- 无标题文档
查看论文信息

论文中文题名:

 上湾选煤厂煤泥水-絮凝剂静态混合 优化研究与应用    

姓名:

 杨彦斌    

学号:

 19213213055    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085218    

学科名称:

 工学 - 工程 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿业工程    

研究方向:

 煤炭洗选加工    

第一导师姓名:

 周安宁    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-29    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Research and application of static mixing optimization of coal slime water flocculant in Shangwan Coal Preparation Plant    

论文中文关键词:

 煤泥水 ; 絮凝剂 ; 静态混合器 ; 药剂混合 ; 系统优化    

论文外文关键词:

 coal slime water ; flocculant ; static mixer ; medicament mixing ; system optimization    

论文中文摘要:

煤泥水处理是选煤厂生产过程中的重要环节,随着国家对于环保力度的加强,煤泥水处理单元成为选煤厂工作的关键环节。由于煤泥水中含有大量的高灰细泥,在人工加药过程中,存在药剂与煤泥水混合效果差和药剂添加不稳定等问题,这就给选煤厂的煤泥水处理工作带来了极大的困扰。本文以上湾选煤厂煤泥水处理系统为研究对象,分析了煤泥水的性质,开展了实验室絮凝沉降试验,基于数值模拟研究了不同结构药剂静态混合器的流场情况,设计了实验室条件下的静态混合器,探究了药剂与煤泥水最优混合方案,并对生产现场的煤泥水加药系统进行了改造。研究结果对选煤厂煤泥水处理系统优化具有重要现实指导意义。主要内容如下:

(1)对上湾选煤厂煤泥水进行了性质分析和絮凝沉降试验研究。结果表明,煤泥细颗粒含量较高,煤泥表面存在较多的含氧官能团,煤泥表面带负电。无机絮凝剂聚合氯化铝(PAC)对沉降速度的影响较小,对澄清水的质量影响较大,当PAC用量减少时,澄清度变差;有机絮凝剂聚丙烯酰胺(PAM)对沉降速度的影响较大,对澄清水的质量影响较小,改变有机药剂用量,澄清水质量均较好。当PAC药剂用量为吨干煤泥0.52 Kg,PAM药剂用量为吨干煤泥0.21 Kg,对试验煤泥水有较好的沉降效果。

(2)采用全管径、半管径和收缩径三种静态混合器结构模型,模拟了絮凝剂的混合过程。研究发现,全管径结构模型由于其管内流体非满管状态流动,螺旋叶片与圆管内壁面相切的结构性质会产生较强湍流现象,气液两相耦合现象严重,会对煤泥水流体中已经形成的煤泥絮凝团造成不利的影响,而且沿管程阻力较大,不利于煤泥水流体顺利流入浓缩机中;采用半管径与收缩径两种几何模型时,气液两相耦合较全管径结构模型的气液两相耦合更少,速度更均匀,但半管径结构模型的速度云图表明,半幅螺旋叶片存在煤泥水液流摔落现象,容易出现已经絮凝好的絮团被“摔碎”的现象。因此螺旋叶片与边壁有空隙的收缩径结构模型更适合煤泥水的絮凝。合理的螺旋叶片应为螺距处于3200 mm至4000 mm之间的收缩径结构型式。

(3)在实验室静态混合器上验证了试验用煤泥水的药剂絮凝混合效果。依据上湾选煤厂浓缩机入料管参数,计算得到实验室静态混合器的叶片尺寸为200*33.3 mm,管道为DN50。试验结果表明,与单点加药情况对比,采用走桥多孔加药的方式煤泥水絮凝沉降速度快;螺旋叶片长度过长会导致煤泥水与药剂混合时间过长,破坏已形成的絮团,影响煤泥水的絮凝沉降效果。适宜尺寸的叶片不仅制作简单,且工作效果优良,能够使药剂混合过程产生较大速度梯度,混合效果明显提高。

(4)基于上述研究结果,进一步优化并改造了选煤厂的煤泥水处理加药系统。改造后,浓缩机呈现出良好的工作状态,药剂制度合理。浓缩机底流浓度提高了65.6 g/L,加压过滤机排料周期平均缩短了48 s。阳离子药剂消耗降低了6.73%,阴离子药剂消耗降低了8.81%。加药系统优化改造后的不仅煤泥水系统自动化程度提升,而且各项技术指标明显改善。

论文外文摘要:

Coal slime water treatment is an important link in the production process of coal preparation plants. With the strengthening of the country's environmental protection efforts, coal slime water treatment has become the focus of coal preparation plants. Due to the large amount of high-ash fine mud in the slime water, the poor mixing effect of the agent and the slime water during the artificial dosing process, and the instability of the agent addition, which brings great trouble to the slime water treatment of the coal preparation plant. Taking the slime water treatment system of Shangwan Coal Preparation Plant as the research object, this paper analyzedthe properties of slime water, carried out the laboratory flocculation and sedimentation test, studied the flow field of reagent static mixer with different structures based on numerical simulation, designed the static mixer under laboratory conditions, explored the optimal mixing scheme of reagent and slime water, and transformed the slime water dosing system on the production site.  The research results have practical guiding significance for the optimization of slime water treatment system in coal preparation plant. The main contents are as follows:

(1) The property analysis and flocculation sedimentation test of coal slurry water in Shangwan Coal Preparation Plant were carried out. The results show that the fine particle content of coal slime is high, there are many oxygen-containing functional groups on the surface of coal slime, and the surface of coal slime is negatively charged. The inorganic flocculant polyaluminium chloride (PAC) has little effect on the sedimentation rate and has a great effect on the quality of clarified water. The organic flocculant polyacrylamide (PAM) has a great influence on the sedimentation rate and a small influence on the quality of clarified water. When the dosage of PAC agent is 0.52 Kg per ton of dry slime and the dosage of PAM agent is 0.21 Kg per ton of dry slime, the test slime water has a good sedimentation effect.

(2) Numerical simulation of static mixers with three structures of full tube, half tube and shrink down, it is found that for the full tube structure type, because the fluid in the tube is not full, the structural properties of the helical blade tangent to the inner wall of the circular tube causes strong turbulence, and the gas-liquid two-phase coupling is serious. It has an adverse effect on the coal slime flocculation already formed in the slime water fluid, and the resistance along the process is relatively large, which is not conducive to the smooth flow of the slime water fluid into the thickener. For the two geometric models of shrink down and half tube, the gas-liquid two-phase coupling is less than the gas-liquid two-phase coupling of the full tube structure, and the velocity is more uniform, but the velocity nephogram of the half tube structure shows that the half-width spiral blade has the phenomenon of coal slurry water flow falling, it is easy to appear that the flocculation that has been flocculated is broken. Therefore, the shrink down structure with a gap between the spiral blade and the side wall is more suitable for the flocculation of slime water. The reasonable spiral blade shall be a reduced diameter structure with a pitch between 3200 mm and 4000 mm.

(3) The chemical flocculation mixing effect of coal slurry water for test is verified by laboratory static mixer. According to the feed pipe parameters of thickener in Shangwan Coal Preparation Plant, it is calculated that the blade size of laboratory static mixer is 200 * 33.3 mm and the pipe is DN50. The test results show that compared with single point dosing, the flocculation and sedimentation speed of coal slime water by bridge porous dosing is fast. The long length of spiral blade leads to long mixing time, which will destroys flocs and affect the flocculation and sedimentation effect of slime water. The blade with appropriate size is not only simple to manufacture, but also has excellent working effect. It can produce a large velocity gradient in the process of reagent mixing, and the mixing effect is significantly improved.

(4) Based on the above research results, the slime water treatment dosing system of the coal preparation plant is further optimized and transformed. After the transformation, the thickener is in good working condition and the reagent system is reasonable. The concentration of the underflow of the concentrator is increased by 65.6 g/L, and the discharge cycle of the pressure filter is shortened by an average of 48s. The consumption of cationic agents is reduced by 6.73%, and the consumption of anionic agents is reduced by 8.81%. After the optimization and transformation of the dosing system, not only the automation degree of the slime water system is improved, but also various technical indexes are significantly improved.

参考文献:

[1] 刘峰, 曹文君, 张建明, 曹光明, 郭林峰. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(01):1-15.

[2] 谢和平, 吴立新, 郑德志.2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07):1949-1960.

[3] 闫献民. "十二五"时期我国煤炭行业大营销策略分析[J]. 中国经贸, 2012(14):1.

[4] 梅文. 《煤炭工业发展“十三五”规划》印发[J]. 煤炭加工与综合利用, 2017, (1):18.

[5] 高丰, 马佳敏. 选煤工艺综述[J]. 内蒙古煤炭经济, 2018(10):18-19.

[6] 李振, 颜冬青, 李毅红, 王进, 赵承乾, 张怀青, 张新元, 白富强, 刘莉君, 于伟. 煤泥水处理新方法研究进展及发展趋势[J]. 选煤技术, 2020(01):1-5.

[7] 刘振冬. 清洁能源比例上升或将主导下轮经济繁荣[N]. 经济参考报, 2009, 02, 10.

[8] 陈军, 成金华. 中国矿产资源开发利用的环境影响[J]. 中国人口·资源与环境, 2015, 25(03):111-119.

[9] 濮洪九. 关于推进我国煤炭清洁生产与利用的相关思考[J]. 中国能源, 2010, 32(3):5-8.

[10] 申宝宏. 中国煤炭科学技术新进展[J]. 煤炭学报, 2011, 36(11):1779-1783.

[11] 张荣宽, 张振. 我国矿山机械行业发展状况及存在问题的思考[J]. 机械工业标准化与质量, 2009, 5:15-18.

[12] 张驎, 何媛. 应用循环经济理论构建煤炭生态工业园[J]. 中国矿业, 2006, 15(12):14-17.

[13] 张绍强. 中国煤炭清洁高效利用的实践与展望[J]. 科技导报, 2016, 34(17):56-63.

[14] 周媛媛. 煤炭洗选企业清洁生产评价研究[D]. 青岛: 山东科技大学, 2017.

[15] 冯莉, 刘炯天, 张明青, 宋玲玲. 煤泥水沉降特性的影响因素分析[J]. 中国矿业大学学报, 2010, 39(5):671-675.

[16] Sabah E, Cengiz I. An evaluation procedure for flocculation of coal preparation plant tailings[J]. Water Research, 2004, 38(6): 1542-1549.

[17] Arnold B J, Aplan F F. The effect of clay slimes on coal flotation, part I: The nature of the clay[J]. International Journal of Mineral Processing, 1986, 17(3-4): 225-242.

[18] 刘炯天, 张明青, 曾艳. 不同类型黏土对煤泥水中颗粒分散行为的影响[J]. 中国矿业大学学报, 2010, 39(01):59-63.

[19] 田宇. 聚环氧乙烷对煤泥水中黏土分散行为抑制作用研究[D]. 徐州: 中国矿业大学, 2021.

[20] 林喆, 杨超, 沈正义, 亓欣. 高泥化煤泥水的性质及其沉降特性[J]. 煤炭学报, 2010, 35(2):312-315.

[21] 彭陈亮, 闵凡飞, 赵晴, 李宏亮. 微细矿物颗粒表面水化膜研究现状及进展综述[J]. 矿物学报, 2012, 32(4):515-522.

[22] 李桂春, 闫晓慧, 李明明. PAC 作用下煤泥水絮凝沉降的 eDLVO 分析. 黑龙江科技大学学报, 2020,30(1):45-49.

[23] 张明青. 煤泥水凝聚沉降机理及体系耗散结构特征研究[M]. 徐州:中国矿业大学出版社, 2006:75-78.

[24] 李明明. 褐煤泥化及其电化学抑制作用研究[D]. 沈阳: 东北大学, 2017:105-110.

[25] Churaev N V, Derjaguin B V. Inclusion of structural forces in the theory of stability of colloids and films[J]. Journal of Colloid and Interface Science, 1985, 103(2): 542-553.

[26] 胡岳华, 邱冠周, 王淀佐. 细粒浮选体系中界面极性相互作用理论及应用[J]. 中南矿冶学院学报, 1993, 24(6):750-752.

[27] Arnold B J, Aplan F F. The effect of clay slimes on coal flotation, part II: The role of water quality[J]. International Journal of Mineral Processing, 1986, 17(3-4): 243-260.

[28] 李孟婷. 水质和药剂制度对煤泥水沉降的影响[D]. 淮南: 安徽理工大学, 2013.

[29] Ji Y, Lu Q, Liu Q, et al. Effect of solution salinity on settling of mineral tailings by polymer flocculants[J]. Colloids Surfaces A: Physicochemical Engineering Aspects, 2013, 430: 29-38.

[30] 温雪峰, 李昌平, 关嘉华, 陈亚伟, 段晨龙. 浮选尾煤煤泥水特性及沉降药剂的选择性研究[J]. 煤炭工程, 2004(02):55-57.

[31] Li Z, Jiang W T, Chang P H, et al. Modification of a Ca-montmorillonite with ionic liquids and its application for chromate removal[J]. Journal of Hazardous Materials, 2014, 270: 169-175.

[32] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials[J]. Materials science and engineering: R: Reports, 2000, 28(1-2): 1-63.

[33] 赵小川, 胡文韬, 王怀法. 搅拌对煤泥水絮团结构形态影响的试验研究[J]. 选煤技术.2008(6):7-11.

[34] 沈宁. 煤泥水絮凝沉降效果影响因素研究[J]. 选煤技术, 2018 (3):20-25.

[35] 张磊, 师亚文, 康学刚. 煤泥水处理加药点位置选择分析[J]. 洁净煤技术, 2021, 27(6):207-211.

[36] 王佳雁, 吕建华. 煤泥水药剂添加的技术改进[J]. 煤质技术, 2010(1):57-59.

[37] 陶亚东, 赵厚增, 樊玉萍, 董宪姝. 布尔台选煤厂煤泥水系统药剂制度优化及应用研究[J]. 选煤技术, 2013(3):29-31.

[38] 何创库, 张俊杰, 孙国兴. 神东煤制油选煤厂煤泥水系统优化实践[J]. 内蒙古煤炭经济, 2017(16): 56-57.

[39] 白龙, 李文利, 刘建东. 石圪台选煤厂药剂添加系统的改造与优化[J]. 内蒙古煤炭经济, 2015(2):153-173

[40] 田华雷, 王进荣. 布尔台选煤厂煤泥水系统药剂制度的分析与研究[J]. 科技创新与应用, 2014(17):10-11.

[41] 刘亚星, 吕一波, 张乃旭. 絮凝剂CPSA制备及煤泥水沉降试验研究[J].洁净煤技术, 2016, 22(4):62-67.

[42] 王少会, 徐初阳. 难净化煤泥水沉降试验研究[J]. 安徽理工大学学报(自然科学版), 2004(S1):80-87.

[43] 武光辉. 有效治理细泥积聚实现清水洗煤[J]. 煤, 2007(2):23-25.

[44] 李东颖, 丁淑芳. 煤泥水的絮凝沉降试验研究[J]. 华北水利水电学院学报, 2009, 30(3):99-102.

[45] 陶群, 付聚强, 蒋家慕, 江明东, 许红娜. 采用凝聚剂、絮凝剂配合添加技术强化细煤泥沉降[J]. 煤质技术, 2005(S1):19-22.

[46] 李静. 高泥化煤泥水的絮凝沉降[J]. 煤炭加工与综合利用.2006(2):31-32.

[47] 张英杰, 巩冠群, 吴国光. 煤泥水处理方法研究[J]. 洁净煤技术, 2014, 20(3):1-4.

[48] Larsen P. On the hydraulics of rectangular settling basins: experimental and theoretical studies[M]. Department of Water Resources Engineering, Lund Institute of Technology, University of Lund, 1977.

[49] Schamber D R, Larock B E. Numerical analysis of flow in sedimentation tanks[J]. Journal of the Hydraulics Division, 1981, 107(5): 575-591.

[50] Frost R C, Halliday J, Dee A S. Continuous consolidation of sludge in large scale gravity thickeners[J]. Water Science and Technology, 1993, 28(1): 77-86.

[51] Mohanarangam K, Stephens D W. CFD Modeling of floating and settling phases in settling tanks[C]//Seventh International Conference on CFD in the Minerals and Process Industries. 2009: 9-11.

[52] Celik I, Rodi W, Stamou A. Prediction of hydrodynamic characteristics of rectangular settling tanks[C]. Proceeding International Symposium of Refined Flow Modeling and Turbulent Measurements. IA (USA), 1985: 641–651.

[53] Stamou A I, Adams E W, Rodi W. Numerical modeling of flow and settling in primary rectangular clarifiers[J]. Journal of Hydraulic Research, 1989, 27(5): 665-682.

[54] Dahl C, Larsen T, Petersen O. Numerical modelling and measurement in a test secondary settling tank[J]. Water Science & Technology 1994, 30(2): 219-228.

[55] Nguyen T, Heath A, Witt P. Population balance-CFD modelling of fluid flow,solids distribution and flocculation in thickener feedwells[J]. Chemical Engineering Journal, 2006, 111(2-3): 135-147.

[56] Burgos R, Concha F. Further development of software for the design and simulation of industrial thickeners[J]. Chemical Engineering Journal, 2005, 111(2-3): 135-144.

[57] Gheshlaghi M, Goharrizi A, Shahrivar A. Simulation of a semi-industrial pilot plant thickener using CFD approach[J]. International Journal of Mining Science and Technology, 2013, 23(1): 63-68

[58] 杨娟, 郭亚兵. 矿山尾矿沉降特性及流变学特性分析[J]. 有色设备, 2015, (6):9-12.

[59] 杨娟. 浓缩机流体动力学(CFD)数值模拟[D]. 太原: 太原科技大学, 2016.

[60] 李亚红. 周边给料浓缩机浓缩工艺流体动力学(CFX)数值模拟研究[D]. 太原: 太原科技大学, 2016.

[61] 吴桐. 选煤用浓缩机浓缩过程仿真与控制方法研究[D]. 太原: 太原理工大学, 2019.

[62] 杨非, 楼上游, 胡建成. 浓缩机刮耙流场数值仿真研究[J]. 矿山机械, 2011, 39(12):88-92.

[63] 陈晓楠, 谭蔚, 孟令冰, 原义龙. 进料井结构对进料井内流体流动影响的数值模拟研究[J]. 矿山机械, 2015, 43(01):95-99.

[64] 宋战胜. 中心传动浓缩机及其给料井的设计与仿真分析研究[D]. 太原: 太原科技大学, 2013.

[65] 熊莉芳, 林源, 李世武. k-ε湍流模型及其在FLUENT软件中的应用[J]. 工业加热, 2007(4):13-15.

[66] 王常玮, 王贵新, 齐冲, 刘锐. 尾矿浓缩加药自动控制系统的应用[J]. 煤质技术, 2004(04):20-21.

[67] 赵晓东, 乌洪杰. X射线荧光分析仪在煤炭全硫测定中的应用[J]. 新世纪水泥导报, 2013, 19(2):67-69.

[68] 李元庆. 基于PLC的耙式浓缩机药剂自动添加系统的研究[D]. 淮南: 安徽理工大学, 2014.

[69] 王伟. 基于图像灰度特征的煤泥水沉降过程自动加药系统的研究[D]. 徐州: 中国矿业大学, 2019.

[70] 董宪姝, 高贵军, 寇子明. 基于煤泥界面检测的絮凝剂溶解液自动添加系统的研究[J]. 选煤技术, 2007(4):102-108.

[71] 杨津灵. 灰色模糊 PID 算法在煤泥水絮凝沉降过程控制中的应用研究[D]. 太原: 太原理工大学, 2012.

[72] 陈猛. 选煤厂煤泥水自动加药及水平衡系统的研究[D]. 天津: 天津大学, 2016.

[73] 胡朋朋, 张志军, 佟震阳, 张洪武. 循环煤泥水的水质在线监测系统研究[J]. 煤炭技术, 2014, 33(06):235-237.

[74] 张广军, 孙新安. 耙式浓缩机药剂添加自动控制系统的开发[J]. 洁净煤技术, 2007, (1):15-17.

[75] 徐志强, 阎钦运. 利用界面分析仪实现浓缩机自动控制[J]. 东北煤炭技术, 1997, (4):37-39.

[76] 柴晓敏. 絮凝剂自动加药系统的设计与变频器的应用[J]. 煤质技术, 2004, (2):60-62.

[77] 高贵军. 絮凝剂溶解液制备及自动添加机理研究[D]. 太原: 太原理工大学, 2010.

[78] 张超. 基于 PLC 模糊控制的煤泥水自动加药系统的研究[D]. 淮南: 安徽理工大学, 2008.

[79] 韩春阳, 苟晓东, 高艳军. 基于自适应内模控制的煤泥水自动加药控制系统仿真研究[J]. 选煤技术, 2021(3):81-85.

[80] 张乾龙. 基于PLC控制的煤泥水自动加药系统的设计[D]. 焦作: 河南理工大学, 2015.

[81] 郑诚. 基于数据驱动的煤泥水沉降过程智能控制研究[D]. 徐州: 中国矿业大学, 2021.

中图分类号:

 TD94    

开放日期:

 2022-06-29    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式