,260:116287

[65]刘天奇.不同煤质煤尘云最低着火温度与最小着火能量试验[J].安全与环境学报,2020,20(04):1334-1339.DOI:10.13637/j.issn.1009-6094.2019.0506.

[66]皇甫文豪,尤飞,王振华,等.烟煤升温氧化的影响因素及其低温热解动力学[J].煤矿安全,2019,50(3):17-21+25.

[67] Luo L, Liu JX, Zhang H, Ma JF, Wang XY, Jiang XM. TG-MS-FTIR study on pyrolysis behaviour of superfine pulverized coal. J Anal Appl Pyrol 2017;128:64–74.

[68]褚廷湘,杨胜强,孙燕,等.煤的低温氧化实验研究及红外光谱分析[J].中国安全科学学报,2008, 18(1):171-177.

[69]侯剑锋,刘鹏刚,曹廷义.轻质原油注空气热特征及氧化动力学研究[J].油气藏评价与开发,2020,10(4):113-118.

[70]齐桓,李宜强,陈小龙,等.轻质原油减氧空气驱低温氧化特征[J].石油勘探与开发,2021,48(6):1210-1217.

[71]廖广志,王红庄,王正茂,等.注空气全温度域原油氧化反应特征及开发方式[J].石油勘探与开发,2020,47(02):334-340.

[72]傅维镳.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社, 2003.

中图分类号:

 x932    

开放日期:

 2023-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式