- 无标题文档
查看论文信息

论文中文题名:

 全球30米土地覆盖产品的精度评估研究    

姓名:

 高媛    

学号:

 18210013010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070503    

学科名称:

 理学 - 地理学 - 地图学与地理信息系统    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 地图学与地理信息系统    

研究方向:

 遥感制图与精度评估    

第一导师姓名:

 刘良云    

第一导师单位:

 中国科学院空天信息创新研究院    

第二导师姓名:

 竞霞    

论文提交日期:

 2021-06-10    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Accuracy Assessment of Global 30 m Land Cover Products    

论文中文关键词:

 全球土地覆盖数据集 ; EAGLE矩阵 ; 语义相似度 ; 一致性分析 ; 改进混淆矩阵    

论文外文关键词:

 30m global land cover datasets ; EAGLE matrix ; semantic similarity ; consistency analysis ; adjusted confusion matrix    

论文中文摘要:

土地覆盖数据是气候变化研究、生态环境建模、陆表过程模拟、地理国情监测等不可或缺的重要基础数据。近年来,随着遥感技术和计算机存储及计算能力的不断提升,全球土地覆盖制图取得了突破性的进展,正逐步从中低分辨率向30米中高分辨率过渡。然而,考虑到地球系统本身的复杂性和各产品制图策略间的差异性,用户如何从多种全球30米土地覆盖产品中挑选最合适的数据集依然存在较大的不确定性。因此,本研究聚焦于全球30米土地覆盖产品的一致性分析和定量精度评估,分别从全球和区域尺度分析各产品的精度状况,进而为土地覆盖相关用户提供科学的认知和准确的数据支撑。

研究以国内外共享的全球30米土地覆盖产品(包括全要素和专题要素)为研究对象,分别开展了全要素土地覆盖产品分类体系统一性处理、全要素和专题要素产品一致性分析以及基于区域/全球验证样本数据集的精度定量评估三方面的研究,得到如下结论:

(1)基于语义相似度的分类体系转换是解决不同全球30米土地覆盖产品不兼容的重要手段。通过欧洲土地监测环境信息和观察网行动小组(Environmental information and observation network Action Group on Land monitoring in Europe, EAGLE)提出的EAGLE概念计算类别间的语义相似度,并基于此构建严格的分类体系转换关系,可以最大程度减小因为类别转换差异对不同产品集间对比分析结果带来的影响。

(2)全球30米土地覆盖产品因制图策略、数据源等差异导致其空间差异性较为显著。对于全要素数据集,研究结果表明在全球范围内,三种全要素产品在空间上完全一致的像元数占总像元数的35.40%,完全不一致像元所占百分比为29.14%。对于各专题要素(不透水面、林地、耕地以及水体)不同数据集,结果表明不同水体专题要素产品的一致性较其他要素而言更高,而不同耕地专题要素产品间的一致性最低,其空间一致性最高的产品对的R2仅为0.67。

(3)基于区域/全球验证数据集的定量精度评估为用户选择合适数据产品提供了科学的认知和定量数据指标。研究基于混淆矩阵的精度检验结果表明在美国区域以及全球范围内,GLC_FCS30-2015产品的总体精度最高,其次为GlobeLand30-2010,FROM_GLC30-2015产品的总体精度最低;同时,针对用户的不同需求加权后的总体精度明显高于传统基于混淆矩阵得到的总体精度,且针对不同的用户需求,产品集的精度状况表现出了明显差异。

本文的主要创新点包括:

(1)构建了一种基于语义相似度度量的分类体系转换规则来解决全球土地覆盖产品的分类体系不兼容的问题,减少了传统分类体系转换中人为引入的误差,能够更为准确地反映产品数据集本身之间的一致性与差异状况;

(2)通过引入产品中各地类的面积占比,将传统混淆矩阵中对精度指标的有偏估计转为无偏估计,减少了精度定量评估的不确定性;同时提出一种加权的精度评估策略以更好分析不同用户需求下的精度差异。

论文外文摘要:

Land cover data is a fundamentally important and indispensable data for research on climate change, ecological environment modeling, land surface process simulation, and national conditions monitoring. In recent years, with the improvement of remote sensing technology and computer storage and computing capabilities, breakthroughs have been made in global land cover mapping, which is gradually transitioning from low-medium resolution to mudium-high resolution of 30 m. However, considering the complexity of the earth system itself and the differences between the mapping strategies of various products, there is still a big uncertainty in how users choose the most suitable product from the multisource global 30 m land cover products. Therefore, this study focuses on the consistency analysis and quantitative accuracy assessment of global 30 m land cover products, and analyzes the accuracy of each product at global/regional scales, and then provides scientific knowledge and accurate data support for land cover related users.  

Taking the global 30 m land cover products (including all-element and thematic elements) currently available internationally as the research object, this study carried out several specific studies, including the unification of the different classification system of all-element land cover products, the consistency analysis of the all-element and thematic element products, and the quantitative assesement of the accuracy based on the regional/global validation sample data sets. The main results of this study are as follows:

(1) Taking into account the impact of different classification systems on the comparative analysis of different products, when evaluating and comparing the accuracy of land cover products, it is necessary to minimize the impact of classification differences on the results.  To solve this problem, the EAGLE (Environmental information and observation network Action Group on Land monitoring in Europe) concept was adapted to calculate the semantic similarity between the classification systems, and a strict classification system conversion relationship based on the semantic similarity was constructed.

(2) The global 30 m land cover products have significant spatial differences due to differences in mapping strategies and data sources. For all-element datasets, the results showed that the number of spatially consistent pixels of the three GLC products accounted for 35.40% of the total number of pixels, and the percentage of completely inconsistent pixels was 29.14% on a global scale. For the consistency analysis of different datasets of each thematic element (including the impervious surface, forest, cropland and water land cover types), the results showed that among the four thematic elements, the consistency of the water products had higher consistency than other elements, while the consistency of the products of cropland were the lowest, and the product pair with the highest spatial consistency has an R2 of only 0.67.

(3) Quantitative accuracy assessment based on regional/global validation data sets provides users with scientific congnition and quantitative data indicators when selecting appropriate data products. In order to minimize the uncertainty of the quantitative assessment of accuracy, and fully understand the accuracy difference under different user needs, the accuracy assessment indexes were calculated based on the traditional confusion matrix, the adjusted confusion matrix and the confusion matrix weighted for specific user needs, respectively. The results showed that: Firstly, the GLC_FCS30-2015 product has the highest overall accuracy in the global and US regions. Meanwhile, the accuracy index value weighted for the different needs of users was higher than the traditional accuracy index based on the confusion matrix. And for different user needs, the accuracy of the products showed obvious differences.

The main innovations of this study contain:

(1) A rigorous classification system conversion rule based on the semantic similarity measurement was constructed to solve the problem of incompatibility of the different classification system of global land cover products. This rule can reduce the errors introduced by humans in the tranditional classification system conversion, and reflect the consistency and differences between land cover priducts more accurately.

(2) An adjusted confusion matrix was proposed by introducing the area proportion of each land cover type in the product to reduce the uncertainty of quantitative accuracy assessment, and a weighted accuracy assessment strategy is proposed to analyze the difference in accuracy under different user needs. 

参考文献:

[1] Zhu Xiaolin, Helmer Eileen H. An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions [J]. Remote Sensing of Environment, 2018, 214:135-153.

[2] Hansen Matthew C., Loveland Thomas R. A review of large area monitoring of land cover change using Landsat data [J]. Remote Sensing of Environment, 2012, 122:66-74.

[3] Zhu Xiaolin, Liu Desheng. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series [J]. Isprs Journal of Photogrammetry and Remote Sensing, 2015, 102:222-231.

[4] Zhu Xiaolin, Liu Desheng. Accurate mapping of forest types using dense seasonal Landsat time-series [J]. Isprs Journal of Photogrammetry and Remote Sensing, 2014, 96:1-11.

[5] Cihlar J. Land cover mapping of large areas from satellites: Status and research priorities [J]. International Journal of Remote Sensing, 2010, 21(6-7): 1093-1114.

[6] Gong Peng, Liu Han, Zhang Meinan, et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 [J]. Science Bulletin, 2019, 64(6): 370-373.

[7] Zhang Xiao, Liu Liangyun, Wang Yingjie, et al. A SPECLib-based operational classification approach: A preliminary test on China land cover mapping at 30 m [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 71:83-94.

[8] Loveland T. R., Reed B. C., Brown J. F., et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data [J]. International Journal of Remote Sensing, 2000, 21(6-7): 1303-1330.

[9] Hansen M. C., Defries R. S., Townshend J. R. G., et al. Global land cover classification at 1 km spatial resolution using a classification tree approach [J]. International Journal of Remote Sensing, 2000, 21(6-7): 1331-1364.

[10] Bartholomé Etienne, Belward Alan. GLC2000: a new approach to global land cover mapping from Earth observation data [J]. International Journal of Remote Sensing, 2005, 26(9):1959-1977.

[11] Friedl Mark, Sulla-Menashe Damien, Tan Bin, et al. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of new Datasets [J]. Remote Sensing of Environment, 2010, 114:168-182.

[12] Friedl M. A., McIver D. K., Hodges J. C. F., et al. Global land cover mapping from MODIS: algorithms and early results [J]. Remote Sensing of Environment, 2002, 83(1): 287-302.

[13] Bicheron P., Leroy Marc, Brockmann Carsten, et al. Globcover: a 300 m global land cover product for 2005 using ENVISAT MERIS time series [M]. Proceeding of the Second International Symposium on Recent Advances in Quantitative Remote Sensing. 2006: 538-542.

[14] Lamarche Céline, Santoro Maurizio, Bontemps Sophie, et al. Compilation and Validation of SAR and Optical Data Products for a Complete and Global Map of Inland/Ocean Water Tailored to the Climate Modeling Community [J]. Remote Sensing, 2017, 9(1): 36.

[15] Giri C., Pengra B., Long J., et al. Next generation of global land cover characterization, mapping, and monitoring [J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 25:30-37.

[16] Gong Peng, Wang Jie, Yu Le, et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data [J]. International Journal of Remote Sensing, 2013, 34(7): 2607-2654.

[17] McCallum Ian, Obersteiner Michael, Nilsson Sten, et al. A spatial comparison of four satellite derived 1km global land cover datasets [J]. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(4): 246-255.

[18] Chen Jun, Chen Jin, Liao Anping, et al. Global land cover mapping at 30m resolution: A POK-based operational approach [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103:7-27.

[19] Zhang Xiao, Liu Liangyun, Chen Xidong, et al. Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach [J]. Remote Sensing, 2019, 11(9):1056

[20] Zhang X., Liu L., Chen X., et al. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery [J]. Earth Syst Sci Data Discuss, 2020, 2020:1-31.

[21] Liu Xiaoping, Hu Guohua, Chen Yimin, et al. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform [J]. Remote Sensing of Environment, 2018, 209:227-239.

[22] Wang P., Huang C., Brown de Colstoun E. C., et al. Global Human Built-up And Settlement Extent (HBASE) Dataset From Landsat [M]. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). 2017:1-11.

[23] Pesaresi Martino, Syrris Vasileios, Julea Andreea. A New Method for Earth Observation Data Analytics Based on Symbolic Machine Learning [J]. Remote Sensing, 2016, 8(5):399

[24] Gong Peng, Li Xuecao, Wang Jie, et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018 [J]. Remote Sensing of Environment, 2020, 236:111510.

[25] Yu Le, Wang Jie, Clinton Nicholas, et al. FROM-GC: 30 m global cropland extent derived through multisource data integration [J]. International Journal of Digital Earth, 2013, 6(6): 521-533.

[26] Teluguntla Pardhasaradhi G., Thenkabail Prasad S., Xiong Jun N., et al. Global Cropland Area Database (GCAD) derived from Remote Sensing in Support of Food Security in the Twenty-first Century: Current Achievements and Future Possibilities [M]. Boca Raton, Florida: Western Geographic Science Center, 2015:45.

[27] Phalke Aparna, Ozdogan Mutlu, Thenkabail Prasad, et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Europe, Central Asia, Russia, Middle East 30 m V001 [M]. Sioux Falls, South Dakota: USGS EROS, 2017:1-13.

[28] Hansen M. C., Potapov P. V., Moore R., et al. High-resolution global maps of 21st-century forest cover change [J]. Science, 2013, 342(6160): 850-853.

[29] Sexton Joseph O., Song Xiao-Peng, Feng Min, et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error [J]. International Journal of Digital Earth, 2013, 6(5): 427-448.

[30] Pickens Amy H., Hansen Matthew C., Hancher Matthew, et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series [J]. Remote Sensing of Environment, 2020, 243:111792.

[31] Yamazaki Dai, Trigg Mark A., Ikeshima Daiki. Development of a global ~90m water body map using multi-temporal Landsat images [J]. Remote Sensing of Environment, 2015, 171:337-351.

[32] Pekel Jean-François, Cottam Andrew, Gorelick Noel, et al. High-resolution mapping of global surface water and its long-term changes [J]. Nature, 2016, 540(7633): 418-422.

[33] Foody G. M. Local characterization of thematic classification accuracy through spatially constrained confusion matrices [J]. International Journal of Remote Sensing, 2005, 26(6): 1217-1228.

[34] 孟雯, 童小华, 谢欢, et al. 基于空间抽样的区域地表覆盖遥感制图产品精度评估——以中国陕西省为例 [J]. 地球信息科学学报, 2015, 17(06): 742-749.

[35] Wang Yu, Zhang Jingxiong, Liu Di, et al. Accuracy Assessment of GlobeLand30 2010 Land Cover over China Based on Geographically and Categorically Stratified Validation Sample Data [J]. Remote Sensing, 2018, 10(8): 1213.

[36] Jokar Arsanjani Jamal, See Linda, Tayyebi Amin. Assessing the suitability of GlobeLand30 for mapping land cover in Germany [J]. International Journal of Digital Earth, 2016, 9(9): 873-891.

[37] Jokar Arsanjani Jamal, Tayyebi Amin, Vaz Eric. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries [J]. Habitat International, 2016, 55:25-31.

[38] 邹佳楠, 潘广磊, 张德朋, et al. 全球30 m分辨率土地覆被遥感产品精度比较分析 [J]. 科技经济导刊, 2019, 27(16): 19-21.

[39] 侯婉, 侯西勇. 全球海岸带多源土地利用/覆盖遥感分类产品一致性分析 [J]. 地球信息科学学报, 2019, 21(07): 1061-1073.

[40] Xu Yidi, Yu Le, Feng Duole, et al. Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30 [J]. International Journal of Remote Sensing, 2019, 40(16): 6185-6202.

[41] Kang Junmei, Wang Zhihua, Sui Lichun, et al. Consistency Analysis of Remote Sensing Land Cover Products in the Tropical Rainforest Climate Region: A Case Study of Indonesia [J]. Remote Sensing, 2020, 12(9):1410.

[42] Zhang X., Liu L., Wu C., et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform [J]. Earth Syst Sci Data, 2020, 12(3): 1625-1648.

[43] Samasse Kaboro, Hanan Niall P., Tappan Gray, et al. Assessing Cropland Area in West Africa for Agricultural Yield Analysis [J]. Remote Sensing, 2018, 10(11):1785.

[44] Yang Zhiqi, Dong Jinwei, Liu Jiyuan, et al. Accuracy Assessment and Inter-Comparison of Eight Medium Resolution Forest Products on the Loess Plateau, China [J]. ISPRS International Journal of Geo-Information, 2017, 6(5):152.

[45] Liang Lu, Gong Peng. Evaluation of global land cover maps for cropland area estimation in the conterminous United States [J]. International Journal of Digital Earth, 2015, 8(2): 102-117.

[46] Waldner Francois, Fritz Steffen, Gregorio Antonio, et al. Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps [J]. Remote Sensing, 2015, 7:7959.

[47] Zhang Chengpeng, Ye Yu, Fang Xiuqi, et al. Coincidence Analysis of the Cropland Distribution of Multi-Sets of Global Land Cover Products [J]. International Journal of Environmental Research and Public Health, 2020, 17(3):707.

[48] Foody Giles M. Status of land cover classification accuracy assessment [J]. Remote Sensing of Environment, 2002, 80(1): 185-201.

[49] Tsendbazar N.E. Global land cover map validation, comparison and integration for different user communities [D]. Wageningen, Netherlands: Wageningen University, 2016.

[50] 白燕, 冯敏. 全球尺度多源土地覆被数据融合与评价研究 [J]. 地理学报, 2018, 73(11): 2223-2235.

[51] Kang Junmei, Sui Lichun, Yang Xiaomei, et al. Spatial Pattern Consistency among Different Remote-Sensing Land Cover Datasets: A Case Study in Northern Laos [J]. ISPRS International Journal of Geo-Information, 2019, 8(5):201.

[52] Bai Yan, Feng Min, Jiang Hao, et al. Assessing Consistency of Five Global Land Cover Data Sets in China [J]. Remote Sensing, 2014, 6(9): 8739-8759.

[53] Latifovic Rasim, Olthof Ian. Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data [J]. Remote Sensing of Environment, 2004, 90(2): 153-165.

[54] 白燕. 全球宏观尺度土地覆盖数据在中国区域的精度分析与融合研究 [D]. 北京:中国科学院大学, 2013.

[55] Jansen Louisa, Gregorio Antonio. Land Cover Classification System (LCCS): Classification Concepts and User Manual [M]. Rome: Food and Agriculture Organization of the United Nations, 2000: 1-91.

[56] Kooistra L., Groenestijn A., Kalogirou V., et al. User requirements from the climate modelling community for next generation global products from land cover CCI project [C]// ESA. Earth Observation for Land-Atmosphere Interaction Science. Wageningen, Netherlands: Wageningen University & Research, 2010: 47.

[57] Arnold Stephan, Kosztra Barbara, Banko Gebhard, et al. The EAGLE concept – A vision of a future European Land Monitoring Framework [C]// 33rd EARSeL symposium“Towards Horizon 2020”, Matera, Italy, 2013. Wageningen, Netherlands: Wageningen University & Research, 2013: 551-568.

[58] 杨永可. 大尺度土地覆盖数据集遥感评价研究 [D].南京:南京大学, 2014.

[59] Gao Yuan, Liu Liangyun, Zhang Xiao, et al. Consistency Analysis and Accuracy Assessment of Three Global 30-m Land-Cover Products over the European Union using the LUCAS Dataset [J]. Remote Sensing, 2020, 12(21):3479.

[60] Yang Yongke, Xiao Pengfeng, Feng Xuezhi, et al. Accuracy assessment of seven global land cover datasets over China [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125:156-173.

[61] Tsendbazar N. E., de Bruin S., Herold M. Assessing global land cover reference datasets for different user communities [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103:93-114.

[62] Tsendbazar N. E., de Bruin S., Mora B., et al. Comparative assessment of thematic accuracy of GLC maps for specific applications using existing reference data [J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 44:124-135.

[63] Zhao Yuanyuan, Gong Peng, Yu Le, et al. Towards a common validation sample set for global land-cover mapping [J]. International Journal of Remote Sensing, 2014, 35(13): 4795-4814.

[64] Tsendbazar N. E., Herold M., de Bruin S., et al. Developing and applying a multi-purpose land cover validation dataset for Africa [J]. Remote Sensing of Environment, 2018, 219:298-309.

[65] Laso Bayas Juan Carlos, Lesiv Myroslava, Waldner François, et al. A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform [J]. Scientific Data, 2017, 4:170136.

[66] Tsendbazar Nandin-Erdene, de Bruin Sytze, Fritz Steffen, et al. Spatial Accuracy Assessment and Integration of Global Land Cover Datasets [J]. Remote Sensing, 2015, 7:15804–15821.

[67] European Statistical System. Methodology for data validation 2.0 [M]. Europe: Eurostat, 2018:1-85.

[68] Friedl Mark A., Sulla-Menashe Damien, Tan Bin, et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets [J]. Remote Sensing of Environment, 2010, 114(1): 168-182.

[69] Liu Canran, Frazier Paul, Kumar Lalit. Comparative assessment of the measures of thematic classification accuracy [J]. Remote Sensing of Environment, 2007, 107(4): 606-616.

[70] Pontius Robert Gilmore, Millones Marco. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment [J]. International Journal of Remote Sensing, 2011, 32(15): 4407-4429.

[71] Lyons Mitchell B., Keith David A., Phinn Stuart R., et al. A comparison of resampling methods for remote sensing classification and accuracy assessment [J]. Remote Sensing of Environment, 2018, 208:145-153.

[72] Olofsson Pontus, Foody Giles M., Stehman Stephen V., et al. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation [J]. Remote Sensing of Environment, 2013, 129:122-131.

[73] Olofsson Pontus, Foody Giles M., Herold Martin, et al. Good practices for estimating area and assessing accuracy of land change [J]. Remote Sensing of Environment, 2014, 148:42-57.

[74] Comber Alexis, Fisher Peter, Brunsdon Chris, et al. Spatial analysis of remote sensing image classification accuracy [J]. Remote Sensing of Environment, 2012, 127:237-246.

[75] Schultz M, Tsendbazar N-E, Herold M, et al. 2015. Utilizing the Global Land Cover 2000 reference dataset for a comparative accuracy assessment of 1 km global land cover maps. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [J], XL-7/W3: 503-510.

[76] Card D.H. Using Known Map Category Marginal Frequencies to Improve Estimates of Thematic Map Accuracy [J]. Photogrammetric Engineering and Remotesensing 1982, 48, No. 3:431-439.

[77] Fritz S., See L. Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Cover for different applications [J]. Global Change Biology, 2008, 14(5): 1057-1075.

[78] Sietse Los. Implications of land-cover misclassification for parameter estimates in global land-surface models: An example from the simple biosphere model (SiB2) [J]. Photogrammetric Engineering & Remote Sensing, 1999, 65(9): 1083-1088.

[79] Mayaux P., Eva H., Gallego J., et al. Validation of the global land cover 2000 map [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1728-1739.

[80] Florczyk Aneta, Corban Christina, Ehrlich Daniele, et al. GHSL Data Package 2019 [M]. Luxembourg: Publications Office of the European Union, 2019:1-38.

[81] Potapov P. V., Turubanova S. A., Tyukavina A., et al. Eastern Europe's forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive [J]. Remote Sensing of Environment, 2015, 159:28-43.

[82] Phalke Aparna R., Özdoğan Mutlu, Thenkabail Prasad S., et al. Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:104-122.

[83] Gallego Javier, Bamps Catharina. Using CORINE land cover and the point survey LUCAS for area estimation [J]. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(4): 467-475.

[84] Orgiazzi A., Ballabio C., Panagos P., et al. LUCAS Soil, the largest expandable soil dataset for Europe: a review [J]. European Journal of Soil Science, 2018, 69(1): 140-153.

[85] Weigand Matthias, Staab Jeroen, Wurm Michael, et al. Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88:102065.

[86] Panagos Panos, Meusburger Katrin, Ballabio Cristiano, et al. Soil erodibility in Europe: A high-resolution dataset based on LUCAS [J]. Science of The Total Environment, 2014, 479-480:189-200.

[87] Karydas Christos G., Gitas Ioannis Z., Kuntz Steffen, et al. Use of LUCAS LC Point Database for Validating Country-Scale Land Cover Maps [J]. Remote Sensing, 2015, 7(5): 5012-5041.

[88] Pflugmacher Dirk, Rabe Andreas, Peters Mathias, et al. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey [J]. Remote Sensing of Environment, 2019, 221:583-595.

[89] Pengra Bruce W., Stehman Stephen V., Horton Josephine A., et al. Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program [J]. Remote Sensing of Environment, 2020, 238:111261.

[90] Cohen Warren B., Yang Zhiqiang, Kennedy Robert. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync — Tools for calibration and validation [J]. Remote Sensing of Environment, 2010, 114(12): 2911-2924.

[91] Herold M., Nightingale J., Friedl M., et al. The GOFC-GOLD/CEOS land cover harmonization and validation initiative: Technical design and implementation [C]// Proceedings of ESA Living Planet Symposium, Bergen in Norway, 2010. Wageningen, Netherlands: Wageningen University & Research, 2010:402822.

[92] Tootchi A., Jost A., Ducharne A. Multi-source global wetland maps combining surface water imagery and groundwater constraints [J]. Earth Syst Sci Data, 2019, 11(1): 189-220.

[93] Defourny P., Kirches, G., Brockmann, C., Boettcher, M., Peters, M., Bontemps, S.,, Lamarche C., Schlerf, M., Santoro. M. Land Cover CCI: Product User Guide Version 2 [M]. Louvain-la-Neuve, Belgium: ESA, 2016:1-91.

[94] Ahlqvist O. Using uncertain conceptual spaces to translate between land cover categories [J]. International Journal of Geographical Information Science, 2005, 19(7): 831-857.

[95] Bai Yan, Feng Min, Jiang Hao, et al. Validation of Land Cover Maps in China Using a Sampling-Based Labeling Approach [J]. Remote Sensing, 2015, 7(8): 10589-10606.

[96] Knight Joseph F. Accuracy Assessment of Thematic Maps Using Inter-Class Spectral Distances [D]; Raleigh, North Carolina: Graduate Faculty of North Carolina State University, 2002.

[97] Herold Martin, Groenestijn Annemarie van, Kooistra Lammert, et al. User Requirements Documents: Land Cover CCI [M]. Université catholique de Louvain (UCL)-Geomatics, Louvain-la-Neuve, Belgium; ESA. 2011:1-95.

[98] Hagemann Stefan. An Improved Land Surface Parameter Dataset for Global and Regional Climate Models [R]. Hamburg, Germany: Max-Planck-Institut für Meteorologie, 2002.

[99] Hagemann Stefan, Botzet Michael, Dümenil LYDIA, et al. Derivation of global GCM boundary conditions from 1 km land use satellite data [R]. Hamburg, Germany: Max-Planck-Institut für Meteorologie,1999.

中图分类号:

 P237    

开放日期:

 2021-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式