论文中文题名: | 基于点云数据的单木枝干骨架建模 |
姓名: | |
学号: | 19210210048 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 点云数据处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-23 |
论文答辩日期: | 2022-06-05 |
论文外文题名: | Modeling of single tree branch skeleton based on point cloud data |
论文中文关键词: | |
论文外文关键词: | lidar ; point cloud fusion ; branch and leaf classification ; single tree skeleton model |
论文中文摘要: |
树木的骨架模型能够抽象的反映出树木的几何形状和拓扑结构等特征信息,已经广泛应用于树木的三维建模、数字林业以及景观设计等领域。激光雷达扫描技术具有全天候工作、测距能力高效精确以及穿透能力较强等优点,在林业应用中发展迅速。激光雷达扫描仪可以获取树木表面准确的三维点云数据,并通过对点云进行处理,得到树木的生长参数,已经成为近年来林业研究的热点之一。本文以杨树为研究对象,利用机载激光雷达和背包式激光雷达融合的点云数据,提出了基于单木分割的配准算法、基于主成分分析与区域生长的点云枝叶分类算法和基于聚类的树木骨架提取方法。本文的研究重点为基于多源融合的点云数据构建出单木的骨架模型。主要工作和结论如下: (1)多源点云数据融合算法:提出了一种基于单木分割的配准算法,将背包式激光雷达和机载激光雷达的扫描数据进行融合,以提高点云数据的质量。将提出的算法与迭代最近点和改进的正态分布变化配准算法方法进行对比,在三块样地上进行实验,利用均方根误差测试算法的性能。结果表明:该方法下三块样地的均方根误差分别为2.27 cm、2.94 cm、1.98 cm,与另外两种算法的配准结果相比,本文提出的方法对于两组点云数据的配准具有更高的精度。 (2)树木生长参数及枝干点云提取:通过几何计算、最小二乘拟合圆等算法实现了树高、胸径以及冠幅的提取。本文提出了一种基于主成分分析与区域生长的点云枝叶分类算法,并将该算法在榆树和杨树上进行实验,结果表明该算法具有较高的精度。 (3)骨架点提取和链接:提出了一种改进的基于聚类的树木骨架提取方法,并对主干与细枝分别进行处理。主干采用的是随机采样一致性圆柱拟合方法,而细枝采用的是最小二乘直线拟合方法。最后对所有提取到的骨架点进行链接,得到了树木比较真实的骨架模型。 本文构建的骨架模型可以简单有效的描述树木的几何信息和拓扑连接信息,在构建树木的三维模型以及研究森林的碳循环、叶面积指数、生物量估算等方面具有重要意义。 |
论文外文摘要: |
The skeleton model of trees can abstractly reflect the characteristic information such as geometric shape and topological structure of trees. Therefore, it has been widely used in three-dimensional model of trees, digital forestry, landscape design and other fields. LiDAR scanning technology has the characteristics of all-weather operation, high efficiency and strong penetration. Its application in forestry investigation is developing rapidly. LiDAR scanners can obtain accurate 3D point cloud data on the surface of trees. By processing the point cloud data, the growth parameters of trees are obtained. This has become one of the hotspots of forestry research in recent years. The object of this research is poplar. The data used in this research is the point cloud data of airborne LiDAR and knapsack LiDAR. In this study, a registration algorithm based on single tree segmentation, a branch and leaf classification algorithm based on principal component analysis and region growth, and a tree skeleton extraction method based on clustering were proposed. The focus of this paper is to build a single tree skeleton based on multi-source point cloud data. The main research works and conclusions are as follows: (1) Automatic registration algorithms for multi-source point cloud data In this paper, a new registration algorithm based on single tree segmentation was proposed, which combined the scanning data of knapsack LiDAR and airborne LiDAR. This can improve the quality of point cloud data. This paper chose to compare it with the iterative nearest point method and the improved normal distribution transformation method. Experiments were carried out on three sample plots, and the performance of algorithms was tested by root mean square error. The root mean square errors of the proposed method for three sample plots were 2.27 cm, 2.94 cm and 1.98 cm respectively. Compared with the registration results of the other two algorithms, the proposed method had higher accuracy. (2) Tree growth parameters and branch point cloud extraction The tree height, DBH and crown width were extracted by geometric calculation and least square fitting circle algorithm. In this paper, a point cloud branch and leaf classification algorithm based on principal component analysis and region growth was proposed. Then the proposed algorithm was tested on the data of elm and poplar, and the results showed that the proposed algorithm had high accuracy. (3) Skeleton point extraction and linking In this paper, an improved tree skeleton extraction method based on clustering was proposed. The trunk and twigs were treated separately. The trunk adopted the random sampling consistent cylindrical fitting method, while the twig used the least square straight line fitting method. All the extracted skeleton points were linked, and finally a more real skeleton model of the tree was obtained. The skeleton model can effectively and simply describe the geometric information and topological connection information of trees. It is of great significance in building an accurate three-dimensional model of trees and studying the carbon cycle, leaf area index and biomass estimation of forests. |
参考文献: |
[1] 林清山, 洪伟. 中国森林碳储量研究综述[J]. 中国农学通报, 2009, 25(6): 220-224. [3] 汤旭光,刘殿伟,王宗明,等. 森林地上生物量遥感估算研究进展[J]. 生态学杂志, 2012, 31(5): 1311-1318. [4] 胡凯龙. 不同空间尺度森林参数多源遥感反演方法[D]. 北京: 中国矿业大学(北京), 2018. [5] 李德仁, 王长委, 胡月明, 等. 遥感技术估算森林生物量的研究进展[J]. 武汉大学学报:信息科学版, 2012, 37(6): 631-635. [9] 刘鲁霞, 庞勇. 机载激光雷达和地基激光雷达林业应用现状[J]. 世界林业研究, 2014, 27(1): 49-56. [10] 张文军. 三维激光扫描技术及其应用[J]. 测绘标准化, 2016, 32(2): 42-44. [19] 钟涛. 基于三维激光扫描测量技术的露天矿山变形监测研究[J]. 科技与创新, 2015(15): 1-9. [20] 张亚. 三维激光扫描技术在三维景观重建中的应用研究[D]. 西安: 长安大学, 2011. [21] 彭文博, 杨武年, 王鹏. 三维激光扫描技术在古建筑模型重建中的应用[J]. 地理空间信息, 2016, 14(3): 94-99. [22] 索俊锋, 刘勇, 蒋志勇, 等. 基于三维激光扫描点云数据的古建筑建模[J]. 测绘科学, 2017, 42(3): 179-185. [23] 徐云乾, 袁明道, 刘建文, 等. 地面三维激光扫描技术及其在水利工程中的应用[J]. 广东水利电力职业技术学院学报, 2016, 14(1): 13-16. [33] 杨猛, 刘杰, 杨锋, 等. 车载激光雷达技术在城市1:500地形图测绘工作中的应用[J]. 测绘与空间地理信息, 2020, 43(8): 5-14. [34] 满其霞. 激光雷达和高光谱数据融合的城市土地利用分类方法研究[D]. 上海: 华东师范大学, 2015. [56] 朱延娟, 周来水, 张丽艳. 散乱点云数据配准算法[J]. 计算机辅助设计与图形学学报, 2006, 18(4): 475-481. [57] 徐金亭, 孙玉文, 刘伟军. 复杂曲面加工检测中的精确定位方法[J]. 机械工程学报 2007, 43(6): 175-179. |
中图分类号: | P225.2 |
开放日期: | 2022-06-24 |