论文中文题名: |
XG/HPMC粉煤灰胶体制备及抑制煤自燃特性研究
|
姓名: |
王慧
|
学号: |
21220089026
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0837
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
煤火灾害防治
|
第一导师姓名: |
马砺
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
王振平
|
论文提交日期: |
2024-06-17
|
论文答辩日期: |
2024-06-02
|
论文外文题名: |
Preparation of XG/HPMC fly ash colloid and study on its inhibition of coal spontaneous combustion characteristics
|
论文中文关键词: |
煤自燃 ; 粉煤灰胶体 ; 流变特性 ; 渗流扩散 ; 阻化特性
|
论文外文关键词: |
Coal spontaneous combustion ; Fly ash colloid ; Rheological properties ; Seepage diffusion ; Inhibition characteristics
|
论文中文摘要: |
︿
粉煤灰灌浆是防治煤自燃的有效技术手段。粉煤灰浆液存在易沉降、不易凝固等问题,对煤自燃防治效果存在影响。为进一步提高粉煤灰浆液的保水性及稳定性,以黄原胶(XG)、羟丙基甲基纤维素(HPMC)为胶凝剂,制备了XG/HPMC粉煤灰胶体材料,研究其流变特性及渗流扩散过程与抑制煤自燃效果。
通过单因素实验确定了粉煤灰胶体组成成分的有效范围:胶体浓度为0.70%、0.80%、0.90%,胶体质量比为7:3、6:4、5:5,水灰比为8:1、10:1、12:1。采用响应面分析法设计优化实验,以成胶时间、析水率为响应值,得到优化后的成分配比为:胶体浓度0.78%,胶体质量比65:35,水灰比10.38:1。粉煤灰胶体表面形成了一层“膜”结构,XG和HPMC已成功接枝聚合在粉煤灰表面。
通过旋转流变仪研究了XG/HPMC粉煤灰胶体流变特性影响,并自主搭建实验台进行渗流扩散模拟实验。XG/HPMC粉煤灰胶体均存在剪切稀化现象,采用Herschel-Bulkley模型进行拟合,相关系数R2在0.99以上,流变行为指数n均小于1。XG/HPMC粉煤灰胶体存在线性粘弹区范围,在此范围内储能模量G'均高于损耗模量G",表明粉煤灰胶体呈现类固态,属于粘弹性固体。粉煤灰胶体经低速-高速-低速剪切后,粘度恢复率大于65%。粉煤灰胶体渗流扩散过程可划分为3个阶段:快速扩散阶段(0~85 s)、缓慢扩散阶段(85~160 s)、稳定扩散阶段(160~355 s)。浆液前沿位置随时间呈现指数型增长。在300 min时,胶体残留量为1289 mL,有效利用率为64.45%。
研究了XG/HPMC粉煤灰胶体对煤自燃的抑制效果。采用程序升温实验装置分析了粉煤灰胶体的低温氧化特性参数,发现110 ℃时耗氧速率较原煤样降低了55.51%,指标气体生成率降低,100 ℃时煤体阻化率为77.47%。通过TG-DSC实验测试了粉煤灰胶体对煤体特征温度点及放热特征的影响,粉煤灰胶体可抑制煤的燃烧阶段,使阻化煤样特征温度点延后,可燃性指数、稳燃性指数和综合燃烧指数较原煤分别降低了7.20%、6.02%和9.70%。热效应明显低于原煤,最大热效应温度延后8 ℃,抑制了煤自然发火。使用红外光谱仪分析了煤体官能团变化,通过分峰拟合技术得出粉煤灰胶体可降低煤活性官能团吸光度,减少游离官能团含量,以此延缓化学反应进程,抑制煤体自燃。本研究针对粉煤灰胶体在预防煤自燃方面的应用提供了创新的途径,对于深入研究和有效防治煤自燃灾害具有一定的理论参考价值。
﹀
|
论文外文摘要: |
︿
Fly ash grouting is an effective technical means to prevent coal spontaneous combustion. The stability of fly ash suspension is often compromised by its tendency to settle, which can impair its effectiveness in managing the spontaneous combustion of coal. To enhance the retention of water and the overall stability of fly ash suspension, a novel material known as XG/HPMC fly ash colloid was created using Xanthan gum (XG) and hydroxypropyl methyl cellulose (HPMC) as the gelling components. This study investigates the rheological characteristics, the spreading behavior during flow, and the coal spontaneous combustion inhibitory effect of this material.
The effective range of colloidal composition of fly ash was determined by single factor experiment: colloidal concentration was 0.70%, 0.80%, 0.90%, colloidal mass ratio was 7:3, 6:4, 5:5, water-cement ratio was 8:1, 10:1, 12:1. The response surface analysis method was used to design the optimal test, and the response values were as follows: colloidal concentration 0.78%, colloidal mass ratio 65:35, water-cement ratio 10.38:1. A "film" structure was formed on the colloidal surface of fly ash, and XG and HPMC were successfully grafted on the surface of fly ash.
The effects of colloidal rheological properties of XG/HPMC fly ash were studied by rotating rheometer, and the flow diffusion simulation test was carried out on an independent experimental platform. XG/HPMC fly ash colloidal shear thinning phenomenon, using Herschel-Bulkley model to fit, correlation coefficient R2 above 0.99, rheological behavior index n was less than 1. XG/HPMC fly ash colloids had a linear viscoelastic range, in which the energy storage modulus G' was higher than the loss modulus G", indicating that the fly ash colloids were solid-like and belong to viscoelastic solids. The viscosity recovery rate of fly ash colloid was greater than 65% after low speed - high speed - low speed shear. The flow diffusion process of fly ash colloid can be divided into three stages: rapid diffusion stage (0~85s), slow diffusion stage (85~160s) and stable diffusion stage (160~355s). The position of the grout front increased exponentially with time. At 300 min, the residual amount of colloid was 1289mL, and the effective utilization rate was 64.45%.
The study investigated the inhibitory effects of XG/HPMC fly ash colloid on the spontaneous combustion of coal. The low-temperature oxidation characteristics of the fly ash colloid were analyzed using a programmed temperature experimental device. It was found that at 110°C, the oxygen consumption rate decreased by 55.51% compared to the original coal sample, and the generation rate of index gases was reduced. At 100°C, the coal body's inhibition rate reached 77.47%. The influence of the fly ash colloid on the characteristic temperature points and exothermic characteristics of coal was tested through TG-DSC experiments. The fly ash colloid was able to suppress the combustion stages of coal, delaying the characteristic temperature points of the coal samples. The combustibility index, stability index, and comprehensive combustion index were reduced by 7.20%, 6.02%, and 9.70% respectively compared to the original coal. The thermal effect was significantly lower than that of the original coal, with the maximum thermal effect temperature delayed by 8°C, effectively inhibiting coal spontaneous ignition. Changes in the coal body's functional groups were analyzed using a Fourier-transform infrared spectrometer. Through peak fitting technology, it was determined that the fly ash colloid could reduce the absorbance of active functional groups in coal and decrease the content of free functional groups, thereby slowing down the chemical reaction process and inhibiting the spontaneous combustion of coal. This research provides an innovative approach for the application of fly ash colloid in preventing coal spontaneous combustion and holds certain theoretical value for in-depth study and effective prevention and control of coal spontaneous combustion disasters.
﹀
|
参考文献: |
︿
[1]王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报, 2023, 48(07): 2599-2612. [2]邓军, 白祖锦, 肖旸, 等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全, 2020, 51(10): 118-125. [3]邓军, 李鑫, 王凯, 等.矿井火灾智能监测预警技术研究进展及展望[J/OL]. 煤炭科学技术: 1-20[2024-03-11]. [4]郭军, 蔡国斌, 金彦, 等. 煤自燃火灾防治技术研究进展及趋势[J]. 煤矿安全, 2020, 51(11): 180-184. [5]Lu X, Han Y, Xue X, et al. Research on a noble extinguish material for the underground fire prevention[J]. Fire and Materials, 2020, 44(2). [6]Li Q, Xiao Y, Zhong K, et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel, 2020, 275: 117981. [7]夏冲, 李传贵, 冯啸, 等. 水泥粉煤灰-改性水玻璃注浆材料试验研究与应用[J]. 山东大学学报(工学版), 2022, 52(01): 66-73+84. [8]秦传睿, 陆伟, 李金亮. 降温型聚氨酯/纳米粉煤灰注浆材料的降温机理分析[J]. 煤炭学报, 2019, 44(S1): 178-186. [9]杨平, 梁国栋, 于贵生, 等. 粉煤灰胶体隔离控制技术在花山矿复杂火区中的应用[J]. 煤矿安全, 2020, 51(08): 82-86. [10]缑星, 曹书勤. 粉煤灰/聚(丙烯酸-丙烯酰胺)保水材料的制备与表征[J]. 信阳师范学院学报(自然科学版), 2020, 33(04): 626-629. [11]刘雪莉, 游继军. 易自燃厚煤层综采工作面收作阶段防灭火技术研究[J]. 煤矿开采, 2018, 23(05): 123-126+107. [12]吴龙梅, 杨元龙, 梁柏俊, 等. 矿用密闭堵漏材料的研究现状[J]. 广州化学, 2016, 41(04): 86-92. [13]Fan S, Wen H, Zhang D, et al. Experimental Research on the performance of the macromolecule colloid fire-extinguishing material for coal seam spontaneous combustion[J]. Advances in Materials Science and Engineering, 2019: 1-10. [14]欧立懂. 胶体防灭火技术在煤矿中的应用[J]. 中国科技信息, 2011(14): 58+61. [15]Dong S, Lu X, Wang D, et al. Experimental investigation of the fire-fighting characteristics of aqueous foam in underground goaf[J]. Process Safety & Environmental Protection, 2017, 106:239-245. [16]Xue D, Hu X, Cheng W, et al. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications[J]. Fuel, 2020, 264(116930). [17]梁洪军. 防治煤自燃的粉煤灰凝胶泡沫实验研究[D]. 徐州: 中国矿业大学, 2019. [18]Li Y, Hu X, Cheng W, et al. A novel high-toughness, organic/inorganic double-network fire-retardant gel for coal-seam with high ground temperature[J]. Fuel, 2020, 263(116779). [19]Li S, Zhou G, Wang Y, et al. Synthesis and characteristics of fire extinguishing gel with high water absorption for coal mines[J]. Process Safety and Environmental Protection, 2019, 125: 207-218. [20]邢舜博, 鲁义, 邵淑珍, 等. 防治煤自燃与瓦斯复合灾害的膏体速凝固结材料研制[J]. 中国安全生产科学技术, 2023, (12): 23-30. [21]王楠. 煤自然发火胶体防灭火材料性能实验研究[D]. 西安: 西安科技大学, 2011. [22]邓军, 徐精彩, 张辛亥. 稠化胶体防灭火特性实验研究[J]. 西安科技学院学报, 2001, (02): 102-105. [23]文虎, 徐精彩, 王春跃, 等. 稠化胶体防灭火技术在东滩煤矿的应用[J]. 煤炭科学技术, 2003(01): 39-41. [24]张易. 矿用黄土悬浮稠化胶体防灭火研究[J]. 能源与节能, 2020(11): 172-173+190. [25]李方磊. 防治煤自燃的新型稠化胶体特性研究[D]. 徐州: 中国矿业大学, 2017. [26]张辉, 王威. FHS型稠化胶体灭火剂失重率及阻化抗燃性研究[J]. 安全, 2005, (01): 26-27. [27]王晓宁. 复合胶体防灭火技术在治理小窑入侵中的应用[J]. 煤炭技术, 2008(02): 73-75. [28]李传省. 矿用高水胶嚢材料防灭火性能实验研究[D]. 西安: 西安科技大学, 2021. [29]文虎, 徐精彩, 阮国强, 等. 综放面复合胶体防灭火技术[J]. 中国煤炭, 2001, 27(6): 44-46. [30]邓军, 徐精彩, 王洪权, 等. 新型复合胶体防灭火技术及应用[J]. 煤矿安全, 2001(12): 42-44. [31]Xu Y, Wang D, Wang L, et al. Experimental research on inhibition performances of the sand-suspended colloid for coal spontaneous combustion[J]. Safety Science, 2012, 50(4): 822-827. [32]Zhang L, Qin B. Development of a new material for mine fire control[J]. Combustion Science & Technology, 2014, 186(7): 928-942. [33]赵凯. 超长工作面过联络巷期间自燃防治技术[J]. 煤矿安全, 2018, 49(06): 58-61. [34]陈凯. 粉煤灰稠化胶体的制备及防灭火特性研究[D]. 徐州: 中国矿业大学, 2020. [35]Shi Q, Qin B,Bi Q, et al. Fly ash suspensions stabilized by hydroxypropyl guar gum and xanthan gum for retarding spontaneous combustion of coal[J]. Combustion Science & Technology, 2018, 190(12): 2097-2110. [36]黄法礼. CRTSⅢ板式无砟轨道自密实混凝土剪切作用下的流变行为研究[D]. 北京: 中国铁道科学研究院, 2016. [37]Yang B, Jin J, Yin X, et al. Effect of Concentration and suspension agent (HPMC) on properties of coal gangue and fly ash cemented filling material[J]. Shock and Vibration, 2021, 2021. [38]Qing Y, Ye W, Wei Z, et al. Study and application of gelled foam for in-depth water shutoff in a fractured oil reservoir[J]. Journal of Canadian Petroleum Technology. 2009, 48(12): 51-55. [39]Jin J, Wang Y, Wei M, et al. Coreflooding and pore-scale visualization of foamed gel flowed in porous network media[J]. Journal of Dispersion Science and Technology. 2016, 37(10): 1436-1443. [40]郑学召, 吴佩利, 张嬿妮, 等. 气化灰渣凝胶制备及其对煤自燃阻化性能研究[J]. 煤矿安全, 2022, 53(01): 24-30. [41]刘双, 张洪, 方波, 等. 疏水两性黄原胶的制备及流变性能评价[J]. 油田化学, 2018, 35(02): 224-230. [42]戢传富, 王璐, 苟敏, 等. 黄原胶生物合成及分子调控[J]. 中国生物工程杂志, 2022, 42(Z1): 46-57. [43]朱琴, 季金苟, 王丹, 等. 载甲氨蝶呤-亚叶酸钙温敏水凝胶的制备及体外释药研究[J]. 功能材料, 2018, 49(12): 12118-12122. [44]彭天礼. 复合胶体灭火材料成分选择实验研究[J]. 工业安全与环保, 2013, 39(09): 69-71. [45]王慧, 卜祝龙. 矿用粉煤灰防灭火性能研究[J]. 粉煤灰综合利用, 2019(05): 41-44. [46]Ma L, Zhang Y, Wang J, et al. Fire-prevention characteristics of an active colloid prepared from stimulated fly ash component[J] ACS Omega. 2022; 7(2): 1639-1647. [47]王玉怀, 索航, 余博, 等. 自燃厚煤层煤巷高冒区充填防灭火胶体研究及其应用[J]. 中国煤炭, 2016, 42(04): 99-102. [48]赵建国, 朱化雨,刘晓泓, 等. 煤矿三元复合胶体防灭火材料的制备与性能研究[J]. 功能材料, 2015, 46(13): 13139-13143. [49]王小朋, 林桂玲. 瓦斯抽采钻孔封孔用新型胶体材料性能及其封堵效果[J]. 矿业安全与环保, 2019, 46(05): 56-59+65. [50] 欧立懂. 复合胶体防灭火材料的性能研究[J]. 消防科学与技术, 2011, 30(10): 943-946. [51]Guo J, Cai G, Jin Y, et al. An improved composite fly ash gel to extinguish underground coal fire in close distance coal seams: A case study.[J]. Advances in Materials Science & Engineering, 2020, 2020(1): 1-11. [52]秦汝祥, 王庆平, 庞文华. 煤矿防火粉煤灰阻化浆体的流变性试验研究[J]. 中国安全科学学报, 2015, 25(01): 67-71. [53]Vlasak P, Chara Z. Effect of particle size and concentration on flow behavior of complex slurries[A]. OnePetro, 2007. [54]赵春瑞, 张锡佑, 余大洋, 等. 复合胶体防灭火材料的制备及其性能试验研究[J] 中国煤炭, 2015, 41(11): 93-96. [55]Elena P, Manuela T, Maria P, et al. TG/FT–IR/MS study on thermal decomposition of polypropylene/biomass composites[J]. Polymer Degradation and Stability, 2014, 109. [56]聂其红, 孙绍增, 李争起, 等. 褐煤混煤燃烧特性的热重分析法研究[J]. 燃烧科学与技术, 2001(01): 72-76. [57]王连聪. 煤矿灾害气体的傅里叶变换红外光谱定量方法[J]. 煤矿安全, 2017, 48(03): 13-17. [58]邢纪伟, 邬剑明, 王俊峰, 等. 用粉煤灰防治煤矸石自燃灾害的试验研究[J].中国安全科学学报, 2015, 25(05): 3-7. [59]王亚超, 刘云峰, 郭军. 粉煤灰胶体防灭火技术在巷道火灾治理中的应用[J]. 煤炭技术, 2017, 36(05): 196-198. [60]甘元平, 王宝群. 粉煤灰复合胶体在火区治理中的应用[J]. 陕西煤炭, 2019, 38(04): 172-175+150. [61]Dong C, Liu Y. Evaluation of downhole flame-retardant of fly ash gel system and its damage to coal seam[J]. Fresenius Environmental Bulletin, 2022, 31(5): 5263-5270. [62]Wang L, Liu Z, Yang H, et al. A novel biomass thermoresponsive konjac glucomannan composite gel developed to control the coal spontaneous combustion: Fire prevention and extinguishing properties[J]. Fuel, 2021, 306. [63]Wang Y, Suo H, Shan Y, et al. Comparison and application of two types of filling gel to prevent spontaneous combustion at the region where top-coal caves above entry[J]. Imternational Symposium on Materials Application and Engineering, 2016, 67. [64]聂士斌, 邢时超, 韩超, 等. 防治煤矿火灾的凝胶材料制备及其性能研究[J]. 中国安全科学学报, 2020, 30(09): 115-120. [65]王建国, 刘鑫, 郑晨光. 新型凝胶泡沫材料阻化性能实验研究[J]. 矿业安全与环保, 2021, 48(06): 30-33+39. [66]肖旸, 钟凯琪, 解萌玥, 等. 离子液体抑制煤自燃的程序升温试验研究[J]. 西安科技大学学报, 2017, 37(03): 396-402. [67]Wu M, Liang Y, Zhao Y, et al. Preparation of new gel foam and evaluation of its fire extinguishing performance[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 629. [68]马志斌, 张学里, 郭彦霞, 等. 循环流化床粉煤灰理化特性及元素溶出行为研究进展[J]. 化工进展, 2021, 40(06): 3058-3071. [69]徐精彩. 煤层自燃胶体防灭火理论与技术[M]. 北京: 煤炭工业出版社, 2003. [70]王鹏程, 李树忱, 赵世森, 等. 纳米硅溶胶浆液胶凝时间的温度响应[J]. 硅酸盐学报, 2020, 48(02): 231-236. [71]张甲樋, 杜文浩, 陈彦霏, 等. HPMC/P(AM-co-AA)-Zr4+/NaCl导电水凝胶的制备与性能[J]. 高分子材料科学与工程, 2022, 38(08): 1-8+17. [72]邬欣蕾, 陈红, 程志强. 羧甲基淀粉钠共聚高吸水树脂的制备[J]. 吉林农业大学学报, 2020, 42(02): 219-228. [73]许智鹏, 吉静茹, 刘育红, 等. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197. [74]王彩丽, 王静, 杨润全, 等. 核壳结构粉煤灰基复合粉体制备及填充聚合物的性能[J]. 高分子材料科学与工程, 2020, 36(08): 87-92. [75]高志勇, 宋韶博, 孙伟, 等. 瓜尔胶和黄原胶对方解石浮选的抑制行为差异及机理[J]. 中南大学学报(自然科学版), 2016, 47(05): 1459-1464. [76]王宇欣, 李雪嫄, 赵亚楠, 等. 羟丙基甲基纤维素高吸水性树脂制备与性能表征[J].农业机械学报, 2019, 50(02): 297-306. [77]梁鼎成, 杨国明, 张香兰, 等. 粉煤灰合成地聚物及工艺参数的神经网络优化[J]. 煤炭学报, 2021, 46(04): 1194-1202. [78]黄华, 郭梦雪, 张伟, 等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(03): 74-84. [79]张建俊, 王宝强, 蔡冀奇, 等.粉煤灰基固废胶凝材料流变特性机理研究[J]. 功能材料, 2023, 54(12): 12154-12162. [80]刘忠勇. 矿用新型防灭火温敏性水凝胶的制备及性能研究[D]. 重庆: 重庆大学, 2022. [81]侯悦悦, 曾晓辉, 龙广成, 等.天然火山灰-水泥-粉煤灰复合浆体流变性能[J]. 材料导报, 2022, 36(19): 93-98. [82]Yuan Q, Huang Y, Huang T, et al. Effect of activator on rheological properties of alkali-activated slag-fly ash pastes[J].Journal of Central South University, 2022, 29(1): 282-295. [83]郭晓潞, 杨君奕, 熊归砚. 硅酸镁铝及静置时间对3D打印地聚合物砂浆流变性能的影响[J]. 建筑材料学报, 2022,25(01): 89-96. [84]侯悦悦, 曾晓辉, 龙广成, 等. 天然火山灰-水泥-粉煤灰复合浆体流变性能[J]. 材料导报, 2022, 36(19): 97-102. [85]马砺, 杜素, 张照允, 等. 采空区大掺量粉煤灰无机固化泡沫制备及特性研究[J]. 煤田地质与勘探, 2023, 51(2): 243-251. [86]曹润倬, 周茗如, 周群, 等. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689. [87]刘冉, 曾庆华, 梁明, 等. 黄原胶对大豆分离蛋白凝胶流变特性和微观结构的影响[J]. 食品工业科技, 2022, 43(04): 65-72.. [88]Wang Z, Li S, Wei D, et al. Mechanical properties, Payne effect, and Mullins effect of thermoplastic vulcanizates based on high-impact polystyrene and styrene–butadiene rubber compatibilized by styrene–butadiene–styrene block copolymer[J]. Journal of Thermoplastic Composite Materials, 2015, 28(8): 1154-1172. [89]马丽, 杨国兴, 王文燕, 等. 低密度聚乙烯的流变性能研究[J]. 合成树脂及塑料, 2023, 40(01): 49-51. [90]吉笑盈, 黄洋, 胡希, 等. 魔芋葡甘聚糖与阿拉伯胶复合水溶胶流变特性及结构表征[J]. 食品工业科技, 2022, 43(14): 101-109. [91]杨婷婷, 李海平, 侯万国. 环氧氯丙烷交联黄原胶溶液的流变及抗温性能[J]. 高分子材料科学与工程, 2015, 31(05): 39-43. [92]骆文进, 王丽英. 乳胶粉掺量对纤维素醚改性水泥浆体流变性能的影响[J]. 硅酸盐通报, 2021, 40(01): 71-76. [93]黄贤斌, 孙金声, 蒋官澄, 等. 改性脂肪酸提切剂的研制及其应用[J]. 中国石油大学学报(自然科学版), 2019, 43(03): 107-112. [94]王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45(12): 4132-4143. [95]高飞, 白企慧, 贾喆, 等.基于量子化学计算的煤低温氧化放热强度[J]. 煤炭学报, 2023, 48(09): 3428-3440. [96]Ma L, Wang D, Wang Y, et al. Synchronous thermal analyses and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal[J]. Fuel Processing Technology, 2017, 157:65-75. [97]刘军见, 唐一博, 刘洪刚. 硫含量对煤自燃特性的影响实验与模拟研究[J]. 煤矿安全, 2024, 55(02): 99-106. [98]何帅印, 齐金龙, 周春山, 等.金属离子(Na+、Ba2+、Ca2+)抑制煤中含氧官能团活性的量子化学研究[J]. 煤矿安全, 2023, 54(07): 149-155. [99]马吉昊. 改性卤盐阻化剂抑制煤自燃特性实验研究[D]. 兰州: 兰州理工大学, 2023. [100]姜峰, 孙雯倩, 李珍宝, 等.复合阻化剂抑制煤自燃过程的阶段阻化特性[J]. 煤炭科学技术, 2022, 50(10): 68-75. [101]张玉涛, 杨杰, 李亚清, 等. 煤自燃特征温度与微观结构变化及关联性分析[J]. 煤炭科学技术, 2023, 51(04): 80-87. [102]邓军, 赵婧昱, 张嬿妮, 等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报, 2016, 41(05): 1164-1172. [103]Huang Z, Liu X, Gao Y, et al. Experimental study on the compound system of proanthocyanidin and polyethylene glycol to prevent coal spontaneous combustion[J]. Fuel, 2019, 254: 115610.
﹀
|
中图分类号: |
TD752.2
|
开放日期: |
2024-06-17
|