- 无标题文档
查看论文信息

论文中文题名:

 群组机器人系统计算资源分配策略研究    

姓名:

 宋冬冬    

学号:

 20207223065    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 博弈论,资源分配    

第一导师姓名:

 孙弋    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Research on resource allocation strategy of group robot system    

论文中文关键词:

 应急场景 ; 群组机器人 ; 资源分配 ; Stackelberg博弈 ; 需求函数    

论文外文关键词:

 Emergency scenario ; Group robot ; Resource allocation ; Stackelberg game ; Demand function    

论文中文摘要:

面对环境参数未知且随时可能发生变化的应急场景,采用群组机器人进行救援工作,可为后续救援人员进入降低人身风险、提高救援保障能力和救援效率。在进行救援的过程中,群组机器人之间需要协作与合作,而机器人之间的资源分配是实现群组机器人协作与合作机制的关键途径。博弈论是研究多个具有共同或者相关利益的理性个体决策行为的学科,能够保证理性个体按照自身需求进行决策。针对机器人之间的资源分配问题,本文提出应急场景中去中心化群组机器人基于博弈论的资源分配策略,主要工作如下:
( 1)针对应急场景群组机器人系统中资源提供机器人和资源消费机器人的服务资源分配问题,提出了基于 Stackelberg 博弈的资源分配模型。在博弈中,首先,资源提供机器人根据自身需求对服务资源进行定价,而资源消费机器人根据资源提供机器人对服务资源的定价确定购买数量。其次,引入资源流行度与偏好内容流行度构建了资源消费机器人的收益函数;综合时间与能耗构建了资源提供机器人的收益函数,并证明了给定资
源提供机器人的定价后,资源消费机器人之间的非合作博弈存在纳什均衡。最后,利用分布式迭代法求解,计算出资源提供机器人和资源消费机器人的均衡收益。
( 2)在实现稳定分配群组机器人服务资源后,针对存储信息时机器人的不同需求函数会产生不同的缓存购买策略问题, 将多个资源提供机器人和多个资源消费机器人对缓存资源的分配问题抽象为 Stackelberg 博弈。首先,资源提供机器人根据自身需求设置缓存资源的价格, 而资源消费机器人根据资源提供机器人对缓存资源的定价确定购买数量,再将购买到的缓存资源出售给任务机器人。其次,设定了任务机器人的线性需求和指数需求,推导出不同需求函数下,资源提供机器人和资源消费机器人的收益函数。最后利用逆向归纳法求解。数值仿真结果表明,在两种需求函数下,资源提供机器人的收益都是先增长后下降,而资源消费机器人的收益则一直呈下降趋势;在资源提供机器人最优收益值方面,线性需求要优于指数需求;而在到达最优收益值速度方面,指数需求要优于线性需求。
综上所述,本文从博弈理论的角度分析和认识应急场景群组机器人的资源分配问题,为应急场景中群组机器人系统的研究奠定了理论基础。
 

论文外文摘要:

In the face of emergency scenarios where environmental parameters are unknown and may change at any time, the use of group robots for rescue work can reduce personal risks for subsequent rescuers and improve rescue support capabilities and rescue efficiency. In the process of rescue, group robots need to cooperate, and resource allocation among robots is the key way to realize the cooperation and cooperation mechanism of group robots. Game theory is a discipline that studies the decision-making behavior of multiple rational individuals with common or related interests, and can ensure that rational individuals make decisions according to their own needs. Aiming at the problem of resource allocation among robots, this thesis proposes a resource allocation strategy based on game theory for decentralized group robots in emergency scenarios. The main work is as follows:

(1)Aiming at the service resource allocation problem of resource-providing robots and resource-consuming robots in the emergency scene group robot system, a resource allocation model based on the Stackelberg game is proposed. In the game, firstly, the resource-providing robot prices the service resources according to its own needs, and the resource-consuming robot determines the purchased quantity according to the pricing of the service resources by the resource-providing robot. Secondly, the revenue function of the resource-consumption robot is constructed by introducing the popularity of resources and the popularity of preferred content; the revenue function of the resource-providing robot is constructed by integrating
time and energy consumption, and it is proved that after the pricing of the resource providing robot is given, the relationship between the resource consumption robot There is a Nash
equilibrium in the non-cooperative game among them. Finally, the distributed iterative method is used to solve the problem, and the equilibrium income of the resource-providing robot and the resource-consuming robot is calculated.

(2)After the stable allocation of group robot service resources is realized, different demand functions of robots when storing information will result in different cache purchasing strategies, and the allocation of multiple resources providing robots and multiple
resource-consuming robots to cache resources The abstraction is a Stackelberg game. First, the resource-providing robot sets the price of cached resources according to its own needs, while the resource-consuming robot determines the purchased quantity according to the pricing of the cached resources by the resource-providing robot, and then sells the purchased cached resources to the task robot. Secondly, the linear demand and exponential demand of task robots are set, and the income functions of resource-providing robots and resource-consuming robots are derived under different demand functions. Finally, it is solved by the backward induction method. Numerical simulation results show that under the two demand functions, the income of the resource-providing robot first increases and then decreases, while the income of the resource-consuming robot has always shown a downward trend; in terms of the optimal income value of the resource-providing robot, the linear demand is better than In
terms of exponential demand; and in terms of the speed of reaching the optimal income value, exponential demand is better than linear demand.


To sum up, this thesis analyzes and understands the resource allocation problem of group robots in emergency scenarios from the perspective of game theory, and lays a theoretical foundation for the research of group robot systems in emergency scenarios.
 

参考文献:

[1] 郑学召,赵炬,张铎等.煤矿救援机器人研究现状及发展趋势[J].工矿自动

化,2019,45(09):7-12.

[2] 巩固,朱华.基于目标识别与避障的煤矿救援机器人自主行走[J].南京理工大学学

报,2022,46(01):32-39.

[3] 王伟嘉,郑雅婷,林国政等.集群机器人研究综述[J].机器人,2020,42(02):232-256.

[4] Melnik E V, Klimenko A B, Ivanov D Y. A blockchain-based technique for making swarm robots distributed decision[C]//Journal of Physics: Conference Series. IOP Publishing, 2019, 1333(5): 052013.

[5] Dias P G F, Silva M C, Rocha Filho G P, et al. Swarm robotics: A perspective on the latest reviewed concepts and applications[J]. Sensors, 2021, 21(6): 2062.

[6] Sun Y, Shao Y. Research on Data Security Communication Scheme of Heterogeneous Swarm Robotics System in Emergency Scenarios[J]. Sensors, 2022, 22(16): 6082.

[7] Fang T, Wu D, Chen J, et al. Joint distributed cache and power control in haptic communications: A potential game approach[J]. IEEE Internet of Things Journal, 2021, 8(18): 14418-14430.

[8] 施巍松,张星洲,王一帆等.边缘计算:现状与展望[J].计算机研究与发

展,2019,56(01):69-89.

[9] Li L, Lv T, Huang P, et al. Cost optimization of partial computation offloading and pricing in vehicular networks[J]. Journal of Signal Processing Systems, 2020, 92: 1421-1435.

[10] 吴雨芯,蔡婷,张大斌.移动边缘计算中基于Stackelberg博弈的算力交易与定价[J].计算机应用,2020,40(09):2683-2690.

[11] Liu M, Liu Y. Price-based distributed offloading for mobile-edge computing with computation capacity constraints[J]. IEEE Wireless Communications Letters, 2017, 7(3): 420-423.

[12] Baek B, Lee J, Peng Y, et al. Three dynamic pricing schemes for resource allocation of edge computing for IoT environment[J]. IEEE Internet of Things Journal, 2020, 7(5): 4292-4303.

[13] 罗萍,宋奇庆,张伟莉.具有价格歧视的多厂商斯塔克博格博弈的均衡分析[J].桂林理工大学学报,2021,41(03):664-670.

[14] 刘荆欣,王妍,韩笑等.基于Stackelberg博弈的边缘云资源定价机制研究[J].计算机科学与探索,2022,16(01):153-162.

[15] Nguyen D T, Le L B, Bhargava V. Price-based resource allocation for edge computing: A market equilibrium approach[J]. IEEE Transactions on Cloud Computing, 2018, 9(1):302-317.

[16] Mondal S, Das G, Wong E. A game-theoretic approach for non-cooperative load balancing among competing cloudlets[J]. IEEE Open Journal of the Communications Society, 2020, 1: 226-241.

[17] Li Y, Jiang C. Distributed task offloading strategy to low load base stations in mobile edge computing environment[J]. Computer Communications, 2020, 164: 240-248.

[18] Chen J, Deng Q, Yang X. Non-cooperative game algorithms for computation offloading in mobile edge computing environments[J]. Journal of Parallel and Distributed Computing, 2023, 172: 18-31.

[19] Guo S, Hu X, Dong G, et al. Mobile edge computing resource allocation: A joint Stackelberg game and matching strategy[J]. International Journal of Distributed Sensor Networks, 2019, 15(7): 1550147719861556.

[20] Jie Y, Guo C, Choo K K R, et al. Game-theoretic resource allocation for fog-based industrial internet of things environment[J]. IEEE Internet of Things Journal, 2020, 7(4):

3041-3052.

[21] 孙弋,许志杰.云机器人系统的计算卸载策略研究[J].西安理工大学学

报,2021,37(04):562-569.

[22] Ahmed J, Razzaque M A, Rahman M M, et al. A Stackelberg game-based dynamic resource allocation in edge federated 5G network[J]. IEEE Access, 2022, 10: 10460-10471.

[23] Semasinghe P, Hossain E, Zhu K. An evolutionary game for distributed resource allocation in self-organizing small cells[J]. IEEE Transactions on Mobile Computing, 2014, 14(2): 274-287.

[24] Huang X, Zhang W, Yang J, et al. Market-based dynamic resource allocation in Mobile Edge Computing systems with multi-server and multi-user[J]. Computer Communications, 2021, 165: 43-52.

[25] Kumar D, Baranwal G, Vidyarthi D P. A survey on auction based approaches for resource allocation and pricing in emerging edge technologies[J]. Journal of Grid Computing, 2022, 20(1): 3.

[26] Zhang J, Yang X, Xie N, et al. An online auction mechanism for time-varying multidimensional resource allocation in clouds[J]. Future Generation Computer Systems, 2020, 111: 27-38.

[27] Ghasemian Koochaksaraei M H, Toroghi Haghighat A, Rezvani M H. A bartering double auction resource allocation model in cloud environments[J]. Concurrency and Computation: Practice and Experience, 2022, 34(19): e7024.

[28] Qiu H, Li T. Auction method to prevent bid-rigging strategies in mobile blockchain edge computing resource allocation[J]. Future Generation Computer Systems, 2022, 128: 1-15.

[29] Reza Dibaj S M, Miri A, Mostafavi S A. A cloud priority-based dynamic online double auction mechanism (PB-DODAM)[J]. Journal of Cloud Computing, 2020, 9: 1-26.

[30] Li Z, Jiang C, Kuang L. Double auction mechanism for resource allocation in satellite MEC[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(4): 1112-1125.

[31] Ng J S, Lim W Y B, Xiong Z, et al. A double auction mechanism for resource allocation in coded vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2021, 71(2): 1832-1845.

[32] Zhao J, Li Q, Gong Y, et al. Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7944-7956.

[33] Jouhari M, Al-Ali A K, Baccour E, et al. Distributed CNN inference on

resource-constrained UAVs for surveillance systems: Design and optimization[J]. IEEE Internet of Things Journal, 2021, 9(2): 1227-1242.

[34] Do-Duy T, Nguyen L D, Duong T Q, et al. Joint optimisation of real-time deployment and resource allocation for UAV-aided disaster emergency communications[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3411-3424.

[35] Seid A M, Boateng G O, Anokye S, et al. Collaborative computation offloading and resource allocation in multi-UAV-assisted IoT networks: A deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2021, 8(15): 12203-12218.

[36] Albanese A, Nardello M, Brunelli D. Low-power deep learning edge computing platform for resource constrained lightweight compact UAVs[J]. Sustainable Computing: Informatics and Systems, 2022, 34: 100725.

[37] Yan S, Peng M, Cao X. A game theory approach for joint access selection and resource allocation in UAV assisted IoT communication networks[J]. IEEE Internet of Things Journal, 2018, 6(2): 1663-1674.

[38] Chen J, Wu Q, Xu Y, et al. A multi-leader multi-follower stackelberg game for coalition-based UAV MEC networks[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2350-2354.

[39] Yuan X, Xie Z, Tan X. Computation offloading in UAV-enabled edge computing: a stackelberg game approach[J]. Sensors, 2022, 22(10): 3854.

[40] Brogi A, Forti S, Guerrero C, et al. How to place your apps in the fog: State of the art and open challenges[J]. Software: Practice and Experience, 2020, 50(5): 719-740.

[41] 任品毅,许茜.基于移动边缘计算的时延能耗最小化安全传输[J].通信学

报,2020,41(11):52-63.

[42] Saputra Y M, Hoang D T, Nguyen D N, et al. A novel mobile edge network architecture with joint caching-delivering and horizontal cooperation[J]. IEEE Transactions on Mobile Computing, 2019, 20(1): 19-31.

[43] Yang P, Wu W, Zhang N, et al. Beamforming-Aided Cooperative Edge Caching in mmWave Dense Networks[J]. Millimeter-Wave Networks: Beamforming Design and Performance Analysis, 2021: 121-155.

[44] Pedersen J, i Amat A G, Goseling J, et al. Dynamic coded caching in wireless networks[J]. IEEE Transactions on Communications, 2020, 69(4): 2138-2147.

[45] 蒋雁翔,夏骋宇.雾无线接入网中的多层协作缓存方法[J].通信学

报,2019,40(09):116-123.

[46] Qi K, Han S, Yang C. Learning a hybrid proactive and reactive caching policy in wireless edge under dynamic popularity[J]. IEEE Access, 2019, 7: 120788-120801.

[47] 汪科,陈家慧,吴幼龙.基于分层网络的中心化和去中心化编码缓存方案[J].中国科学院大学学报,2022,39(02):224-231.

[48] 王珂,江凌云.基于数据源的内容中心网络概率缓存策略[J].南京邮电大学学报(自然科学版),2019,39(05):105-110.

[49] Askar S S, Al-khedhairi A. Cournot duopoly games: models and investigations[J]. Mathematics, 2019, 7(11): 1079.

[50] Demuynck T, Herings P J J, Saulle R D, et al. Bertrand competition with asymmetric costs: a solution in pure strategies[J]. Theory and Decision, 2019, 87: 147-154.

[51] NAs J F. Non-cooperative games[J]. Annals of mathematics, 1951, 54(2): 286-295.

[52] Yang C, Yao Y, Chen Z, et al. Analysis on cache-enabled wireless heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2015, 15(1): 131-145.

[53] Zhong N, Zhang H, Zhang X. Collaborative Partition Caching with Local

Popularity[C]//2020 IEEE 20th International Conference on Communication Technology (ICCT).IEEE, 2020: 514-518.

[54] Wang Y, Meng S, Chen Y, et al. Multi-leader multi-follower Stackelberg game based dynamic resource allocation for mobile cloud computing

environment[J]. Wireless Personal Communications, 2017, 93: 461-480.

[55] Jie Y, Li M, Guo C, et al. Game-theoretic online resource allocation scheme on fog computing for mobile multimedia users[J]. China Communications, 2019, 16(3): 22-31.

[56] Tran T D, Le L B. Resource allocation for multi-tenant network slicing: A multi-leader multi-follower stackelberg game approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8886-8899.

[57] Wang K, Ding Z, So D K C, et al. Stackelberg game of energy consumption and latency in MEC systems with NOMA[J]. IEEE Transactions on Communications, 2021, 69(4): 2191-2206.

[58] Li H, Zhou W, Chu T. Stability, Multistability, and Complexity Analysis in a Dynamic Duopoly Game with Exponential Demand Function[J]. Complexity, 2021, 2021: 1-16.

中图分类号:

 TP242    

开放日期:

 2023-07-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式