论文中文题名: |
短路电弧迸溅熔珠引燃聚苯乙烯特征规律研究
|
姓名: |
郭曦蔓
|
学号: |
20220226151
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
消防科学与工程
|
第一导师姓名: |
文虎
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-27
|
论文答辩日期: |
2023-06-04
|
论文外文题名: |
Study on the characteristics of polystyrene ignited by short circuit arc splashing beads
|
论文中文关键词: |
消防安全 ; 迸溅熔珠 ; 热解动力学 ; 引燃机理 ; COMSOL 数值模拟
|
论文外文关键词: |
Fire safety ; Splashing beads ; thermal degradation kinetics ; Mechanisms of the ignition ; COMSOL Numerical simulation
|
论文中文摘要: |
︿
近年来由电气故障引发的火灾占火灾总数的1/3,通电导线短路故障产生的迸溅熔珠易引燃建筑外墙保温材料造成城市高层住宅火灾,严重威胁人民的生命财产安全。本文实验研究低密度建筑外墙保温材料聚苯乙烯的引燃和燃烧过程中的热解动力学特性;模拟短路故障产生的迸溅熔珠引燃建筑外墙保温材料聚苯乙烯的动态过程,观测熔珠引燃聚苯乙烯不同的实验现象及行为;分析不同输出电流下熔珠直径和数量的分布规律;通过量化电弧能量,判断熔珠的引燃聚苯乙烯的能力,并探究熔珠直径和温度对引燃能力的影响规律;利用COMSOL数值模拟,明晰不同引燃现象的发生机制;最终总结分析短路电弧迸溅熔珠引燃建筑外墙保温材料聚苯乙烯的特征规律。初步得出以下研究结果:
以挤塑型聚苯乙烯泡沫作为典型建筑外墙保温材料,使用非等温热重法研究其引燃和燃烧过程中的热解动力学特性。实验表明聚苯乙烯的热解反应经历四个阶段:第一个阶段反应温度为390~560K,其失重率小于5%;第二阶段温度在560~825K区间内,该阶段失重明显,约占总失重的95%,热解反应主要发生在这一阶段。第三阶段在706~950K附近,为缓慢失重阶段;最后一阶段在950~1703K,热解基本结束。DSC曲线在612K附近有一个较大的放热峰。基于固体材料的热解失重曲线,采用Friedman法计算出聚苯乙烯泡沫在空气气氛条件下的表观活化能平均值为193.63kJ·mol-1、lnA平均值为32.67s-1,确定最概然机理函数为三维扩散D-J3。
采用“电气火灾故障模拟制备装置”进行实验,模拟短路电弧迸溅熔珠引燃聚苯乙烯的全过程。实验结果表明,输出电流的增大使熔珠的数量呈指数增长;通过观测和对比多组熔珠的形态特征发现:发生粘连的熔珠更容易引燃聚苯乙烯;基于高速摄像机记录的熔珠着床引燃阶段,获得了熔珠的不同引燃现象(引燃、不燃)和不同引燃行为(滚动式引燃、嵌入式引燃),同时观测到240A电流下的稳定燃烧火焰相较于160A持续时间更长,火焰高度和宽度也更大。
建立了迸溅熔珠引燃聚苯乙烯泡沫的临界条件,模型初步预测了理想情况下熔珠对聚苯乙烯的引燃规律。通过量化短路故障电弧的能量,确定熔珠引燃边界方程,基于引燃概率计算将熔珠引燃结果分为引燃区域和不引燃区域,其中Pig=5~95%区间定义为引燃转换区域;分析可得直径在(1, 3)mm的熔珠是决定引燃结果的关键因素,熔珠直径和初始温度对其体积能具有直接影响,在其作为先导引燃源时的引燃聚苯乙烯泡沫的最低初始温度约为1375K。实验研究表明在引燃转换区内(Pig=5~95%),无论熔珠是否引发引燃,燃料床质量消耗率基本稳定在最小质量消耗率的两倍,因此熔珠对燃料长的直接的连续接触是影响其质量损失的关键因素。
基于迸溅熔珠引燃聚苯乙烯的动态过程和理论研究分析,揭示迸溅熔珠引燃聚苯乙烯的机理。熔珠引燃聚苯乙烯的过程是燃料床热解产生的气体和周围空气的混合时间,与熔珠在燃料床表面的停留时间相互竞争的结果。在这个过程中,熔珠不仅作为加热源,同时也可充当先导引燃源。当熔珠作为先导引燃源在材料表面滚动,引燃则是熔珠引燃聚苯乙烯的引燃时间(tig)与熔珠在材料表面滞留时间(tr)相互竞争的结果。
根据迸溅熔珠引燃聚苯乙烯的实验现象,建立迸溅熔珠引燃聚苯乙烯的物理模型。通过数值模拟获得熔珠引燃过程中高温点和最大热释放速率的时变规律,确定了不同引燃现象发生的不燃、不稳定引燃、引燃三种引燃机制,与实验获得的熔珠临界引燃条件有较好的一致性。
论文研究将为电气火灾现场物证的早期鉴定提供理论基础和方法支撑,提高火灾研究调查工作的精确性与科学性。
﹀
|
论文外文摘要: |
︿
In recent years, fires caused by electrical faults account for 1/3 of the total number of fires. Splashing beads caused by short-circuit faults of energized conductors can easily ignite building exterior wall insulation materials and cause urban high-rise residential fires, which seriously threaten people 's lives and property safety. In this paper, the pyrolysis kinetic characteristics of polystyrene in the ignition and combustion process of low density building exterior wall insulation material were studied experimentally. The dynamic process of splashing molten beads igniting polystyrene, an insulation material for building exterior walls, is simulated, and different experimental phenomena and behaviors of molten beads igniting polystyrene are observed. The distribution of bead diameter and number under different output currents is analyzed. By quantifying the arc energy, the ability of the molten bead to ignite polystyrene was judged, and the influence of the temperature of the molten bead on the ignition ability was explored. The mechanism of different ignition phenomena was clarified by COMSOL numerical simulation. Finally, the mechanism of short-circuit arc splashing molten beads igniting polystyrene, an external wall insulation material, was analyzed. The preliminary results are as follows :
Taking extruded polystyrene foam as a typical building exterior wall insulation material, the non-isothermal thermogravimetric method was used to study the pyrolysis kinetic characteristics during ignition and combustion. The experiment shows that the pyrolysis reaction of polystyrene goes through four stages : the first stage reaction temperature is 390 ~ 560K, and the weight loss rate is less than 5 % ; the temperature of the second stage is in the range of 560 ~ 825 K. The weight loss of this stage is obvious, accounting for about 95 % of the total weight loss. The third stage is near 706 ~ 950K, which is the slow weight loss stage. The last stage of 950 ~ 1703K pyrolysis is basically over. The DSC curve has a large exothermic peak near 612K. Based on the pyrolysis weight loss curve of solid materials, the average apparent activation energy of extruded polystyrene foam under air atmosphere is 193.63 kJ · mol-1 and the average lnA is 32.67 s-1 calculated by Friedman method. The most probable mechanism function is three-dimensional diffusion D-J3.
The whole process of short-circuit arc splashing molten beads to ignite polystyrene was experimentally simulated by ' electrical fire fault simulation preparation device '. The experimental results show that the number of molten beads increases exponentially with the increase of output current. By observing and comparing the morphological characteristics of multiple groups of molten beads, it is found that the adherent molten beads are more likely to ignite polystyrene ; based on the igniting stage of molten bead implantation recorded by high-speed camera, different igniting phenomena ( igniting, non-igniting ) and different igniting behaviors ( rolling igniting, embedded igniting ) of molten bead were obtained. At the same time, it was observed that the stable combustion flame at 240 A current lasted longer than that at 160 A, and the flame height and width were also larger.
The critical conditions for the ignition of polystyrene foam by splashing molten beads were established. The model preliminarily predicted the ignition law of polystyrene by molten beads under ideal conditions. By quantifying the energy of short-circuit fault arc, the ignition boundary equation of molten bead is determined. Based on the calculation of ignition probability, the ignition results of molten bead are divided into ignition region and non-ignition region, where Pig = 5 ~ 95 % is defined as ignition conversion region. The diameter of ( 1,3 ) mm molten beads is the key factor to determine the ignition results. The diameter of molten beads and the initial temperature have a direct effect on the volume energy. When it is used as the pilot ignition source, the minimum temperature for igniting polystyrene foam is about 1375 K. Experimental studies have shown that in the ignition transition zone ( Pig = 5 ~ 95 % ), the mass consumption rate of the fuel bed is basically stable at twice the minimum mass consumption rate regardless of whether the molten beads cause ignition. Therefore, the direct continuous contact of the molten beads to the polystyrene fuel bed is very important to affect its mass loss.
Based on the dynamic process and theoretical analysis of polystyrene ignited by molten beads, the mechanism of polystyrene ignited by splashing molten beads was revealed. The process of molten bead igniting polystyrene is the result of the competition between the mixing time of the gas produced by the pyrolysis of the fuel bed and the surrounding air and the residence time of the molten bead on the surface of the fuel bed. In this process, the molten bead not only acts as a heating source, but also acts as a pilot ignition source. When the molten bead acts as a pilot ignition source to roll on the surface of the material, the material is ignited due to the competition between the ignition time ( tig ) of the molten bead igniting polystyrene and the residence time ( tr ) of the molten bead on the surface of the material.
According to the experimental phenomenon of molten bead igniting polystyrene, the physical model of molten bead igniting polystyrene was established. The time-varying laws of the high temperature point and the maximum heat release rate of the molten beads are obtained by numerical simulation. The three ignition mechanisms of non-ignition, unstable ignition and ignition of different ignition phenomena are determined, which are in good agreement with the critical ignition conditions of the molten beads obtained by experiments.
The research of this paper will provide theoretical basis and method support for the early identification of electrical fire scene evidence, and improve the accuracy and scientificity of fire research and investigation.
﹀
|
参考文献: |
︿
[1]应急管理部消防救援局. 2002–2022全国火灾情况分析. http://www.119.gov.cn/xiaofang/nbnj/index.htm. [2]中华人民共和国中央人民政府. 国务院安委会启动为期3年的电气火灾综合治理行动. http://www.gov.cn/xinwen/2017-05/03/content_5190668.htm [3]陈浩. 基于物联网建筑电气火灾监测系统研究与应用[D]. 山东建筑大学, 2022. [4]徐建军. 电气线路故障引发重大火灾[J]. 劳动保护, 2020(02): 62-63. [5]刘明, 满淳. 建筑电气防火在预防电气火灾中的探讨[J]. 天津化工, 2019, 33(06): 54-56. [6]吕文功, 雷君召. 浅谈电气火灾的成因及预防[J]. 科学技术创新, 2019(20): 44-45. [7]吴志强,王德坤,伍林,赵海龙. 电气火灾成因及防范技术分析[J]. 消防界(电子版), 2020, 6(12): 14-17. [8]Babrauskas V. SFPE handbook of fire protection engineering (Fifth Edition): electrical fires [M]. Springer New Yorker Heidelberg Dordrecht London, 2016. [9]Yuan C, Liu K, Amyotte P, et al. Electric spark ignition sensitivity of nano and micro Ti powder layers in the presence of inert nano TiO2 powder[J]. Journal of Loss Prevention in the Process Industries, 2017, 46: 84-93. [10]Babrauskas V. How do electrical wiring faults lead to structure ignitions[C]. Process Fire and Materials 2001 Conference, 2001: 39-51. [11]National Fire Protection Association. NFPA 921: Guide for fire and explosion investigations 2017 Edition [M]. National Fire Protection Association, 2017. [12]向熠堃, 陈立辉, 萧荣墅. 电流强度对铜导线过电流迸溅熔珠晶粒特征的影响分析[J]. 消防技术与产品信息, 2018, 31(12): 36-39. [13]王苏盼. 飞火颗粒点燃的实验及机理研究[D]. 中国科学技术大学, 2016. [14]许磊. 聚苯乙烯外墙外保温系统在竖直条件下的辐射引燃过程研究[D]. 中国科学技术大学, 2014. [15]Liu K H, Shih Y H, Chen G J, et al. Microstructural study on molten marks of fire-causing copper wires[J]. Materials, 2015, 8(6): 3776–3790. [16]中国涂料行业“十四五”规划(三)[J]. 中国涂料, 2021, 36(05): 1-10. [17]贾翔涛,刘纪达,徐天锋.外墙保温材料应用现状及发展探讨[J]. 建筑安全, 2019, 34(07): 74-77. [18]ZHU Yongmao, YANG Xiaoyun, et al. 2019-2020 World Plastics Industry Progress (III): Thermosetting Resin[J]. Plastic Industry, 2021, 49(05): 1-19. [19]LIU Rubing, FENG Chunhong, et al. Study on thermal insulation performance of EPS board in building walls[J]. Construction Technique, 2017, 46(16): 122-124. [20]郭杜聘, 杨军聚苯乙炼泡沫(EPS)的特性及应用分析东南大学学报: 自然科学版, 31(3)138-142. [21]HU Xianjun, SU Zhenguo, et al. Research and Application of Exterior Insulation Materials for Buildings[J]. Materials Review, 2012, 26 (S2): 290-294. [22]Cui Yu, Li Ming, et al. Analysis on fire risk factors of polystyrene exterior wall insulation system[J]. Safety production science and technology in China, 2017, 13(06): 47-52. [23]王志. 线缆绝缘材料热解特性与线缆燃烧及火蔓延行为研究[D]. 中国科学技术大学, 2020. [24]田晴. 短路迸溅熔珠引燃能力和金相组织特征研究[D]. 西安科技大学, 2021. [25]陆鑫. 熔覆增材IN718合金析出相分布特征及其局域力学性能研究[D]. 燕山大学, 2018. [26]Babrauskas V. NFPA 921: Guide for Fire and Explosion Investigations (2017 Edition): Electrical Fires[M]. National Fire Protection Association, Quincy, MA, 2017. [27]中华人民共和国中央人民政府. 国务院安委会启动为期3年的电气火灾综合治理行动. http://www.gov.cn/xinwen/2017-05/03/content_5190668.htm [28]Hutchison V. Residential electrical fire problem: the data landscape[M]. Fire Protection Research Foundation, 2018. [29]Babrauskas V, Simonson M. Fire behaviour of plastic parts in electrical appliancesstandards versus required fire safety objectives [J]. Fire and Materials: An International Journal, 2007, 31(1): 83-96. [30]何洪源. 火灾现场调查与火灾物证分析[M]. 北京: 中国人民公安大学出版, 2010. [31]Babrauskas V. Electrical fires: research needed to improve safety[J]. Journal of Fire Protection Engineering, 2010, 46: 20-30. [32]Hagimoto Y, Watanabe N, Okamoto K. A Short Circuit as an Ignition Source of Fire[C]. Inter science Communications Ltd, London, 2007, 1555-1560. [33]Babrauskas V. Mechanisms and modes for ignition of low-voltage, PVC-insulated electrotechnical products[J]. Fire and Materials, 2006, 30:150-174. [34]Coldham D, Czerwinski A, Marxsen T. Probability of bushfire ignition from electric arc faults[J]. HRL Technology Pty Ltd., Melbourne, VIC., Australia, Tech. Rep. HRL, 2010: 195. [35]Novak C J, Stoliarov S I, Keller M R, et al. An analysis of heat flux induced arc formation in a residential electrical cable[J]. Fire Safety Journal, 2013, 55: 61-68. [36]Iwashita T, Hagimoto Y, Sugawa O. Characterization of arc beads on energized conductors exposed to radiant heat[J]. Fire and Materials, 2017, 41(8):1072-1078. [37]Iwashita T, Keller M R, Hagimoto Y, et al. Leakage currents precede short circuits in PVCinsulated cable when exposed to external radiant heat [J]. Fire and Materials, 2017, 41(4): 339-348. [38]Kanokbannakorn W, Hongesombut K, Teerakawanich N, et al. Arc flash hazard in distribution system with distributed generation[J]. Procedia Computer Science, 2016, 86: 377-380. [39]]Hagimoto, Y, Watanabe, N., Okamoto. Arcing faults on PVC covered electrical cords [C]. Proc. 1st Con! Of the Assn. of Korean Japanese Safely Engineering Society, Kyongju, Korea, 1999, 221-224. [40]Franklin F F. Circuit breakers: The myth of safety[J]. Professional Safety, 1990, 35(6): 28. [41]Kumpulainen L, Hussain G A, Rival M, et al. Aspects of arc-flash protection and prediction[J]. Electric Power Systems Research, 2014, 116: 77-86. [42]British Standards Institution. IEC 62271-200, High-voltage switchgear and controlgearPart 200: AC metal-enclosed switchgear and controlgear for rated voltages above 1kV and up toand including 52kV[M]. Edition 2.0, 2011. [43]Arvola J, Dahl S, Virtala T. Improving medium voltage switchgear protection in compensated distribution networks[C]. CIRED 2013 Conference, 2013: 10-13. [44]Cressault Y, Murphy A B, Teulet P, et al. Thermal plasma properties for Ar-Cu, Ar-Fe and Ar-Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2013, 46: 415207. [45]Babrauskas V. Electric arc explosions-A review[J]. Fire Safety Journal, 2017, 89: 7-15. [46]Khakpour A, Franke S, Uhrlandt D, et al. Electrical arc model based on physical parameters and power calculation[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2721-2729. [47]Sawicki A. Problems of modeling an electrical arc with variable geometric dimensions[J]. Przeglad Elektrotechniczny, 2013, 89 (2): 270-275. [48]Khakpour A, Franke S, Gortschakow S, et al. An improved arc model based on the arc diameter[J]. IEEE Transactions on Power Delivery, 2015, 31: 1335-1341. [49]Walter M M, Franck C M. Improved method for direct black-box arc parameter determination and model validation[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 580-588. [50]Khakpour A, Uhrlandt D, Methling R P, et al. Impact of temperature changing on voltage and power of an electric arc[J]. Electric Power Systems Research, 2017, 143: 73-83. [51]Varol H, Cashell K A. Numerical modelling of high strength steel beams at elevated temperature[J]. Fire Safety Journal, 2017, 89: 41-50. [52]Chen K C, Warne L K, Jorgenson R E, et al. TATB sensitivity to shocks from electrical arcs[J]. Propellants, Explosives, Pyrotechnics, 2019, 44 (8): 1000-1009. [53]Senk G, Jakubove I, Laznickova I. Analysis of intensively blasted electric arc burning in the arc heater’s anode channel[J]. Acta Polytechnica, 2016, 56: 395-401. [54]Wan G, Dong Q, Zhi J, et al. Analysis on electrical and thermal conduction of carbon fiber composites under lightning based on electrical-thermal-chemical coupling and arc heating models[J]. Composite Structures, 2019, 229: 111486. [55]Wu C, Zhao Q, Li Na, et al. Influence of fabrication technology on arc erosion of Ag/10SnO2 electrical contact materials[J]. Journal of Alloys and Compounds, 2018, 766: 61-177. [56]Chen S, Zhang R, Jiang F, et al. Experimental study on electrical property of arc column in plasma arc welding[J]. Journal of Manufacturing Processes, 2018, 31: 823-832. [57]Zhou YX, Xue YL, Zhou K. Failure analysis of arc ablated tungsten-copper electrical contacts[J]. Vacuum, 2019, 164: 390-395. [58]Doddapaneni V, Saleemi M, Ye F, et al. Engineered PMMA-ZnO nanocomposites for improving the electric arc interruption capability in electrical switching applications: Unprecedented experimental insights[J]. Composites Science and Technology, 2017, 141: 113-119. [59]Calderon-Mendoza E, Schweitzer P, Weber S. Kalman filter and a fuzzy logic processor for series arcing fault detection in a home electrical network[J]. International Journal of Electrical Power and Energy Systems, 2019, 107: 251-263. [60]Lin Z, Fan S, Liu M, et al. Excellent anti-arc erosion performance and corresponding mechanisms of a nickel-belt-reinforced silver-based electrical contact material[J]. Journal of Alloys and Compounds, 2019, 788: 163-171. [61]Wen X, Yuwen F, Ding Z, et al. Electric arc-induced damage on electroless Ag film using ionic liquid as a lubricant under sliding electrical contact[J]. Tribology International, 2019, 135: 269-276. [62]Zhu S, Liu Y, Tian B, et al. Arc erosion behavior and mechanism of Cu/Cr20 electrical contact material [J]. Vacuum, 2017, 143: 129-137. [63]Chabrerie J P, Devautour J, Teste P. A numerical model for thermal processes in an electrode submitted to an arc in air and its experimental verification[J]. IEEE transactions on components, hybrids, and manufacturing technology, 1993, 16(4): 449-455. [64]Sun M, Wang Qi, Lindmayer M. The model of interaction between arc and AgMeO contact material[J]. IEEE Transactions on Components, Packaging, Manufacture Technology, 1994, 17: 490-494. [65]Wu X, Li Z B, Tian Y, et al. Investigate on the simulation of black-box arc model [C].2011 [66]1st International Conference on Electric Power Equipment-Switching Technology. IEEE, 2011: 629-636. [67]Chen Z, Koichiro S. Effect of arc behavior on material transfer: A Review[J]. IEEE Transaction on Components, Packaging and Manufacturing Technology-part A. 1998, 21: 310-322. [68]Chung H H, Lee R T, Chiou Y C. Erosion mechanism of silver in a single arc discharge across a static gap[J]. IEE Proceedings Science Measurement and Technology, 2002, 149: 172-180. [69]Weaver P M, Pechrach K, McBride J W. The energetics of gas flow and contact erosion during short circuit arcing. IEEE Transaction on Components and Packaging Technology. 2004, 27: 51-56. [70]郑梦笛, 吴细秀, 闫格. 基于新型故障电弧模型的电弧能量特性分析[J]. 中国电力, 2015, 48(11): 49-53. [71]吴细秀. 开关电器触头材料喷溅侵蚀模型研究及其试验[D]. 华中科技大学, 2005. [72]Wang Y. Study on the splashing short-circuited beads’ characteristics in fire scenes by density methods[J]. Procedia Engineering, 2016, 135: 555-562. [73]Ogale S B, Shinde S R, Karve P A, et al. Impact-induced splash and spill in a quasi-confined granular medium[J]. Physica A: Statistical Mechanics and its Applications, 2006, 363(2): 187-197. [74]Pleasance G E, Hart J A. An examination of particles from conductors clashingas possible source of bushfire ignition. State Electricity Commission of Victoria (SEC), Victoria, Australia, Research and Development Department, Report FM-1, 1977. [75]Joynt R. The possibility of fires being caused by copper conductor clashing. Tech. rep. Victoria, Australia: State Electricity Commission of Victoria, 1983. [76] Hart J A, Pleasance G E. An examination of particles from conductor clashes as possible sources of bushfire ignition[J]. Laboratory report, SECV Victoria, 1977. [77]Coldham D. Bushfire ignition from electric faults: A review of technical literature. Tech. rep. Victoria, Australia: Energy Safe Victoria, 2011. [78]Mikkelsen K. An experimental investigation of ignition propensity of hot work processes in the nuclear industry[J]. Zeitschrift Fur Naturforschung A, 2014. [79]Fernandez-Pello A C. Wildland fire spot ignition by sparks and firebrands[J]. Fire Safety Journal, 2017, 91: 2-10. [80]Waterman, T.E. Experimental Study of Firebrand Generation. 1969,IIT REASERCH INST CHICAGO ILL ENGINEERING MECHANICS DIV.: Defense Technique information Center. [81]New Energy Material Industry Chain Entered The Era of “Resources Have Overwhelming Superiority”[J].China Nonferrous Metals Monthly, 2022(06): 1-7. [82]Baum HR, McCaffrey BJ. Fire induced flow field-theory and experiments fire safety science[C]. Proceedings of the Second International Symposium, Washington DC, 1989, 129-148. [83]McGrattan K B, Baum H R, Rehn R G. Smoke plumes from large fires, UJNR panel on Fire Research, NIST, Gaithersburgh, MD, 1995. [84]Quintiere J G, Grove B S. A unified analysis for fire plumes [C]. Symposium (International) on Combustion. Elsevier, 1998, 27(2): 2757-2766. [85]Woycheese J P, Pagni P J, Liepmann D. Brand propagation from large-scale fires[J]. Journal of Fire Protection Engineering, 1999, 10(2): 32-44. [86]Huang H, Ooka R, Kato S, et al. A numerical study of firebrands scattering in urban fire based on CFD and firebrands aerodynamics measurements[J]. Journal of fire sciences, 2007, 25(4): 355-378. [87]Himoto K, Mauyama T, Tanaka T. A study on the brand spotting in urban fires-LES analysis on the scattering of square disks in a turbulent boundary layer[C]. Proceedings of the 10th Inter flammation, 2004, 1039-1050. [88]Satoh K, Kuwahara K, Yang K T. A numerical study of forest fire progression and fire suppression by aerial fire fighting[C]. ASME International Mechanical Engineering Congress and Exposition. 2004, 4708: 79-86. [89]Tarifa C S, Del Notario P P, Moreno F G. On the flight paths and lifetimes of burning particles of wood, Symposium (International) on Combustion, 1965, 10: 1021-1037. [90]Tarifa CS. Open fires and transport of firebrands. US department of agriculture forest service, 4th annual report of grant FG-SP-114. Madrid, 1965. [91]Tarifa C S, Notario del P P, Moreno F G, et al. Transport and combustion of firebrands. Institute Nacional de Tecnica Aeroespacial, Madrid, Spain, 1967. [92]Lee S L, Hellman J M. Study of firebrand trajectories in a turbulent swirling natural convection plume[J]. Combustion and Flame, 1969, 13 (6): 645-655. [93]Lee S L, Hellman J M. Firebrand trajectory study using an empirical velocity-dependent burning law[J]. Combustion and Flame, 1970, 15(3): 265-274. [94]Mills A. Trajectories of sparks from arcing aluminum power cables[J]. Fire Technology, 984, 20: 5-14. [95]Tse S D, Fernandez-Pello A C. On the flight paths of metal particles and embers generated by power lines in high winds-a potential source of wildland fires[J]. Fire Safety Journal, 1998, 30(4): 333-356. [96]Psarros E G, Polykrati A D, Karagiannopoulos C G, et al. A model for calculating the temperature of aluminium particles ejected from overhead low-voltage lines owing to a short-circuit[J]. International Journal of Wildland Fire, 2009, 18(6):722-726. [97]Liu Y, Urban J L, Xu C, et al. Temperature and motion tracking of metal spark sprays[J]. Fire Technology, 2019, 55 (6): 2143-2169. [98]Sun J, Hu L, Zhang Y. A review on research of fire dynamics in high-rise buildings[J]. Theoretical Applied Mechanics Letters, 2013, 3(4): 042001. [99]Shi L, Chew M Y L. A review of fire processes modeling of combustible materials under external heat flux[J]. Fuel, 2013, 106:30-50. [100]卢志刚, 陈伟红. 电焊熔珠对棉布和聚氨酯泡沫的引燃能力研究[J]. 火灾科学, 2009, 18(01): 15-19. [101]赵艳红, 赵海龙, 赵志刚. 电焊渣对外墙保温材料引燃能力的试验研究[J]. 武警学院学报, 2016, 32(08):25-31. [102]李青. 聚氨酯保温板引燃特性试验研究[J]. 武警学院报, 2015, 31(4): 24-27. [103]杨玖玲, 陈海翔. 高温金属颗粒作用下可燃物的点燃机理[J]. 燃烧科学与技术, 2014, 20(4): 329-334. [104]Yang J, Wang S, Chen H. Effect of interface thermal resistance on ignition of reactive material by a hot particle[J]. International Journal of Heat and Mass Transfer, 2016, 97: 146-156. [105]Yang J , Rein G , Chen H , et al. Smoldering propensity in upholstered furniture: Effects of mockup configuration and foam thickness[J]. Applied Thermal Engineering, 2020, 181:115873. [106]Yang J , Liu N , Chen H , et al. Smoldering and spontaneous transition to flaming over horizontal cellulosic insulation[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4073-4081. [107]Yang J, Liu N, Chen H, et al. Effects of atmospheric oxygen on horizontal peat smoldering fires: Experimental and numerical study[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4063-4071. [108]王苏盼. 飞火颗粒点燃的实验及机理研究[D]. 中国科学技术大学, 2016. [109]Wang S, Chen H, Liu N. Ignition of expandable polystyrene foam by a hot particle: An experimental and numerical study[J]. Journal of Hazardous Materials, 2015, 283: 536-543. [110]Wang S, Chen H, Liu N, et al. Ignition of low-density expandable polystyrene foam by a hot particle[J]. Combustion and Flame, 2015, 162: 4112-4118. [111]Song J, Wang S, Chen H. Safety distance for preventing hot particle ignition of building insulation materials[J]. Theoretical and Applied Mechanics Letters, 2014, 4(3): 034005. [112]Wang S, Chen H, Zhang L. Thermal decomposition kinetics of rigid polyurethane foam and ignition risk by a hot particle[J]. Journal of Applied Polymer Science, 2014, 131(4) [113]Wang Q, Liu K, Wang S. Effect of porosity on ignition and burning behavior of cellulose materials[J]. Fuel, 2022, 322: 124158. [114]Wang S, Zhang Y, Huang X. Ignition of EPS foam by a hot moving hollow particle: Threshold, auto-ignition, and fire point[J]. Combustion and Flame, 2021, 232, 111524. [115]Wang S, Huang X, Chen H, et al. Interaction between flaming and smouldering in hotparticle ignition of forest fuels and effects of moisture and wind[J]. International Journal of Wildland Fire, 2016, 26(1): 71-81. [116]李梦媛. 金属热颗粒引燃可燃堆垛材料的实验研究[D]. 中国科学技术大学, 2017. [117]李梦媛, 陈海翔, 张林鹤. 金属热颗粒引燃可燃堆垛材料的实验研究[J]. 火灾科学, 2017, 26(3):140-146. [118]Song J, Huang X, Liu N, et al. The wind effect on the transport and burning of firebrands[J]. Fire technology, 2017, 53(4): 1555-1568. [119]Fang W, Peng Z, Chen H. Ignition of pine needle fuel bed by the coupled effects of a hot metal particle and thermal radiation[J]. Proceedings of the Combustion Institute, 2021, 38(3): 5101-5108. [120]Hadden R M, Scott S, Lautenberger C, et al. Ignition of combustible fuel beds by hot particles: An experimental and theoretical study[J]. Fire Technology, 2011, 47(2): 341-355. [121]Soulinaris G K, Halevidis C D, Polykrati A D, et al. Evaluation of the thermal stresses and dielectric phenomena in the investigation of the causes of wildfire involving distribution power lines[J]. Electric Power Systems Research, 2014, 117: 76-83. [122]Zak C D. The effect of particle properties on hot particle spot fire ignition[D]. University of California, Berkeley, 2015. [123]Urban JL, Zak CD, Fernandez-Pello C. Cellulose spot fire ignition by hot metal particles[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2707-2714. [124]Urban J L, Zak C D, Song J, et al. Smoldering spot ignition of natural fuels by a hot metal particle[J]. Proceedings of the Combustion Institute, 2017, 36(2):3211-3218. [125]Zak C D, Urban J L, Fernandez-Pello C. Characterizing the flaming ignition of cellulose fuel beds by hot steel spheres[J]. Combustion Science and Technology, 2014, 186(10-11): 1618-1631. [126]Fernandez-Pello C. Wildland fire spot ignition by sparks and firebrands[J]. Fire Safety Journal, 2017, 91:2-10. [127]Urban J L, Song J, Santamaria S, et al. Ignition of a spot smolder in a moist fuel bed by a firebrand[J]. Fire Safety Journal, 2019, 108:102833. [128]Urban J L, Zak C D, Fernandez-Pello C. Spot fire ignition of natural fuels by hot aluminum particles[J]. Fire Technology, 2018. [129]姜林. 典型聚合物材料的热解动力学与火蔓延特性研究[D]. 中国科学技术大学, 2017. [130]焦玲玲. 典型建筑有机保温材料热解特性及机理研究[D]. 中国科学技术大学, 2014. [131]Guyot A. Recent developments in the thermal degradationofpolystyrene:A review[J]. Polymer Degradationand Stability, 1986, 15(3): 219-235. [132]Jun H C, OhS, LeeH, et al. A kinetic analysis of thethermal-oxidative decomposition of expandable polystyrene[J]. Korean Journal of Chemical Engineering, 2006. 23(5): 761-766. [133] Pravin Kannan, Joseph J. Biernacki, Donald P. Visco Jr.A review of physical and kinetic models of thermal degradationof expanded polystyrene foam and their application to the lost foam casting process[J]. J Anal Appl Pyrol, 2007, 78(1): 162-171. [134]Alajbeg A, Stipak B. Thermal decomposition of polystyrene foam under controlled atmosphere and temperature conditions[J]. Journal of Analytical and Applied Pyrolysis, 1985, 7(4): 283-306. [135]崔俞, 程旭东, 龚伦伦等. 膨胀聚苯乙烯泡沫热氧化分解动力学研究[J]. 燃烧科学与技术, 2011, 17(6):558-564. [136]吴用, 曾文茹. 聚苯乙烯在空气中热降解的化学动力学研究[J]. 安徽化工, 2006, 06: 24-26. [137]绪广东, 徐强, 潘仁明. EPS保温材料在空气中的热解特性研究[J]. 塑料工业, 2012, 09: 67-70. [138]邓郁. 热动力学的研究(I)—热动力学的理论和方法[J]. 高等学校化学学报, 1985(07): 621-626. [139]张保生, 刘建忠, 周俊虎, 冯展管, 岑可法. 利用Popescu法对煤燃烧反应机理的研究[J]. 中国电机工程学报, 2006(15): 68-72. [140]朱新生, 戴建平, 李引擎, 张新立, 闻荻江. 聚苯乙烯热降解动力学参数与降解反应机理关系[J]. 火灾科学, 2001(01): 24-28. [141]唐克, 胡小亮. 过载导线火灾危险性实验研究[J]. 消防技术与产品信息, 2014(03): 19-22. [142]Zak C D. The effect of particle properties on hot particle spot fire ignition[D]. University of California, Berkeley, 2015. [143]Gammon T, Matthews J. Conventional and recommended arc power and energy calculations and arc damage assessment[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 594-599. [144]Hadden R M, Scott S, Lautenberger C, et al. Ignition of combustible fuel beds by hot particles: An experimental and theoretical study[J]. Fire Technology, 2011, 47(2): 341-355. [145]Hirn T, Kirmas A, Backes D, et al. The influence of radiation intensity and wavelength on thermal perception[J]. Building and Environment, 2021, 196(5): 107763. [146]Andreucci, D, et al. Fick and Fokker-Planck Diffusion Law in Inhomogeneous Media. Journal of Statistical Physics 174. 2(2019). [147]胡海涛, 李允超, 王贤华, 张帅, 杨海平, 陈汉平. 生物质预处理技术及其对热解产物的影响综述[J]. 生物质化学工程, 2014, 48(01): 44-50. [148]李阳. 短路激烈程度对铜包铝导线熔珠引燃能力及组织特征的影响[J]. 安全与环境学报, 2018, 18(05): 1816-18
﹀
|
中图分类号: |
X934
|
开放日期: |
2023-06-27
|