论文中文题名: |
ZIF-8复合水凝胶的制备及其吸附性能研究
|
姓名: |
李舒淇
|
学号: |
22213225059
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085600
|
学科名称: |
工学 - 材料与化工
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2025
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
材料与化工
|
研究方向: |
功能材料
|
第一导师姓名: |
贺拥军
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2025-06-16
|
论文答辩日期: |
2025-05-24
|
论文外文题名: |
Preparation of ZIF-8 composite hydrogels and their adsorption performance research
|
论文中文关键词: |
ZIF-8 ; 水凝胶 ; Pickering乳液 ; Pickering乳液水凝胶 ; 吸附 ; 刚果红 ; 铜离子
|
论文外文关键词: |
ZIF-8 ; Hydrogel ; Pickering emulsion ; Pickering emulsion hydrogel ; Adsorption ; Congo red ; Copper ion
|
论文中文摘要: |
︿
随着工业化的快速发展,废水污染问题日益严重。ZIF-8因其具有大比表面积和优异的化学稳定性被广泛研究用于废水处理领域。然而,ZIF-8的粉末性质导致其难以与水溶液分离,严重限制了它在废水处理中的实际应用。此外,用于废水处理领域的液-液萃取技术也存在水相与有机相分离困难的应用限制。水凝胶作为一种具有三维网络结构的聚合物,不仅可以用来作为负载固体颗粒的载体,还可以用作封装有机萃取剂的固体基质。由固体颗粒作为稳定剂的Pickering乳液具有环境友好和乳液稳定性好等优点。因此,为了解决废水处理中ZIF-8难以与水溶液分离和液-液萃取技术分离水相与有机相困难的问题。本论文将ZIF-8与水凝胶复合来制备复合水凝胶,并结合Pickering乳液,开发出了可以包裹有机萃取剂的Pickering乳液水凝胶。这些复合水凝胶材料为制备用于去除废水污染物的新型吸附剂提供了思路。
本论文以水凝胶为基础来制备ZIF-8复合水凝胶材料。首先,将ZIF-8与Fe3O4复合制备Fe3O4@ZIF-8,采用自由基聚合法将其与水凝胶结合制备了具有磁性的水凝胶小球。随后,分别使用ZIF-8和Fe3O4@ZIF-8作为Pickering乳液稳定剂,采用Pickering乳液聚合法将有机萃取剂包裹在水凝胶基质中制备了Pickering乳液水凝胶。最后,对上述所制备的复合水凝胶进行吸附性能研究。具体研究如下:
(1)首先将ZIF-8与Fe3O4复合制备Fe3O4@ZIF-8,然后以聚丙烯酰胺/海藻酸钠(PAM/SA)水凝胶为载体,采用自由基聚合法制备了磁性PAM/SA/Fe3O4@ZIF-8水凝胶小球并将其用于水中染料刚果红(CR)的吸附。结果表明,磁性PAM/SA/Fe3O4@ZIF-8-8对CR的吸附能力是PAM/SA的2.26倍,对CR的最大吸附量为234.69 mg/g。CR在磁性PAM/SA/Fe3O4@ZIF-8-8上的吸附遵循伪二级动力学模型和Freundlich等温线模型。热力学研究表明吸附过程是吸热和自发的。磁性PAM/SA/Fe3O4@ZIF-8-8对CR的吸附机制主要是静电吸引,金属配位、氢键和π-π相互作用。磁性PAM/SA/Fe3O4@ZIF-8-8水凝胶小球可用磁铁易于与水溶液分离,对CR具有优异的选择吸附性能和良好的循环再生性能,具有去除废水中CR的潜力。
(2)通过使用ZIF-8作为Pickering乳液稳定剂,然后采用Pickering乳液聚合法制备了包裹铜萃取剂N902的ZIF-8-PEHGs(以ZIF-8作为Pickering乳液稳定剂所制备的Pickering乳液水凝胶),并将其应用于水中铜离子(Cu(II))的去除。实验结果表明N902被ZIF-8-PEHGs成功包裹。ZIF-8-PEHGs吸附Cu(II)的平衡时间为50 min,最佳吸附量为20.79 mg/g。ZIF-8-PEHGs对Cu(II)的去除主要是靠包裹在ZIF-8-PEHGs内的N902与Cu(II)发生络合反应来实现的。ZIF-8-PEHGs对Cu(II)的吸附遵循伪二级动力学模型和Langmuir等温线模型。在经过5次吸附-解吸循环后,ZIF-8-PEHGs对Cu(II)的吸附量仍然保持在初始吸附量的80%。本项工作为制备用于去除Cu(II)废水的新型Pickering乳液水凝胶材料提供了思路。
(3)通过使用Fe3O4@ZIF-8作为Pickering乳液稳定剂,采用Pickering乳液聚合法制备了包裹铜萃取剂N902的磁性Fe3O4@ZIF-8-PEHGs(以Fe3O4@ZIF-8作为Pickering乳液稳定剂所制备的Pickering乳液水凝胶),并将其应用于水中Cu(II)的去除。实验结果发现,磁性Fe3O4@ZIF-8-PEHGs对Cu(II)的吸附量是HGs的4.25倍,最佳吸附量为18.64 mg/g。Cu(Ⅱ)在磁性Fe3O4@ZIF-8-PEHGs上的吸附符合伪二级动力学模型,并且实验数据与Langmuir等温线模型拟合程度更好。Langmuir等温线模型参数表明磁性Fe3O4@ZIF-8-PEHGs对Cu(Ⅱ)的吸附是容易进行的。磁性Fe3O4@ZIF-8-PEHGs可以使用磁铁易于从水中回收,为制备去除Cu(Ⅱ)废水的磁性Pickering乳液水凝胶材料提供了参考。
﹀
|
论文外文摘要: |
︿
With the rapid development of industrialisation, the problem of wastewater pollution is increasingly serious. ZIF-8 has been widely studied for wastewater treatment due to its large specific surface area and excellent chemical stability. However, the powder nature of ZIF-8 makes it difficult to separate from aqueous solutions, which severely limits its practical application in wastewater treatment. In addition, the liquid-liquid extraction technology used in wastewater treatment also suffers from the limitation of difficulty in separating the aqueous phase from the organic phase. Hydrogel, as a polymer with a three-dimensional network structure, can be used not only as a carrier for loading solid particles but also as a solid matrix for encapsulating organic extractants. Pickering emulsions with solid particles as stabilisers have the advantages of being environmentally friendly and having good emulsion stability. Therefore, to solve the problems of wastewater treatment in which ZIF-8 is difficult to separate from aqueous solution and the liquid-liquid extraction technique is difficult to separate the aqueous phase from the organic phase. In this thesis, ZIF-8 was compounded with hydrogel to prepare composite hydrogels and combined with Pickering emulsion to develop Pickering emulsion hydrogels that can encapsulate organic extractants. These composite hydrogel materials provide ideas for the preparation of novel adsorbents for the removal of wastewater pollutants.
In this thesis, hydrogel was used as a base to prepare ZIF-8 composite hydrogel materials. Firstly, Fe3O4@ZIF-8 was prepared by compounding ZIF-8 with Fe3O4, and then it was combined with hydrogel by free radical polymerization to prepare hydrogel beads with magnetic properties. Subsequently, the Pickering emulsions were stabilized using ZIF-8 and Fe3O4@ZIF-8, respectively, and Pickering emulsion hydrogels were prepared by encapsulating the organic extractant in a hydrogel matrix using Pickering emulsion polymerisation. Finally, the adsorption performance of the above prepared composite hydrogels was studied. The specific studies are as follows:
(1) Firstly, Fe3O4@ZIF-8 was prepared by compounding ZIF-8 with Fe3O4, and then magnetic PAM/SA/Fe3O4@ZIF-8 hydrogel beads were prepared by free radical polymerisation method using polyacrylamide/sodium alginate (PAM/SA) hydrogel as a carrier for adsorption of the dye Congo red (CR) in water. The results showed that the adsorption capacity of magnetic PAM/SA/Fe3O4@ZIF-8 for CR was 2.26 times more than that of PAM/SA, and the maximum adsorption of CR was 234.69 mg/g. The adsorption of CR on magnetic PAM/SA/Fe3O4@ZIF-8-8 followed the Pseudo-second-order kinetic model and the Freundlich isotherm model. Thermodynamic studies showed that the adsorption process was heat-absorbing and spontaneous. The adsorption mechanism of magnetic PAM/SA/Fe3O4@ZIF-8-8 on CR was mainly based on electrostatic attraction, metal coordination, hydrogen bonding, and π-π interaction. Magnetic PAM/SA/Fe3O4@ZIF-8-8 hydrogel beads can be easily separated with aqueous solution by magnets, and have excellent selective adsorption performance and good cyclic regeneration performance for CR, which has the potential to remove CR from wastewater.
(2) ZIF-8-PEHGs (Pickering emulsion hydrogels prepared with ZIF-8 as Pickering emulsion stabilizer) encapsulating copper extractant N902 were prepared by Pickering emulsion polymerization using ZIF-8 as a Pickering emulsion stabiliser and applied to the removal of copper ions (Cu(II)) from water. The experimental results showed that N902 was successfully encapsulated by ZIF-8-PEHGs. The equilibrium time for the adsorption of Cu(II) by ZIF-8-PEHGs was 50 min, and the optimum adsorption amount was 20.79 mg/g. The removal of Cu(II) by ZIF-8-PEHGs was mainly achieved by the complexation reaction between N902 encapsulated in ZIF-8-PEHGs and Cu(II). The adsorption of Cu(II) by ZIF-8-PEHGs followed the Pseudo-second-order kinetic model and the Langmuir isotherm model. After five adsorption-desorption cycles, the adsorption of Cu(II) by ZIF-8-PEHGs remained at 80% of the initial adsorption amount. This work provides ideas for the preparation of new Pickering emulsion hydrogel materials for Cu(II) wastewater removal.
(3) Magnetic Fe3O4@ZIF-8-PEHGs (Pickering emulsion hydrogels prepared with Fe3O4@ZIF-8 as Pickering emulsion stabilizer) encapsulating copper extractant N902 were prepared by Pickering emulsion polymerisation using Fe3O4@ZIF-8 as a Pickering emulsion stabiliser and applied for Cu(II) removal from water. It was found that the adsorption amount of magnetic Fe3O4@ZIF-8-PEHGs for Cu(II) was 4.25 times more than that of HGs, and the optimum adsorption amount was 18.64 mg/g. The adsorption of Cu(II) on magnetic Fe3O4@ZIF-8-PEHGs was consistent with the Pseudo-second-order kinetic model, and the experimental data are better fitted to the Langmuir isotherm model. Langmuir isotherm model parameters showed that the adsorption of Cu(II) by magnetic Fe3O4@ZIF-8-PEHGs was easily performed. Magnetic Fe3O4@ZIF-8-PEHGs can be easily recovered from water using magnets, providing a reference for the preparation of magnetic Pickering emulsion hydrogel materials for Cu(II) wastewater removal.
﹀
|
参考文献: |
︿
[1] 陈文华, 李刚, 许方程, 等. 染料废水污染现状及处理方法研究进展[J]. 浙江农业科学, 2014(2): 264-269. [2] Lei Y, Xie J, Quan W, et al. Advances in adsorption of Pb(II) by MOFs-based nanocomposites in water[J]. Progress in Natural Science: Materials International, 2024, 34(1): 122-146. [3] Annadural G, Juang R S, Lee D J. Adsorption of heavy metals from water using banana and orange peels[J]. Water Science & Technology, 2003, 47(1): 185-190. [4] 崔玉民, 殷榕灿. 染料废水处理方法研究进展[J]. 科技导报, 2021, 39(18): 79-87. [5] Tran H N. Adsorption technology for water and wastewater treatments[J]. Water, 2023, 15(15): 2857. [6] Hai N D, Nguyen M B, Tan V M, et al. Formation of structural defects within Fe-UiO-66 for effective adsorption of arsenic from water[J]. International Journal of Environmental Science and Technology, 2023, 20(9): 10075-10088. [7] Singh V, Singh N, Rai S N, et al. Chitosan functionalized recyclable and eco-friendly nanoadsorbent for Pb(II) adsorption from water[J]. Nanocomposites, 2024, 10(1): 201-213. [8] 傅金祥, 王锋, 由昆, 等. 粉末活性炭吸附工艺应急处理苯酚污染[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(4): 633-636. [9] 成官文, 吴志超, 章非娟, 等. 沸石在水污染控制中的研究与应用进展[J]. 环境科学与技术, 2006, 29(3): 111-114. [10] 李东凡, 李思凡. 吸附法处理地下水污染的应用研究进展[J]. 当代化工, 2018, 47(2): 407-410. [11] Jiang H L, Feng D, Wang K, et al. An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence[J]. Journal of the American Chemical Society, 2013, 135(37): 13934-13938. [12] 王春宇, 张晶, 张青云, 等. ZIF-8基多孔碳的制备及吸附性能[J]. 化工进展, 2017, 36(1): 299-304. [13] 范笑笑, 余林玲, 武士川, 等. ZIF-8/PVA静电纺丝膜的制备及其吸附性能[J]. 材料科学与工程学报, 2018, 36(2): 202-206. [14] Bathula S, Thottathil S, Puttaiahgowda Y M. MOFs and MOF-based composites for the adsorptive removal of ciprofloxacin[J]. Macromolecular Materials and Engineering, 2025, 310(1): 2400238. [15] Thallapally P K, Tian J, Radha Kishan M, et al. Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications[J]. Journal of the American Chemical Society, 2008, 130(50): 16842-16843. [16] 李丹, 江晖, 廖天宇, 等. 乙二胺改性ZIF-8的制备及其水体中As(Ⅲ)和As(Ⅴ)的吸附研究[J]. 化工新型材料, 2017, 45(5): 130-133. [17] Morris W, Volosskiy B, Demir S, et al. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks[J]. Inorganic Chemistry, 2012, 51(12): 6443-6445. [18] Qi X, Wu L, Su T, et al. Polysaccharide-based cationic hydrogels for dye adsorption[J]. Colloids and Surfaces B: Biointerfaces, 2018, 170: 364-372. [19] Li K, Wu J, Li X, et al. Preparation of porous composite hydrogel with ultra-high dye adsorption capacity based on biochar: adsorption behaviors and mechanisms[J]. Chemical Engineering Science, 2024, 295: 120115. [20] Yu F, Yang P, Yang Z, et al. Double-network hydrogel adsorbents for environmental applications[J]. Chemical Engineering Journal, 2021, 426: 131900. [21] Sharma G, Thakur B, Naushad M, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection[J]. Environmental Chemistry Letters, 2018, 16(1): 113-146. [22] Miao Q, Jiang L, Yang J, et al. MOF/hydrogel composite-based adsorbents for water treatment: a review[J]. Journal of Water Process Engineering, 2022, 50: 103348. [23] Mao J, Ge M, Huang J, et al. Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation[J]. Journal of Materials Chemistry A, 2017, 5(23): 11873-11881. [24] Billard I, Svecova L. Metals: from speciation in the aqueous phases to the liquid-liquid extraction mechanism[J]. Journal of Solution Chemistry, 2018, 47(8): 1291-1292. [25] Binks B P. Particles as surfactants-similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1-2): 21-41. [26] Murray B S. Pickering emulsions for food and drinks[J]. Current Opinion in Food Science, 2019, 27: 57-63. [27] Li J, Yang J, Liu M, et al. Quality matters: pollution exacerbates water scarcity and sectoral output risks in China[J]. Water Research, 2022, 224: 119059. [28] Selvasembian R, Gwenzi W, Chaukura N, et al. Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants[J]. Journal of Hazardous Materials, 2021, 417: 125960. [29] 肖洁金. 环境监测废水及工业废水处理技术研究[J]. 工程管理, 2025, 6(2): 244-246. [30] Alguacil F J, Lopez F A. Organic dyes versus adsorption processing[J]. Molecules, 2021, 26(18): 5440. [31] Lin J, Ye W, Xie M, et al. Environmental impacts and remediation of dye-containing wastewater[J]. Nature Reviews Earth & Environment, 2023, 4(11): 785-803. [32] Agarwala R, Mulky L. Adsorption of dyes from wastewater: a comprehensive review[J]. ChemBioEng Reviews, 2023, 10(3): 326-335. [33] 矫娜, 王东升, 段晋明, 等. 改性硅藻土对三种有机染料的吸附作用研究[J]. 环境科学学报, 2012, 32(6): 1364-1369. [34] Lan D, Zhu H, Zhang J, et al. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: a review on species, mechanisms and perspectives[J]. Chemosphere, 2022, 293: 133464. [35] Zhang S, Ma W, Tang B, et al. Innovation and application of dyes with high fixation[J]. Chinese Journal of Chemical Engineering, 2022, 51: 146-152. [36] 曾秀琼. 无机-有机膨润土对活性艳红染料废水的处理[J]. 环境科学与技术, 2000(3): 30-32. [37] Gnanasekaran L, Priya A K, Ghfar A A, et al. The influence of heterostructured TiO2/ZnO nanomaterials for the removal of azo dye pollutant[J]. Chemosphere, 2022, 308: 136161. [38] 王雲生, 陈元涛, 张炜, 等. Mg-Fe-Al复合氧化物的制备及其对刚果红吸附性能的研究[J]. 环境污染与防治, 2016, 38(6): 58-62. [39] Hua Z, Pan Y, Hong Q. Adsorption of congo red dye in water by orange peel biochar modified with CTAB[J]. RSC Advances, 2023, 13(18): 12502-12508. [40] Ali I, AL-Othman Z A, Alwarthan A. Molecular uptake of congo red dye from water on iron composite nano particles[J]. Journal of Molecular Liquids, 2016, 224: 171-176. [41] Clavijo C, Osma J F. Functionalized leather: a novel and effective hazardous solid waste adsorbent for the removal of the diazo dye congo red from aqueous solution[J]. Water, 2019, 11(9): 1906. [42] Liu S, Cai Y, Du M, et al. Research on adsorption of heavy metal ions by polysaccharide hydrogels[J]. ChemistrySelect, 2024, 9(41): e202401752. [43] Zhang X, Zhai Z, Feng X, et al. Recent advances of metal-organic framework for heavy metal ions adsorption[J]. Langmuir, 2024, 40(34): 17868-17888. [44] Xia C, Zhang X, Xia L. Heavy metal ion adsorption by permeable oyster shell bricks[J]. Construction and Building Materials, 2021, 275: 122128. [45] 相波, 李义久, 倪亚明. 螯合淀粉衍生物对铜离子吸附性能的研究[J]. 环境化学, 2004, 23(2): 193-197. [46] Zhang X, Shi X, Ma L, et al. Preparation of chitosan stacking membranes for adsorption of copper ions[J]. Polymers, 2019, 11(9): 1463. [47] Danesh N, Ghorbani M, Marjani A. Separation of copper ions by nanocomposites using adsorption process[J]. Scientific Reports, 2021, 11(1): 1676. [48] Nikiforova T E, Kozlov V A, Telegin F Y. Chemisorption of copper ions in aqueous acidic solutions by modified chitosan[J]. Materials Science and Engineering: B, 2021, 263: 114778. [49] 兰华春, 苑宝玲, 李坤林, 等. MCM-41中孔分子筛对铜离子吸附性能的研究[J]. 化工环保, 2005, 25(6): 490-493. [50] Huang H L. Extraction of copper species from the nanoporous sorbent with an ionic liquid[J]. Journal of Molecular Liquids, 2017, 230: 24-27. [51] Benalia M C, Youcef L, Bouaziz M G, et al. Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization[J]. Arabian Journal for Science and Engineering, 2022, 47(5): 5587-5599. [52] Thiripelu P, Manjunathan J, Revathi M, et al. Removal of hexavalent chromium from electroplating wastewater by ion-exchange in presence of Ni(II) and Zn(II) ions[J]. Journal of Water Process Engineering, 2024, 58: 104815. [53] Baia A, Lopes A, Nunes M J, et al. Removal of recalcitrant compounds from winery wastewater by electrochemical oxidation[J]. Water, 2022, 14(5): 750. [54] Matsuoka K, Hasegawa S, Yuma T, et al. Application of foam separation method for removal of alkaline earth metal ions from solution[J]. Journal of Molecular Liquids, 2019, 294: 111663. [55] Wan J, Yu M, Bi W, et al. Research on chromium removal mechanism by electrochemical method from wastewater[J]. Journal of Water Process Engineering, 2024, 68: 106447. [56] 胡学伟, 李爱民, 范俊, 等. 选择性吸附-高效生物降解法处理含硝基苯与苯酚混合废水[J]. 化工环保, 2007, 27(6): 497-500. [57] Varjani S, Rakholiya P, Ng H Y, et al. Microbial degradation of dyes: an overview[J]. Bioresource Technology, 2020, 314: 123728. [58] 李凡修, 陆晓华, 梅平. TiO2光催化法处理六氯苯废水可行性分析[J]. 环境科学与技术, 2007, 30(11): 74-76. [59] Wang Y, Duan J, Li W, et al. Aqueous arsenite removal by simultaneous ultraviolet photocatalytic oxidation-coagulation of titanium sulfate[J]. Journal of Hazardous Materials, 2016, 303: 162-170. [60] Tarekegn M M, Hiruy A M, Dekebo A H. Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions[J]. RSC Advances, 2021, 11(30): 18539-18551. [61] 刘小澜, 王继徽, 黄稳水, 等. 化学沉淀法去除焦化废水中的氨氮[J]. 化工环保, 2004, 24(1): 46-49. [62] 范力, 张建强, 程新, 等. 离子交换法及吸附法处理含铬废水的研究进展[J]. 水处理技术, 2009, 35(1): 30-33. [63] 孙道华, 胡月琳, 李清彪, 等. 溶剂萃取法处理含硫酸及硫酸盐的废水[J]. 化工环保, 2003, 23(1): 25-27. [64] 邹照华, 何素芳, 韩彩芸, 等. 吸附法处理重金属废水研究进展[J]. 环境保护科学, 2010, 36(3): 22-24. [65] 梁莎, 冯宁川, 郭学益. 生物吸附法处理重金属废水研究进展[J]. 水处理技术, 2009, 35(3): 13-17. [66] Jia T, Gu Y, Li F. Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: a review[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108300. [67] Mohanty B, Kumari S, Yadav P, et al. Metal-organic frameworks (MOFs) and MOF composites based biosensors[J]. Coordination Chemistry Reviews, 2024, 519: 216102. [68] Pan J, Chen Z, Zhou J, et al. MOF-derived MOF(Fe)/FeSx photocatalyst with enhanced photocatalytic activity for tetracycline degradation[J]. Inorganic Chemistry Communications, 2024, 159: 111754. [69] Li K, Miwornunyuie N, Chen L, et al. Sustainable application of ZIF-8 for heavy-metal removal in aqueous solutions[J]. Sustainability, 2021, 13(2): 984. [70] Ighalo J O, Rangabhashiyam S, Adeyanju C A, et al. Zeolitic imidazolate frameworks (ZIFs) for aqueous phase adsorption: a review[J]. Journal of Industrial and Engineering Chemistry, 2022, 105: 34-48. [71] Chen B, Yang Z, Zhu Y, et al. Zeolitic imidazolate framework materials: recent progress in synthesis and applications[J]. Journal of Materials Chemistry A, 2014, 2(40): 16811-16831. [72] Hayashi H, Cote A P, Furukawa H, et al. Zeolite A imidazolate frameworks[J]. Nature Materials, 2007, 6(7): 501-506. [73] Liu Y, Cheng H, Cheng M, et al. The application of zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment[J]. Chemical Engineering Journal, 2021, 417: 127914. [74] Pan Y, Liu Y, Zeng G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications, 2011, 47(7): 2071-2073. [75] Seoane B, Zamaro J M, Tellez C, et al. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20)[J]. CrystEngComm, 2012, 14(9): 3103-3107. [76] Yang L, Lu H. Microwave‐assisted ionothermal synthesis and characterization of zeolitic imidazolate framework-8[J]. Chinese Journal of Chemistry, 2012, 30(5): 1040-1044. [77] Taheri M, Bernardo I D, Lowe A, et al. Green full conversion of ZnO nanopowders to well-dispersed zeolitic imidazolate framework-8 (ZIF-8) nanopowders via a stoichiometric mechanochemical reaction for fast dye adsorption[J]. Crystal Growth & Design, 2020, 20(4): 2761-2773. [78] Hu L, Chen C, Wang X, et al. ZIF-8 prepared in ionic liquid microemulsions for efficient capture of phosphate from water[J]. Journal of Chemical Sciences, 2022, 134(2): 62. [79] Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8[J]. Journal of the American Chemical Society, 2010, 132(51): 18030-18033. [80] Da Silva G G, Silva C S, Ribeiro R T, et al. Sonoelectrochemical synthesis of metal-organic frameworks[J]. Synthetic Metals, 2016, 220: 369-373. [81] Wang L, Xu H, Gao J, et al. Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications[J]. Coordination Chemistry Reviews, 2019, 398: 213016. [82] Chakraborty A, Laha S, Kamali K, et al. In situ growth of self-assembled ZIF-8–aminoclay nanocomposites with enhanced surface area and CO2 uptake[J]. Inorganic Chemistry, 2017, 56(16): 9426-9435. [83] El-Desouky M G, El-Bindary A A. Magnetic metal-organic framework (Fe3O4@ZIF-8) nanocomposites for adsorption of anionic dyes from wastewater[J]. Inorganic and Nano-Metal Chemistry, 2024, 54(1): 81-95. [84] Shen B, Wang B, Zhu L, et al. Properties of cobalt- and nickel-doped ZIF-8 framework materials and their application in heavy-metal removal from wastewater[J]. Nanomaterials, 2020, 10(9): 1636. [85] Miralda C M, Macias E E, Zhu M, et al. Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate[J]. ACS Catalysis, 2012, 2(1): 180-183. [86] Li Y R, Dong X, Pan S Y, et al. Design to enhance sensing performance of ZIF-8 crystals[J]. Progress in Natural Science: Materials International, 2024, 34(2): 240-250. [87] He L, Wang T, An J, et al. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging[J]. CrystEngComm, 2014, 16(16): 3259-3263. [88] Samaddar P, Kumar S, Kim K H. Polymer hydrogels and their applications toward sorptive removal of potential aqueous pollutants[J]. Polymer Reviews, 2019, 59(3): 418-464. [89] Chen R, Zhang Y, Shen L, et al. Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid[J]. Chemical Engineering Journal, 2015, 268: 348-355. [90] Bassil M, Moussa G E H, El Tahchi M. Templating polyacrylamide hydrogel for interconnected microstructure and improved performance[J]. Journal of Applied Polymer Science, 2018, 135(17): 46205. [91] Shi C, Yang F, Hu L, et al. Construction of polysaccharide based physically crosslinked double-network antibacterial hydrogel[J]. Materials Letters, 2022, 316: 132048. [92] Liu Z, Wei J, Faraj Y, et al. Smart hydrogels: network design and emerging applications[J]. Canadian Journal of Chemical Engineering, 2018, 96(10): 2100-2114. [93] Tiwari J N, Mahesh K, Le N H, et al. Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions[J]. Carbon, 2013, 56: 173-182. [94] Wan X, Rong Z, Zhu K, et al. Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye[J]. International Journal of Biological Macromolecules, 2022, 222: 725-735. [95] Yi Z, Tang Q, Jiang T, et al. Adsorption performance of hydrophobic/hydrophilic silica aerogel for low concentration organic pollutant in aqueous solution[J]. Nanotechnology Reviews, 2019, 8(1): 266-274. [96] Zhang X, Li Z, Zhang T, et al. Fabrication of an efficient ZIF-8 alginate composite hydrogel material and its application to enhanced copper(II) adsorption from aqueous solutions[J]. New Journal of Chemistry, 2021, 45(35): 15876-15886. [97] Gao J, Dong C, Zhao Y, et al. Removal of zinc ions from aqueous solution using zinc extractant-encapsulated hydrogels formed by Pickering emulsion technique[J]. Environment, Development & Sustainability, 2024, 26(4): 8359-8375. [98] Ramsden W. Separation of solids in the surface layers of solutions and 'suspensions' (Observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). -Preliminary account[J]. Proceedings of the royal Society of London, 1904, 72(477-486): 156-164. [99] Sufi-Maragheh P, Nikfarjam N, Deng Y, et al. Pickering emulsion stabilized by amphiphilic pH-sensitive starch nanoparticles as therapeutic containers[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181: 244-251. [100] Zhang K, Wang Q, Meng H, et al. Preparation of polyacrylamide/silica composite capsules by inverse Pickering emulsion polymerization[J]. Particuology, 2014, 14: 12-18. [101] Yan Y, Masliyah J H. Solids-stabilized oil-in-water emulsions: scavenging of emulsion droplets by fresh oil addition[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 75: 123-132. [102] Sun Q, Yang L M, Zhang L, et al. Extraction and separation of Fe(III) from heavy metal wastewater using P204 solvent impregnated resin[J]. Rare Metals, 2018, 37(10): 894-903. [103] Gelot A, Friesen W, Hamza H A. Emulsification of oil and water in the presence of finely divided solids and surface-active agents[J]. Colloids and Surfaces, 1984, 12: 271-303. [104] Tambe D E, Sharma M M. The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability[J]. Advances in Colloid and Interface Science, 1994, 52: 1-63. [105] Feng X, Sun Y, Tan H, et al. Effect of oil phases on the stability of myofibrillar protein microgel particles stabilized Pickering emulsions: the leading role of viscosity[J]. Food Chemistry, 2023, 413: 135653. [106] Binks B P, Lumsdon S O. Transitional phase inversion of solid-stabilized emulsions using particle mixtures[J]. Langmuir, 2000, 16(8): 3748-3756. [107] Yan H, Chen X, Feng M, et al. Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2019, 177: 112-120. [108] Komaiko J, McClements D J. Food-grade nanoemulsion filled hydrogels formed by spontaneous emulsification and gelation: optical properties, rheology, and stability[J]. Food Hydrocolloids, 2015, 46: 67-75. [109] Liu W, Zhao Y, Zeng C, et al. Microfluidic preparation of yolk/shell ZIF-8/alginate hybrid microcapsules from Pickering emulsion[J]. Chemical Engineering Journal, 2017, 307: 408-417. [110] Gharib A A, Blumberg J, Manning D T, et al. Assessment of vulnerability to water shortage in semi-arid river basins: the value of demand reduction and storage capacity[J]. Science of the Total Environment, 2023, 871: 161964. [111] Huang Y, Shama W. Adsorption of congo red by chitosan porous beads reinforced with epoxy resin[J]. New Journal of Chemistry, 2024, 48(22): 10019-10025. [112] Yang R, Li H, Huang M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95: 59-89. [113] Feng Y, Li Y, Xu M, et al. Fast adsorption of methyl blue on zeolitic imidazolate framework-8 and its adsorption mechanism[J]. RSC Advances, 2016, 6(111): 109608-109612. [114] Chen M, Wang Z, Liu Y, et al. Effect of ligands of functional magnetic MOF-199 composite on thiophene removal from model oil[J]. Journal of Materials Science, 2021, 56(4): 2979-2993. [115] Chen Y, Fan H, Cai G, et al. Green synthesis of hierarchically porous alginate/ZIF-8 composite beads for water treatment[J]. ChemNanoMat, 2023, 9(3): e202200397. [116] Zhao D, Feng M, Zhang L, et al. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond[J]. Carbohydrate Polymers, 2021, 256: 117580. [117] Jiang X, Su S, Rao J, et al. Magnetic metal-organic framework (Fe3O4@ZIF-8) core-shell composite for the efficient removal of Pb(II) and Cu(II) from water[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105959. [118] Wu Y, Li B, Wang X, et al. Magnetic metal-organic frameworks (Fe3O4@ZIF-8) composites for U(VI) and Eu(III) elimination: simultaneously achieve favorable stability and functionality[J]. Chemical Engineering Journal, 2019, 378: 122105. [119] Lin K Y A, Chang H A. Efficient adsorptive removal of humic acid from water using zeolitic imidazole framework-8 (ZIF-8)[J]. Water Air, & Soil Pollution, 2015, 226(2): 1-17. [120] Zou X, Zhang H, Chen T, et al. Preparation and characterization of polyacrylamide / sodium alginate microspheres and its adsorption of MB dye[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567: 184-192. [121] Ren H, Gao Z, Wu D, et al. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism[J]. Carbohydrate Polymers, 2016, 137: 402-409. [122] Xu C, Shi S, Dong Q, et al. Citric-acid-assisted sol-gel synthesis of mesoporous silicon-magnesium oxide ceramic fibers and their adsorption characteristics[J]. Ceramics International, 2020, 46(8): 10105-10114. [123] Ho Y S. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods[J]. Water Research, 2006, 40(1): 119-125. [124] Wang J, Guo X. Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications[J]. Chemosphere, 2022, 309: 136732. [125] Liu A, He S, Zhang J, et al. Preparation and characterization of novel cellulose based adsorbent with ultra-high methylene blue adsorption performance[J]. Materials Chemistry and Physics, 2023, 296: 127261. [126] Langmuir I. The constitution and fundamental properties of solids and liquids. II. Liquids[J]. Journal of the American Chemical Society, 1917, 39(9): 1848-1906. [127] Freundlich H. Some recent work on gels[J]. The Journal of Physical Chemistry, 1937, 41: 901-910. [128] Liang Y D, He Y J, Wang T T, et al. Adsorptive removal of gentian violet from aqueous solution using CoFe2O4/activated carbon magnetic composite[J]. Journal of Water Process Engineering, 2019, 27: 77-88. [129] Zhang Z H, Zhang J L, Liu J M, et al. Selective and competitive adsorption of azo dyes on the metal-organic framework ZIF-67[J]. Water, Air, & Soil Pollution, 2016, 227(12): 1-12. [130] Wang Y, Dai X, Zhan Y, et al. In situ growth of ZIF-8 nanoparticles on chitosan to form the hybrid nanocomposites for high-efficiency removal of congo red[J]. International Journal of Biological Macromolecules, 2019, 137: 77-86. [131] Wang P, Tan L, Yuan G, et al. ZIF-8 modified polyvinyl alcohol/chitosan composite aerogel for efficient removal of congo red[J]. Journal of Solid State Chemistry, 2022, 316: 123628. [132] Ojedokun A T, Bello O S. Kinetic modeling of liquid-phase adsorption of congo red dye using guava leaf-based activated carbon[J]. Applied Water Science, 2017, 7(4): 1965-1977. [133] Song Y, Wang Q, Yang W, et al. Chitosan-nickel oxide composite as an efficient adsorbent for removal of congo red from aqueous solution[J]. Journal of Dispersion Science and Technology, 2022, 43(11): 1689-1699. [134] Zhao D, Shen X. Preparation of chitosan-diatomite/calcium alginate composite hydrogel beads for the adsorption of congo red dye[J]. Water, 2023, 15(12): 2254. [135] Han X, Li R, Miao P, et al. Design, synthesis and adsorption evaluation of bio-based lignin/chitosan beads for congo red removal[J]. Materials, 2022, 15(6): 2310. [136] Ahmad N, Arsyad F S, Royani I, et al. High regeneration of ZnAl/NiAl-magnetite humic acid for adsorption of congo red from aqueous solution[J]. Inorganic Chemistry Communications, 2023, 150: 110517. [137] Long K, Cui Y, Meng H, et al. ZnO nanofiber derived from zinc loaded chitosan nanofiber as an efficient adsorbent for congo red from aqueous solution[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2025, 35(1): 317-325. [138] Kim J Y, Kim H B, Kwon D, et al. Establishment of circular economy by utilising textile industry waste as an adsorbent for textile dye removal[J]. Environmental Research, 2024, 262: 119987. [139] Liu Y, Fu R, Sun Y, et al. Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions[J]. Applied Surface Science, 2016, 369: 267-276. [140] Awual M R, Hasan M M, Znad H. Organic-inorganic based nano-conjugate adsorbent for selective palladium(II) detection, separation and recovery[J]. Chemical Engineering Journal, 2015, 259: 611-619. [141] Metwally S S, Hassan M A, Aglan R F. Extraction of copper from ammoniacal solution using impregnated amberlite XAD-7 resin loaded with LIX-54[J]. Journal of Environmental Chemical Engineering, 2013, 1(3): 252-259. [142] Ahmed E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. [143] Puguan J M C, Yu X, Kim H. Diffusion characteristics of different molecular weight solutes in Ca-alginate gel beads[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469: 158-165. [144] Guo Y, Cai J, Liang Y, et al. Preparation of emulsion hydrogels encapsulating extractant by the Pickering emulsion template method to recover lanthanum ions in aqueous solutions[J]. Water Science & Technology, 2023, 88(11): 3009-3023. [145] Bao Y S, Liu W, Dong Z L, et al. Metal-organic frameworks as an efficient Pickering interfacial catalyst for the deacetalization-Knoevenagel tandem reaction[J]. New Journal of Chemistry, 2023, 47(18): 8906-8912. [146] Yang X, Chen J, Liu H, et al. Molecularly imprinted polymers based on zeolite imidazolate framework-8 for selective removal of 2,4-dichlorophenoxyacetic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570: 244-250. [147] Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16(23): 8622-8631. [148] Zhang C L, Fang W D, Chen Y, et al. Recovery of copper from bio-leaching solutions of waste printed circuit boards waste by solvent extraction using RE609 and N902[J]. Advanced Materials Research, 2010, 113: 2228-2231.
﹀
|
中图分类号: |
TB34
|
开放日期: |
2025-06-17
|