论文中文题名: | 锌酸钙的“花状”形貌调控及其在锌镍电池中的应用研究 |
姓名: | |
学号: | 19211025013 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080502 |
学科名称: | 工学 - 材料科学与工程 - 材料学 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 电池负极材料 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-17 |
论文答辩日期: | 2024-06-05 |
论文外文题名: | Modulation of the “flower-like” morphology of calcium zincate and its application in zinc-nickel batteries |
论文中文关键词: | |
论文外文关键词: | Zinc-nickel battery ; calcium zincate ; hydrothermal synthesis ; crystalline topography ; electrochemical performance. |
论文中文摘要: |
当前,传统的动力电池普遍存在安全稳定性差、工作温度范围小且会对生态造成较大压力等问题,为适应市场需求,研发出一种绿色环保的能源电池来替代传统的动力电池迫在眉睫。碱性锌镍二次电池以高比能量、稳定性良好和不含汞镉等有毒物质等优点备受关注。但如今,锌镍电池的发展仍受制于较低的循环寿命和较差的放电性能。这是由于锌负极易产生枝晶、钝化等缺陷,而造成这些问题的根本原因是锌镍电池的负极活性物质氧化锌在电解液中的溶解度较大。为改善这个问题,便使用氧化锌和其他物质合成出溶解度较小的材料来充当锌镍电池的负极活性物质,如锌酸钙。锌酸钙相比于氧化锌在碱性电解液中的溶解度更小,能抑制锌负极活性物质在电解液中的溶解,进而提升锌镍电池的循环稳定性,改善使用寿命。有研究表明,锌酸钙的微观形貌会影响电池性能。目前,主流锌酸钙的形貌一般为菱方形和斜方六面体,而“花状”形貌锌酸钙是菱方形结构呈层间位错叠加而成,表面积更大,充放电性能等也都十分优越。但目前由于工艺配方等问题,较难合成出菱方形结构位错叠加的“花状”结构形貌。故本文拟采用水热合成法制备锌酸钙,先制备出菱方形结构样品,再通过调控实验工艺,对配方进行改善创新。先生成锌酸钙核,核的生长受到空间和体系中可用反应物的限制,最初会生成二维锌酸钙交联片,其长径比一般较大,表面能高,因此,交联片为减小自身表面能会倾向于降低长径比,合并叠加形成三维的宏观结构。再通过反滴操作,得到呈现层间位错结构叠加的“花状”结构形貌锌酸钙,再使用单因素法探讨温度、氢氧化钙浓度和搅拌速率对“花状”形貌的影响,达到高效制备工艺的设计与控制,确定最优“花状”形貌锌酸钙的制备工艺,实现均质化制备。使用正置显微镜、扫描电子显微镜、能量色散X射线谱仪、X射线衍射、傅里叶红外和粒径分析等手段对“花状”形貌的锌酸钙样品进行表征检测。再将菱方形结构和最优“花状”结构锌酸钙分别作为锌负极活性材料制作成电极极片,进行循环伏安特性曲线测试和Tafel极化曲线测试。再将电极极片装配为锌镍实验电池,通过电池充放电性能测试、搁置自放电测试、低温放电测试、大电流放电测试等手段探究装配的锌镍实验电池的电化学性能。 主要结论如下: (1) 采用水热合成法,以ZnO和Ca(OH)2为主要实验原料,成功的制备出了锌酸钙样品。对配方进行不断的改善创新,再通过反滴操作,最终制备出层间位错结构叠加的“花状”晶型形貌锌酸钙; (2) 通过单因素法探讨了反应温度、氢氧化钙浓度和搅拌速率对“花状”锌酸钙晶型形貌结构的影响。实验发现,随着反应温度的升高,样品的晶型形貌从干净、完整、叠加层数多的“花状”结构逐渐转变为以不规则片状晶型为主,并伴随晶体碎片,温度升高不利于样品“花状”形貌的形成;以氢氧化钙浓度为变量时,发现低浓度下“花状”形貌叠加不规整,浓度较高时叠加又变得混乱,未反应晶种及不规则晶体形貌增多,说明要保持在合适的浓度下才有利于“花状”形貌的形成;随着搅拌速率的增大,晶体结构会被破坏,晶型形貌从完整光滑变的破碎杂乱,低合成速率也不利于反应的完全进行,说明搅拌速率同样要保持在合适的数值。这些因素在一定范围内增加时,会导致晶核增多,产生细碎晶体和不定型结构,影响晶体质量。故最终确定了最优“花状”晶型形貌结构的锌酸钙样品的制备工艺为温度在25 ℃、C[Ca(OH)2]=1.5 mol/L、搅拌速率为600 r/min; (3) 对锌电极进行测试发现,“花状”结构锌酸钙制备的电极比菱方形结构有着更好的可逆性和耐蚀性;对装配的锌镍实验电池进行电性能测试结果表明,“花状”结构锌酸钙装配的电池无论在室温下分别搁置7天和28天,还是电池在室温下和45 ℃条件下分别搁置7天,对组装好的锌镍实验电池的性能均无较大影响,电池的放电平台及容量保持稳定。“花状”结构装配的电池首圈的充放电容量分别在14.58 Ah和14.28 Ah,充放电平台分别为15.29 V和12.70 V,放电时间可达85 min,显著优于菱方形结构锌酸钙组装的锌镍实验电池。库伦效率也能够达到97.94 %。充放电平台波动不大,充放电性能表现良好。“花状”结构锌酸钙装配的电池在低温下的放电容量也均能保持在15.00 Ah左右,有着良好的低温使用可靠性,且放电时间远高于菱方形结构,展现出显著优势。在大电流下的放电性能依旧稳定,放电容量随着电流的增加变化较小,电池的容量保持率高,电化学性能优良,展现了“花状”结构锌酸钙所装配的实验电池具备广泛的适用性。 |
论文外文摘要: |
At present, traditional power batteries generally have poor safety and stability, small operating temperature range and will cause greater pressure on the ecology and other problems, in order to meet the market demand, the development of a green energy battery to replace the traditional power battery is imminent. Alkaline zinc-nickel secondary batteries have attracted much attention for their high specific energy, good stability and absence of toxic substances such as mercury and cadmium. However, today, the development of zinc-nickel batteries is still limited by low cycle life and poor discharge performance. This is due to the fact that zinc negative electrodes are prone to defects such as dendrites and passivation, and the root cause of these problems is the high solubility of zinc oxide, the negative active substance of zinc-nickel batteries, in the electrolyte. In order to improve this problem, zinc oxide and other substances have been used to synthesize a material with a smaller solubility to serve as the anode active substance for zinc-nickel batteries, such as calcium zincate. Calcium zincate has a smaller solubility in alkaline electrolyte compared to zinc oxide, which can inhibit the dissolution of zinc anode active material in the electrolyte, thus enhancing the cycle stability and improving the service life of zinc-nickel batteries. It has been shown that the sub-atomic topography of calcium zincate affects battery performance. At present, the mainstream calcium zincate topography is generally rhombic square and rhombohedral hexahedra, and the "flower-like" topography of calcium zincate is a rhombic square structure in the interlayer dislocation superposition, the surface area is larger, the charging and discharging performance are also very superior. However, due to issues such as process formulation, it is difficult to synthesize the rhombic square dislocation stacked "flower-like" structure. Therefore, this paper intends to use the hydrothermal synthesis method to prepare calcium zincate, samples of the rhombic square structure were first prepared, and then by modulating the experimental process, to improve and innovate the formula. The nuclei are initially formed into calcium zincate nuclei, the growth of the nuclei is limited by the space and the reactants available in the system, initially two-dimensional calcium zincate crosslinked sheets are generated, which generally have a large aspect ratio and a high surface energy, therefore the crosslinked sheets will tend to decrease the aspect ratio in order to reduce their own surface energy and merge and superimpose to form a three-dimensional macroscopic structure. Then, through the back-drop operation, to obtain the interlayer dislocation structure superposition of the "flower-like" structure of calcium zincate, and the use of the one-way method to explore the temperature, calcium hydroxide concentration and stirring rate of the influence of the "flower-like" topography, to achieve the design and control of the preparation process of high-efficiency, to determine the optimal preparation process of calcium zincate "flower-like" morphology, and to achieve the homogeneization of the preparation process. Characterization and testing of calcium zincate samples with "flower-like" topography by means of orthogonal microscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, Fourier infrared, and particle size analysis, etc. The rhombic square structure and the optimal "flower-like" structure of calcium zinc oxide were used as the active materials of zinc anode to make electrode sheets, and the cyclic voltammetry curve and Tafel polarization curve tests were carried out. Then assemble the electrode plates into zinc nickel experimental battery, and the electrochemical performance of the assembled zinc-nickel experimental batteries was investigated by means of battery charging and discharging performance test, shelf self-discharge test, low-temperature discharge test, and high-current discharge test. The main conclusions are as follows: (1) A sample of calcium zincate was successfully prepared by hydrothermal synthesis using ZnO and Ca(OH)2 as the main experimental raw materials. The formula was continuously improved and innovated, and then through the back-drop operation, finally a "flower-like" crystalline calcium zinc oxide with superimposed interlayer dislocation structure was prepared; (2) The effects of reaction temperature, calcium hydroxide concentration and stirring rate on the crystalline morphology of "flower-like" calcium zincates were investigated by a one-way method. The experiment found that as the reaction temperature increased, the crystal morphology of the sample gradually changed from a clean, complete, and multi layered "flower like" structure to an irregular sheet-like crystal structure, and accompanied by crystal fragments, elevated temperatures do not favor the formation of "flower-like" topography in the samples; When the concentration of calcium hydroxide was used as the variable, it was found that the superposition of "flower-like" morphology was irregular at low concentration, and the superposition became chaotic when the concentration was high, and the number of unreacted crystal species and irregular crystal morphology increased, which indicated that it was beneficial to the formation of "flower-like" topography only when the concentration was kept at a suitable level; As the stirring rate increases, the crystal structure is disrupted, the crystal morphology changes from intact and smooth to broken and disordered, and the low synthesis rate is not conducive to the complete progress of the reaction, indicating that the stirring rate should likewise be kept at a suitable value. The increase of these factors within a certain range will lead to the increase of crystal nuclei, resulting in the production of fine crystals and indeterminate structure, which will affect the quality of crystals. Therefore, the optimum process for the preparation of calcium zincate samples with "flower-like" crystalline morphology was determined to be 25 ℃, C[Ca(OH)2]=1.5 mol/L, and 600 r/min stirring rate; (3) Tests on zinc electrodes revealed that the electrodes prepared by the "flower-like" structure of calcium zincate have better reversibility and corrosion resistance than the rhombic square structure; The results of electrical performance tests on the assembled zinc-nickel experimental batteries showed that, the "flower shaped" structure of calcium zinc oxide assembled batteries can be stored for 7 and 28 days at room temperature, or for 7 days at room temperature and 45 ℃, respectively, had no significant effect on the performance of the assembled zinc-nickel experimental batteries, and the discharge platform and capacity of the batteries remain stable. The charging and discharging capacities of the first ring of the battery assembled with a "flower shaped" structure are 14.58 Ah and 14.28 Ah, respectively, and the charging and discharging platforms are 15.29 V and 12.70 V, respectively, and the discharging time can be up to 85 min, significantly better than zinc nickel experimental batteries assembled with rhombic shaped calcium zinc oxide structure. And the Coulombic efficiency is also able to reach 97.94 %. The charging and discharging platforms do not fluctuate much, and charging and discharging performance is good. The discharge capacity of batteries assembled with "flower shaped" calcium zinc oxide structure can also be maintained at around 15.00 Ah at low temperatures, which has good reliability in low temperature. And the discharge time is much longer than that of the diamond shaped structure, showing significant advantages. The discharge performance of the battery remains stable under high current, and discharge capacity changes less with increasing current. The battery has a high capacity retention rate and excellent electrochemical performance, the experimental battery assembled with a "flower shaped" structure of calcium zinc oxide has a wide range of applicability. |
参考文献: |
[1]王丹, 路日亮. 我国城镇化进程中的生态问题探究[J]. 贵州社会科学, 2014 (5): 62-67. [2]邱波. 城市规划中的环境规划的若干思考[J]. 化工管理, 2013 (12): 99-99. [3]刘海霞. 环境问题与社会管理体制创新——基于环境政治学的视角[J]. 生态经济, 2013, 29(2): 41-43. [4]王树义, 郭少青. 资源枯竭型城市可持续发展对策研究[J]. 中国软科学, 2012 (1): 1-13. [5]孙全胜. 中国低碳经济发展的现状及具体策略[J]. 金融理论与教学, 2023 (06): 76-81. [6]梁慧, 陈幸芳, 朱靓静. 乡村振兴背景下我国农村地区绿色低碳循环发展经济体系构建路径研究[J]. 中国市场, 2024 (07): 13-16. [7]胡璐. 2023年我国新能源专用汽车行业发展现状及趋势分析[J]. 专用汽车, 2024 (03): 22-24. [8]金达莱, 岳林海, 徐铸德. 锌负极材料锌酸钙的晶体形貌和物化性质研究[J]. 无机化学学报, 2005 (02): 265-269. [9]杨滔, 黄伟国, 唐胜群, 等. 动力铅酸电池循环过程性能研究[J]. 蓄电池, 2023, 60(06): 292-298. [10]徐保伯, 徐青. 锌锰电池的现状与展望[J]. 电池, 2002 (S1): 18-20. [11]曾帅波, 陈烨, 唐俊雄, 等. 基于三元、磷酸铁锂和锰酸锂正极的电化学性能比较[J]. 广东技术师范大学学报, 2023, 44(03): 53-58. [12]俞双林. 锌镍二次电池负极材料的研究[D]. 昆明: 昆明理工大学, 2019. [13]方飞. 锌镍电池锌电极的制备及电化学性能[D]. 杭州: 浙江工业大学, 2004. [14]杨延红. 二次锌负极用锌酸钙的制备及性能研究[D]. 郑州: 郑州大学, 2007. [15]闫树远. 超细锌酸钙制备及性能研究[D]. 西安: 西安科技大学, 2017. [16]牛晟, 孙旭, 李海强, 等. 基于二次烧结及水洗工艺的高镍正极材料改性研究[J]. 铜业工程, 2022, 2: 8-12. [17]张春, 王建明, 张昭, 等. 钙添加剂对可充锌电极性能的影响[J]. 中国有色金属学报, 2001, 11(05): 780-784. [19]王晓亮, 于振秋, 常雷明, 等. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. [20]张静, 贺业亨, 王晶晶, 等. 电沉积法制备碱性电解水镍基析氧电极的研究进展[J]. 化工进展, 2023, 42(12): 6239. [21]赵桐辉. 锌镍二次电池锌负极材料的研究[D]. 新乡: 河南师范大学, 2016. [22]赵逸群, 张正富, 马明煜. 单一相锌酸钙的制备[J]. 电源技术, 2006, 30(8): 633-636. [28]Arora P, Zhang Z. Battery separators[J]. Chemical Reviews, 2004, 104(10): 4419-4462. [29]梁宝臣, 田建华, 潘滔. 锌-镍蓄电池电解液组成对锌电极性能影响[J]. 天津理工学院学报, 2002, 18(2): 65-68. [32]吕祥. 锌镍电池正极材料氢氧化镍研究[D]. 昆明: 昆明理工大学, 2017. [33]黄朝明, 沈沂, 庄飚. 电动车用锌镍电池的性能特征[J]. 电池工业, 2000, 5(2): 77-81. [34]喻敬贤, 杨汉西, 朱晓明, 等. 锌酸钙的制备与电化学性能研究[J]. 电池, 2001, 31(2): 65-67. [35]林春景, 李丹华, 温浩然, 等. 动力电池在充电过程中的膨胀力特性[J]. 储能科学与技术, 2022, 11(5): 1627. [38]杨化滨, 周作祥. 新型高效锌镍二次电池的研究与开发获重大进展[J]. 天津科技, 2004, 31(3): 36-38. [41]段志宇, 张锡军. 锌银电池隔膜的阻银迁移能力[J]. 电池, 2009, 39(2): 96-98. [42]孙烨, 张宝宏, 张娜. 碱性二次锌电极的新进展[J]. 应用科技, 2002, 29(2): 47-49. [43]韩连漪. 化学修饰锌电极在碱液中电化学行为的研究[D]. 重庆: 重庆大学, 2002. [46]唐有根, 唐赞谦, 桑商斌. 锌镍电池负极X射线衍射研究[J]. 电源技术, 2004 (11): 691-692. [47]李晓, 高成琛. 不同电流密度下锌枝晶生长规律原位成像研究[J]. 广东化工, 2023, 50(21): 30-34. [48]洪为臣, 雷青, 马洪运, 等. 锌空气电池锌负极研究进展[J]. 化工进展, 2016, 35(2): 445-452. [49]张永光. 贮备式锌-银电池氧化银电极的电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. [50]胡经纬, 高翠琴, 赖璐. 稀土元素在碱性锌电极中的应用[J]. 电池, 2003, 33(4): 212-214. [53]石建珍, 高翠琴, 朱纪凌, 等. 金属单质对锌电极电化学行为的影响[J]. 电源技术, 1997, 21(1): 3-7. [55]华寿南, 张树永, 阎新华, 等. 二次锌电极循环容量的研究[J]. 电池, 2003, 33(2): 65-67. [59]赵逸群, 张正富. 改善碱性锌电极性能添加剂的研究进展[J]. 材料导报, 2005, 19(F11): 258-260. [60]李景威. 不同添加剂对圆柱形锌镍电池性能的影响[D]. 长沙: 中南大学, 2008. [61]胡经纬, 高翠琴, 蒋风雷. 氢氧化钙对碱性锌电极可充性的影响[J]. 电池, 2003(05): 302-304. [63]温润娟. 锌镍碱性二次电池负极活性物质的研究[D]. 长沙: 中南大学, 2012. [68]周玉竹, 张志业, 赵佳明, 等. 负极活性物质锌酸钙的电化学性能[J]. 电池, 2008, 38(3): 175-177. [69]杨占红, 王升威, 曾利辉, 等. 化学合成法制备锌镍电池负极材料锌酸钙[J]. 中南大学学报, 2008, 39(5): 918-922. [70]王升威, 杨占红, 申松胜, 等. 锌酸钙负极材料的水热法制备及其性能研究[J]. 化学研究, 2009, 20(3): 64-68. [71]朱绍山, 李升宪. 锌酸钙的共沉淀制备法[J]. 电池, 2004, 34(2): 114-115. [73]李涛, 彭同江. 锆钛酸铅纳米陶瓷粉体的水热合成技术[J]. 中国粉体技术, 2004, 10(2): 32-35. [74]张强, 聂大仕, 叶高勇. 超细氧化铁的制备进展[J]. 无机盐工业, 2005, 37(1): 7-10. [75]李永刚, 俞双林, 俞小花, 等. 不同形貌锌酸钙的制备及其在锌镍电池中的应用研究[J]. 现代化工, 2018, 38(05): 81-84. [77]廖建平, 杨占红, 王升威, 等. 锌酸钙形貌对锌负极大倍率充放电的影响[J]. 电源技术, 2009, 33(08): 694-697. [78]吴敏明. 汽车技术发展趋势: 低碳化, 信息化, 智能化[J]. 中国集成电路, 2016 (12): 84-86. [79]王秀杰, 陈轶嵩, 徐建全. 我国新能源汽车产业化发展问题及对策研究[J]. 科技管理研究, 2012, 32(11): 29-35. [80]韩高辉. 电子诊断技术在新能源汽车维修中的应用研究[J]. 南方农机, 2018, 49(17): 187-188. [81]裴德轩. 钒氧化物@ C复合电极材料有序构筑及性能研究[D]. 兰州: 兰州交通大学, 2019. [84]赵飞. 锌酸钙制备方法和生成机制及锌枝晶的研究[D]. 郑州: 郑州大学, 2010. [85]褚之浩. 锌酸钙, 锌酸镁和水铝钙石类热稳定剂的合成及其对PCV热稳定性的影响[D]. 长沙: 中南大学, 2014. [86]沈娟. 锌镍一次电池性能的研究[J]. 化学工程与装备, 2016(06): 14-16. |
中图分类号: | TB321 |
开放日期: | 2024-06-17 |