- 无标题文档
查看论文信息

论文中文题名:

 汉中盆地浅埋深粘土包气带氮运移规律研究    

姓名:

 蒲芳    

学号:

 20209085031    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0830    

学科名称:

 工学 - 环境科学与工程(可授工学、理学、农学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 环境科学与工程    

研究方向:

 地下水污染与防治    

第一导师姓名:

 田华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Study on the migration of nitrogen in shallow buried groundwater among unsaturated zone in Hanzhong Basin    

论文中文关键词:

 原位实验 ; 氮运移 ; 粘土包气带 ; 地下水浅埋深 ; 非饱和带数值模拟    

论文外文关键词:

 In-situ experimental ; Nitrogen migration and transformation ; Clay unsaturated zone ; Shallow groundwater table ; Unsaturated zone numerical simulation    

论文中文摘要:

农业活动中过量使用氮肥易诱发地下水氮污染,对地下水环境和人体健康产生直接危害,已经成为全球关注的问题。氮肥经降雨淋滤作用下渗运移至地下水,首先经过包气带。因此探究包气带中氮素的运移规律对地下水氮污染防控有着重要意义。目前,氮运移在层状包气带和厚包气带研究较多,而在地下水浅埋深粘土包气带较少。本文通过开展原位实验和构建数值模型相结合的方法,对地下水浅埋深粘土包气带中氮素运移开展研究。查明汉中盆地地下水浅埋深粘土包气带氮运移规律,构建氮素迁移转化模型,阐明不同降水水平年(丰水年、平水年、枯水年)条件下当地施肥对地下水的污染风险。结果表明:

(1)浅埋深粘土包气带各层氨氮浓度随时间呈先升高后降低的变化趋势,随深度呈现逐渐降低趋势,在第3天达到最大值3.638 mg/kg,至第61天实验结束时其浓度仍未回归至氨氮背景浓度。硝酸盐氮浓度从地表至潜水面呈现逐渐降低的趋势,随时间呈现先上升后下降的变化趋势,第4天达到最大值58.20 mg/kg,比氨氮晚1天达到,至第61天实验结束时其浓度仍未回归至背景浓度。

(2)实验场地下水埋深介于145.9~173.6 cm之间,而毛细上升高度可达297 cm。受毛细上升作用影响,地下水向上运移使土壤含水率达到近饱和(0.30~0.46 cm3/cm3),包气带成为水分通道,氨氮和硝态氮易随水分向下迁移从而进入地下水中。粘土包气带含水率较高(近饱和)条件下,因降雨驱动氨氮和硝态氮易随水分向下运移从而造成地下水污染。根据Peclet数(Npe)看出,浅埋深粘土包气带,氮素迁移受降雨影响较大。降雨时Npe值增大,对流逐渐占优,氮素易随水向下迁移,无降雨时Npe值减小,对流和弥散共同作用,氮素向下迁移变慢。

(3)通过氮素运移模型的质量守恒分析可得,下边界水分损失为水分输入总量的60.1%,水分损失主要由水分向下运移导致,包气带仅作为通道供水分流通。氨氮进入土壤会发生硝化反应,随着时间延长硝化反应越剧烈,其由8.3%增长至85.3%。土壤硝酸盐氮易随水淋失,淋失量占14%~18%。硝态氮会发生反硝化反应,随着时间延长反硝化反应越剧烈,其由3.5%增长至76.6%。

(4)模型预测了不同降雨量下进入地下水的氮浓度。丰水年氨氮和硝态氮进入地下水速率较快,分别在59天和21天达到峰值1.077 mg/L和63.57 mg/L,在109天和62天其含量已下降至地下水三类水标准。枯水年氨氮和硝态氮进入地下水速率较慢,分别在90天和43天达到峰值0.730 mg/L和40.1 mg/L,在189天和75天其含量才下降至地下水三类水标准。说明地下水浅埋深地区,溶质较易随水分运移。不同降雨量条件下溶质运移速率不同,可为当地地下水中的氮污染防控提供一定的理论指导。

论文外文摘要:

Excessive use of nitrogen fertilizers in agricultural activities is prone to induce groundwater nitrogen pollution, which is a direct hazard to groundwater environment and human health and has become a global concern. Nitrogen fertilizer is transported to groundwater by rainfall leaching, and firstly, it passes through the unsaturated zone. Therefore, it is important to investigate the transport pattern of nitrogen in the unsaturated zone for groundwater nitrogen pollution prevention and control. At present, nitrogen transport is more studied in the stratified and thick unsaturated zone, and less in the shallow buried deep clay unsaturated zone of groundwater. In this paper, we investigate the nitrogen transport in a shallow buried deep clay unsaturated zone in groundwater by a combination of in situ experiments and numerical modeling. To identify the nitrogen transport pattern in the shallowly buried deep clay unsaturated zone of groundwater in the Hanzhong basin, construct a nitrogen transport transformation model, and elucidate the risk of groundwater pollution by local fertilizer application under different precipitation level years (abundant water year, flat water year, and dry water year). The results show that:

(1) The concentration of ammonia nitrogen in each layer of the shallow buried deep clay unsaturated zone showed a trend of increasing and then decreasing with time and gradually decreasing with depth, reaching a maximum value of 3.638 mg/kg on the third day, and its concentration still did not return to the background concentration of ammonia nitrogen by the end of the experiment on the sixty-first day. The nitrate nitrogen concentration showed a gradual decrease from the surface to the diving surface, and showed a trend of increasing and then decreasing with time, reaching a maximum value of 58.20 mg/kg on the fourth day, one day later than the ammonia nitrogen, and its concentration still had not returned to the background concentration by the end of the experiment on the sixty-first day.

(2) The depth of groundwater in the experimental site ranged from 145.9 to 173.6 cm, while the capillary rise height could reach 297 cm. Under the influence of capillary rise, the upward movement of groundwater caused the soil water content to reach near saturation (0.30-0.46 cm3/cm3), and the unsaturated zone became a water channel, and ammonia and nitrate nitrogen easily migrated downward with water and thus entered the groundwater. Under the condition of high water content (near saturation) in the clay unsaturated zone, rainfall-driven ammonia and nitrate nitrogen are easily transported downward with moisture thus causing groundwater pollution. According to the Peclet number (Npe), the nitrogen migration is more influenced by rainfall in the shallow buried deep clay unsaturated zone. When the Npe value increases with rainfall, convection gradually prevails, and nitrogen is easily transported downward with water, while the Npe value decreases without rainfall, and nitrogen migration downward becomes slower due to the combined effect of convection and dispersion.

(3) The mass conservation analysis of the nitrogen transport model shows that the water loss at the lower boundary is 60.1% of the total water input, and the water loss is mainly caused by the downward transport of water, and the unsaturated zone is only used as a channel for water distribution flow. Ammonia nitrogen entering the soil undergoes nitrification reaction, and the nitrification reaction becomes more intense as time increases, and it increases from 8.3% to 85.3%. Soil nitrate nitrogen is easily leached with water, with 14% to 18% of the leached amount. Nitrate nitrogen undergoes denitrification reaction, and the denitrification reaction becomes more intense as time increases, and it increases from 3.5% to 76.6%.

(4) The model predicted the nitrogen concentrations entering groundwater under different rainfall amounts. The rate of ammonia nitrogen and nitrate nitrogen entering the groundwater was fast in the water-abundant year, peaking at 1.077 mg/L and 63.57 mg/L on the fifty-ninth and twenty-first days, respectively, and their levels dropped to the groundwater class III standard on the one hundred and ninth and sixty-second days.The rate of ammonia nitrogen and nitrate nitrogen entering groundwater in the dry year was slow, reaching peaks of 0.730 mg/L and 40.1 mg/L on ninety and forty-three days, respectively, before their levels dropped to the groundwater Class III standard on one hundred and eighty-nine and seventy-five days. It indicates that solutes are more easily transported with water in the area of shallow groundwater burial depth. The different solute transport rates under different rainfall conditions can provide some theoretical guidance for the prevention and control of nitrogen pollution in local groundwater.

参考文献:

[1] 张书新. 地下水“三氮”迁移转化模型的解析解及其应用[D]. 长春: 长春工业大学, 2017.

[2] 李想. 千烟洲试验区地下水中“三氮”的迁移转化规律及数值模拟研究[D]. 辽宁: 辽宁工程技术大学, 2011.

[3] Spalding R F, Exner M E. Occurrence of nitrate in groundwater: a review[J]. Environment quality, 1993, 22, 392-402.

[4] Beeson S, Cook M C. Nitrate in groundwater: a water company perspective[J]. Geological hydrogeol, 2004, 37(4), 261-270.

[5] Mengis M, Schiff S. L, Harris M, et al. Multiple geochemical and isotopic approaches for assessing ground water NO3- elimination in riparian zone[J]. Ground water, 1999, 37(3):448-459.

[6] 张雪. 我国提出到2020年实现化肥和农药使用量零增长目标—农业减“肥”不会影响粮食安全[J]. 农村•农业•农民(A版), 2015, 4: 13-14.

[7] 马洪斌, 李晓欣, 胡春胜. 中国地下水硝态氮污染现状研究[J]. 土壤通报, 2012, 43(6): 1532-1536.

[8] 任军, 边秀芝, 郭金瑞, 等. 我国农业面源污染的现状与对策Ⅰ.农业面源污染的现状与成因[J]. 东北农业科学, 2010, 35(2): 48-52.

[9] 张云, 张胜, 刘长礼, 等. 包气带土层对氮素污染地下水的防护能力综述与展望[J]. 农业环境科学学报, 2006, 25(s1): 339-346.

[10] 孙芳强, 张方, 华雯, 等. 汉中市地下水调查评估及污染防治区划项目[R]. 西安市中地环境科技有限公司, 2018.

[11] 聂思雨. 吉林西部盐渍土区包气带水氮运移规律及模拟研究[D]. 吉林: 吉林大学, 2018.

[12] 刘静. 雄安新区包气带土壤氮污染对地下水环境影响评价[D]. 郑州: 华北水利水电大学, 2019.

[13] 崔玉亭. 化肥与生态环境保护[M]. 北京: 化学工业出版社, 2000: 25-26.

[14] 蒋辉. 环境水化学[M]. 北京: 化学工业出版社, 2003: 23-28.

[15] 奚振邦. 农田生态系统中氮素循环的简析[J]. 我国氮素研究工作现状与展望, 北京: 科学出版社, 1995: 61-65.

[16] Mohammad N A, Jagath J K. Modeling nitrate contamination of groundwater in agricultural watersheds[J]. Journal of Hydrology, 2007, 343(3/4): 211-229.

[17] Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiological perspective[J]. Journal of Experimental Botany, 2002, 53(370): 789-799.

[18] Wang Z, Li S. Effects of N and P fertilization on plant growth and nitrate accumulation in vegetables[J]. Journal of Plant Nutrition, 2004, 27(3): 539-556.

[19] Ding J T, Xi B D, Gao R T, et al. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach [J]. Science of the Total Environment, 2014, 484: 10-18.

[20] Ditz D, Ranganathan J. Global developments on environmental performance indicators[J]. Corporate Environmental Strategy, 1998, 5(3): 47-52.

[21] Sitaula B, Sitaula J, Aakra A, et al. Nitrification and methane oxidation in forest soil: Acid deposition, nitrogen input and plant effects[J]. Water, Air, and Soil Pollution, 2001, 130: 1061-1066.

[22] 熊金莲. 土壤中固定态铵含量与固铵强度[J]. 土壤, 1994(01): 26-30.

[23] 聂发辉, 李娟花, 刘占孟. 鄱阳湖湿地土壤对氨氮的吸附性能研究[J]. 华东交通大学学报, 2015, 32(2): 7.

[24] 王而力, 王嗣淇, 赵晓亮. 风沙土不同有机组分对氨氮的吸附特征影响[J]. 农业环境科学学报, 2012, 31(7): 8.

[25] 潘晓峰. 氮在包气带中迁移转化规律的研究及模型的建立[D]. 吉林: 吉林大学, 2006.

[26] 杨静, 肖天昀, 李海波, 等. 江汉平原地下水中硝酸盐的分布及影响因素[J]. 中国环境科学, 2018, 38(02): 710-718.

[27] Humbert S, Tarnawski S, Freomin N, et al. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity[J]. The ISME Journal, 2010(4): 450-454.

[28] 曹彦强, 闫小娟, 罗红燕, 等. 不同酸碱性紫色土的硝化活性及微生物群落组成[J]. 土壤学报, 2018, 55(1): 9.

[29] 王萍萍, 段英华, 徐明岗,等. 不同肥力潮土硝化潜势及其影响因素[J]. 土壤学报, 2019(1): 11.

[30] Mekala C, Nambi IM. Understanding the hydrologic control of n cycle: effect of water filled pore space on heterotrophic nitrification, denitrification and dissimilatory nitrate reduction to ammonium mechanisms in unsaturated soils[J]. Journal of Contaminant Hydrology, 2017, 202: 11-22.

[31] Bollmann A, Conrad R. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils[J]. Global Change Biology, 1998, 4(4): 387-396.

[32] Miller K S, Geisseler D. Temperature sensitivity of nitrogen mineralization in agricultural soils[J]. Biology and fertility of soils, 2018, 54(7): 853-860.

[33] Wang Y, Diao HJ, Dong KH, et al. Effects of precipitation change and nitrogen addition on soil net N mineralization in a saline- alkaline grassland of Northern Shanxi Province, China[J]. The journal of applied ecology, 2021, 32(7): 2389-2396.

[34] Braos L B, Ruiz J, Lopes IG, et al. Mineralization of nitrogen in soils with application of acid whey at different pH[J]. Journal of soil science and plant nutrition, 2020, 20(3): 1102-1109.

[35] Watts D B, Torbert H A, Feng YC, et al. Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position[J]. Soil science, 2010, 175(10): 474-486.

[36] Sradnick A, Murugan R, Oltmanns M, et al. Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer[J]. Applied soil ecology, 2013, 63: 23-28.

[37] 张雨. 甘肃某戈壁区包气带土-水特征及核素迁移规律研究[D]. 吉林: 吉林大学, 2021.

[38] 白红英, 唐克丽, 陈文亮, 等. 坡地土壤侵蚀与养分流失过程的研究[J]. 水土保持通报, 1991(03): 14-19.

[39] 王辉, 王全九, 邵明安, 等. 翻耕与压实对坡地土壤溶质迁移过程的影响[J]. 中国水土保持科学, 2008, 6(06): 21-25+86.

[40] 贺连娟. 氮污染物通过饱和粘性土层垂直渗透时迁移机理研究[D]. 吉林: 吉林大学, 2009.

[41] 王飞. 氨氮在人工土层快渗系统中运移的模拟研究[D]. 重庆: 重庆大学, 2008.

[42] Lunn R J, Mackay R. Solution of multispecies transport in the unsaturated zone[J]. Journal of Hydrology, 1995, 168: 29-50.

[43] Vasssilis Z A, Guido C L. Modeling of water and nitrogen dynamics on an undisturbed soil and a restored soil after open-cast mining[J]. Agricultural Water Management, 1998, 37: 21-40.

[44] Chowdary V M, Rao N H., Sarma P B. A coupled soil water and nitrogen balance model for flooded rice fields in India[J]. Agriculture Ecosystems and Environment, 2004.103 (3), 425-441.

[45] Jeon J H, Yoon C G, Ham J H, et al. Model development for nutrient loading estimates from paddy rice fields in Korea[J]. Journal of Environmental Science and Health, 2004, 39(5-6): 845-860.

[46] Wu L, Mcgechan M B, Mcroberts N, et al. SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling-Model description[J]. Ecological Modelling, 2007, 200: 343-359.

[47] Sugita F, Nakane K. Combined effects of rainfall patterns and porous media properties on nitrate leaching[J]. Vadose Zone Journal, 2007, 6(3):548-553.

[48] Gu C H, William J R. Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling-A modeling analysis[J]. Journal of Contaminant Hydrology, 2010, 112: 141-154.

[49] Jellali S, Diamantopoulos E, Kallali H, et al. Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non-equilibrium transport processes[J]. Journal of Environmental Management, 2010, 91:895-905.

[50] Arash T, Ali R S. Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields[J]. Agricultural Water Management, 2012, 113:19-29.

[51] Rock G., Kupfersberger H. Modeling shallow groundwater nitrate concentrations by direct coupling of the vadose and the saturated zone[J]. Environmental Earth Sciences, 2019, 78(9): 283-293.

[52] Zheng W, Wang S, Tan K, et al. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain[J]. Science of the Total Environment, 2020, 707:136168-136178.

[53] Mo X, Peng H, Xin J, et al. Analysis of urea nitrogen leaching under high-intensity rainfall using HYDRUS-1D[J]. Journal of Environmental Management, 2022,312: 114900-114908.

[54] 冯绍元, 张瑜芳, 沈荣开. 非饱和土壤中氮素运移与转化试验及其数值模拟[J]. 水利学报, 1996(08): 8-15.

[55] 冯绍元, 郑耀泉. 农田氮素的转化与损失及其对水环境的影响[J]. 农业环境保护, 1996(06): 277-279.

[56] 张思聪, 吕贤弼, 黄永刚. 灌溉施肥条件下氮素在土壤中迁移转化的研究[J]. 水利水电技术, 1999(05): 6-8..

[57] 甘建民, 孟盈, 郑征, 等. 施肥对热带雨林下种植砂仁土壤氮矿化和硝化作用的影响[J]. 农业环境科学学报, 2003(02): 174-177.

[58] 段永蕙, 张乃明, 张玉娟. 施肥对滇池流域农田土壤氮流失的影响[J]. 水土保持研究, 2004(03): 243-244+271.

[59] 常影. 耕作和施肥对黑土氮素转化菌影响的初步研究[D]. 长春: 吉林农业大学, 2005.

[60] 曹林奎. 旱田土壤氮素流失特征及其控制途径研究[D]. 上海: 上海交通大学, 2006.

[61] 姜桂华, 王文科. 关中盆地包气带氮迁移转化数值模拟及预测[J]. 西北大学学报, 2007(05): 825-829.

[62] 陈晓歌. 黄土层中氮素运移试验研究及数学模拟分析[D]. 西安: 西北农林科技大学, 2008.

[63] 温浩, 李昭苏, 付学功. 污水灌溉后硝酸盐氮在土壤和地下水中运移特性[J]. 水利科技与经济, 2010(04): 423-426.

[64] 李天. 河北平原区农田土壤硝态氮运移规律及地下水污染数值模拟研究[D]. 河北: 河北农业大学, 2013.

[65] 薛亮, 马忠明, 杜少平. 水氮耦合对绿洲灌区土壤硝态氮运移及甜瓜氮素吸收的影响[J]. 植物营养与肥料学报, 2014, 20(01): 139-147.

[66] 高太忠, 付海燕. 氮在河北平原包气带中的迁移转化机制[J]. 安全与环境学报, 2015, 15(01): 217-221.

[67] 董佩, 李阳, 孙颖, 等. 包气带黏性土层对氮素污染地下水的防污性能试验研究[J]. 现代地质, 2016, 30(03): 688-694.

[68] 杨亚茹, 唐仲华. 土壤中硝态氮迁移转化的数值模拟研究[J]. 人民长江, 2019, 50(04): 53-57.

[69] 田路遥, 王仕琴, 魏守才, 等. 层状包气带黏土层厚度对硝态氮迁移的影响[J]. 农业工程学报, 2020, 36(14): 55-62.

[70] 蒲芳, 黄金廷, 宋歌, 等. 浅埋深黏土包气带氮迁移转化原位实验研究[J]. 中国环境学, 2022, 42(06): 2707-2713.

[71] Soylu M E, Kucharik C J, Ii S P. Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem-Variably saturated soil water flow model[J]. Agricultural & Forest Meteorology, 2014, s 189-190(6): 198-210.

[72] 康绍忠. 土壤—植物—大气连续体水分传输理论及其应用[M]. 水利电力出版社, 1994.

[73] Hantush M M, Mariño M A, Islam M R. Models for leaching of pesticides in soils and groundwater[J]. Journal of Hydrology, 2000, 227(1): 66-83.

[74] Sinke A J C, Dury O, Zobrist J. Effects of a fluctuating water table: column study on redox dynamics and fate of some organic pollutants[J]. Journal of Contaminant Hydrology, 1998, 33(1-2): 231-246.

[75] Seibert J, Rodhe A, Bishop K. Simulating interactions between saturated and unsaturated storage in a conceptual runoff model[J]. Hydrological Processes, 2003, 17(2): 379-390.

[76] 麦麦提吐尔逊•艾则孜. 伊犁河谷灌区土壤盐渍化与地下水调控研究[D]. 新疆大学, 2010.

[77] Rainwater K, Mayfield M P, Heintz C, et al. Enhanced in situ Biodegradation of Diesel Fuel by Cyclic Vertical Water Table Movement: Preliminary Studies[J].Water Environment Research, 1993, 65(6): 717-725.

[78] 亢连强. 不同地下水埋深条件下再生水灌溉的试验研究[D]. 西安: 西北农林科技大学, 2007.

[79] 李翔, 杨天学, 白顺果, 等. 地下水位波动对包气带中氮素运移影响规律的研究[J]. 农业环境科学学报, 2013, 32(12): 2443-2450.

[80] Han M, Zhao C, Šimůnek J, et al. Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model[J]. Agricultural Water Management, 2015, 160: 64-75.

[81] 杨启红, 张慧婷, 胡望斌, 等. 长江中游地下水水位变化对氮输出的影响研究[J].水生态学杂志, 2013, 34(02): 1-6.

[82] Ma Z, Lian X, Jiang Y, et al. Nitrogen transport and transformation in the saturated-unsaturated zone under recharge, runoff, and discharge conditions[J]. Environmental Science and Pollution Research, 2016, 23(9): 8741-8748.

[83] 孙志高, 刘景双. 三江平原典型湿地土壤硝态氮和铵态氮垂直运移规律[J]. 水土保持学报, 2007(06): 25-30.

[84] Zhou J B, Xi J G, Chen Z J, et al. Leaching and transformation of nitrogen fertilizers in soil after application of N with irrigation: a soil column method[J]. Pedosphere, 2006, 16(2): 245-252.

[85] 刘健. 三种质地土壤氮素淋溶规律研究[D]. 北京: 北京林业大学, 2010.

[86] 颉沛骅. 汉中盆地气候变化特征研究[D]. 成都: 四川师范大学, 2018.

[87] 车旭. 汉台区耕地质量评价研究[D]. 西安: 长安大学, 2019.

[88] Genuchten M T Van. A close-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil science soviery of America journal, 1980, 44: 892-898.

[89] Gardner W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science, 1958, 85(4): 228-232.

[90] Fredlund D G, Xing A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.

[91] 徐绍辉, 张佳宝, 刘建立, 等. 表征土壤水分持留曲线的几种模型的适应性研究[J]. 土壤学报, 2002, 39(04): 498-504.

[92] 姜桂华, 王文科, 杨胜科. “三氮”在黄土非饱和带迁移转化原位试验及数值模拟[J]. 吉林大学学报(地球科学版), 2004, 34(04): 571-575.

[93] 梁秀娟, 肖长来, 盛洪勋, 等. 吉林市地下水中“三氮”迁移转化规律[J]. 吉林大学学报(地球科学版), 2007, 37(02): 335-340.

[94] 李翔. 关中盆地马兰黄土中三氮转化及相关微生物关系实验研究[D]. 西安: 长安大学, 2003.

[95] 段磊. 关中盆地地下环境氮污染机理与地下水质安全评价[D]. 西安:长安大学, 2010: 43.

[96] Peterson B J, Wollheim W M, Mulholland P J, et al. Control of nitrogen export from watershed by headwater streams[J]. Science, 2001, 292(5514): 86-90.

[97] 马文洁, 何江涛, 金爱芳, 等. 萘和p,p’-DDE在典型包气带介质上的吸附动力学及吸附—解吸特征[J]. 农业环境科学学报, 2010, 29(7): 1275-1282.

[98] Hou L J, Liu M, Lu J, et al. Ammonium regeneration in intertidal sediments of the Yangtze estuary during air-exposure[J]. Coastal and Shelf Science, 2007, 49: 937-945.

[99] Holmboe N, Kristensen E. Ammonium adsorption in sediments of a tropical mangrove forest (Thailand) and a temperate Wadden Sea area (Denmark)[J]. Wetlands Ecology and Management, 2002, 10(6): 453-460.

[100] Hou L J, Liu M, Jiang H Y, et al. Ammonium adsorption by tidal flat surfaces ediments from the Yangtze Estuary[J].Environmental Geology, 2003, 45(1): 72-78.

[101] Thomas H C, Paul L B, Peter K. Natural attenuation a feasible approachto remediation of groundwater pollution at landfill[J]. Groundwater Monitoring and Remediation, 2000, 20(1): 69-77.

[102] 田华. 基于过程的地下水污染风险评价[D]. 西安: 西安科技大学, 2011.

[103] 栗现文, 周金龙, 周念清, 等. 潜水高矿化度对粉质粘土毛细水上升的影响[J]. 干旱区资源与环境, 2016, 30(7): 192-196.

[104] Sinishaw S G. Effects of Capillary Rise Saturation on Properties of Sub Grade Soil[J]. American Journal of Construction and Building Materials, 2021, 5(2): 32-49.

[105] Asaf B N, Shmuel A, Uri S, et al. Impact of ambient conditions on evaporation from porous media[J]. Water Resources Research, 2014, 50(8):6696-6712.

[106] Šimůnek J, Genuchten M Th, Šejna M. Development and applications of the HYDRUS and STANMOD software packages and related codes[J]. Vadose Zone Journal, 2008, 7, 587-600.

[107] 宿梅双. 喷灌均匀系数对土壤水氮淋失及作物生长影响的田间试验研究[D]. 北京: 中国农业大学, 2005.

中图分类号:

 x523    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式