- 无标题文档
查看论文信息

论文中文题名:

 矿井遮蔽环境下UWB雷达生命信息探测回波特征研究    

姓名:

 黄渊    

学号:

 20220226148    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 灾害应急救援    

第一导师姓名:

 郑学召    

第一导师单位:

 西安科技大学    

第二导师姓名:

 肖永福    

论文提交日期:

 2023-06-18    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Study on the echo characteristics of UWB radar life information detection in mine obscured environment    

论文中文关键词:

 矿山救援 ; 钻孔垂直救援 ; UWB雷达 ; 生命信息探测 ; 回波图谱分析    

论文外文关键词:

 Mine rescue ; Drilling vertical rescue ; UWB radar ; Life information detection ; Echo mapping analysis    

论文中文摘要:

我国大部分矿山以井工开采为主,随着开采深度的不断增加,“三高一扰动”的恶劣条件加剧,安全问题更加突出,事故救援难度急剧增大。事故发生后,快速搜寻到井下被困人员是成功救援的基础。矿山钻孔垂直救援技术可快速构建生命通道实现高效救援。借助救生钻孔,UWB雷达可用于探测井下遮蔽环境人员生命信息,进一步提高救援效率。本文以理论分析、实验测试及仿真模拟相结合的方法开展面向钻孔垂直救援井下遮蔽环境的UWB雷达生命信息探测回波研究。 

为明晰井下遮蔽环境电磁特性,采用交流阻抗测量法获取6种煤岩样品在100MHz-1GHz条件下的电性参数,发现随着频率的升高,煤、岩的相对介电常数呈降低趋势;煤、岩的电导率总体上随着频率的升高而升高;用复介电常数为N阶弛豫Debye方程拟合得出20MHz-10GHz下人体等效模型的介电参数。通过构建不同探测环境正演模拟模型,分析仿真模拟回波图谱,得出UWB雷达最优探测函数波形为ricker、最优探测频率范围为400-600MHz;随着频率的升高,人体返回波强度总体呈下降趋势。

设计试制应用于钻孔救援的UWB雷达探测装置样机,搭建UWB雷达波探测实验台,开展不同环境、有无生命体、不同探测距离、多人体目标、微弱体动等情况下的雷达探测实验。发现0.5m厚贫煤环境下人体返回波出现时间较空气环境相对滞后,且雷达回波振幅值有明显下降;人员距离雷达天线辐射方向1-1.5、1.5-2、2-2.5、2.5-3、3-3.5、3.5-4m范围内径向匀速移动,移动平均时差为2.575ns,误差在可接受范围内;同一范围内的多个人体目标距雷达径向相对位置有差异时,可从回波图谱判断出人体目标数量;从人体返回波出现与消失的纵向时间差可判断人体的体动范围和体动幅度;从人体返回波单周期波宽可推测出其生理状况;可通过背景消除和增益调节等处理手段提取微弱体动情况下的人体返回波信号。

论文外文摘要:

Most of the mines in China are mainly shaft mining, with the increasing depth of mining, the "three highs and one disturbance" of the harsh conditions intensified, safety problems more prominent, the difficulty of accident rescue has increased sharply. After an accident, rapid search for trapped people is the basis for successful rescue. The vertical rescue technology of mine borehole can quickly build a lifeline to achieve efficient rescue. With the help of life-saving boreholes, UWB radar can be used to detect the life information of people in the obscured environment underground, further improving the rescue efficiency. In this paper, a combination of theoretical analysis, experimental testing and simulation is used to carry out the study of UWB radar life information detection echoes for downhole sheltered environment of vertical rescue borehole.

In order to clarify the electromagnetic characteristics of the underground sheltered environment, AC impedance measurements were used to obtain the electrical parameters of six coal and rock samples at 100MHz-1GHz, and it was found that the relative permittivity of coal and rock tended to decrease as the frequency increased; the conductivity of coal and rock generally increased with the increase of frequency; the complex permittivity was used as the Nth order relaxation Debye equation The dielectric parameters of the human equivalent model at 20MHz-10GHz were fitted. By constructing orthorectified simulation models for different detection environments and analyzing the simulated echo patterns, the optimal detection function waveform of UWB radar is ricker and the optimal detection frequency range is 400-600MHz; with the increase of frequency, the intensity of human return waves generally shows a decreasing trend.

The prototype of UWB radar detection device applied to borehole rescue was designed and tested, and the UWB radar wave detection experiment bench was built to carry out radar detection experiments in different environments, with and without living bodies, different detection distances, multiple human targets, and weak body movements. It was found that the human return waves in 0.5m thick coal-poor environment lagged behind the air environment, and the radar echo amplitude value decreased significantly; the personnel moved radially and uniformly within 1-1.5, 1.5-2, 2-2.5, 2.5-3, 3-3.5, 3.5-4m from the radar antenna radiation direction, and the average time difference of movement was 2.575ns, which was within the acceptable range; the same When there is a difference in the radial relative position of multiple human targets within the same range, the number of human targets can be judged from the echo pattern; the range of human body movement and the amplitude of body movement can be judged from the longitudinal time difference between the appearance and disappearance of human body return waves; the physiological condition can be inferred from the single-cycle wave width of human body return waves; the human body return wave signal under weak body movement can be extracted by background elimination and gain adjustment.

参考文献:

参考文献

[1] 郭娟,崔荣国,周起忠,等.2022年中国矿产资源形势回顾与展望[J].中国矿业,2023, 32(01):1-6.

[2] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019, 44(07):1949-1960.

[3] 田宏亮,张阳,郝世俊,等.矿山灾害应急救援通道快速安全构建技术与装备[J].煤炭科学技术,2019,47(05):29-33.

[4] 郑学召,孙梓峪,郭军,等.矿山钻孔救援多源信息探测技术研究与应用[J].煤田地质与勘探,2022,50(11):94-102.

[5] 郑学召,孙梓峪,张嬿妮,等.面向钻孔救援的超宽带雷达技术研究现状与方向[J].工矿自动化,2021,47(08): 20-26.

[6] 郑学召,李诚康,文虎,等.矿井灾害救援生命信息探测技术及装备综述[J].煤矿安全, 2017,48(12):116-119.

[7] Xuezhao Zheng, Wang Hu, Guo Jun, et al. Method for multi-information drilling detection after mining disasters[J]. Computers & electrical engineering, 2020, 86106726.

[8] 高广伟,张禄华.大直径钻孔救援的实践与思考——以山东平邑“12·25”石膏矿坍塌事故救援为例[J].中国应急管理,2016,(03):74-75.

[9] 王志坚.矿山钻孔救援技术的研究与务实思考[J].中国安全生产科学技术,2011,7(01):5-9.

[10] 周兢,杜兵建,阴慧胜,等.钻探技术在矿山灾害事故应急救援中的应用[C]//中国地质学会.第二十一届全国探矿工程(岩土钻掘工程)学术交流年会论文集.《钻探工程》编辑部,2021:212-217.

[11] 王朝.遮蔽环境下超宽带雷达人体目标定位与回波处理方法研究[D].兰州:兰州理工大学,2020.

[12] 李孝揆.矿用超宽带雷达生命探测仪的研究[J].煤矿机械,2015,36(06): 96-99.

[13] 陈光,费翔宇,冯温雅,等.超宽带废墟搜救雷达的多生命体目标识别[J]. 现代电子技术,2015,38(19):76-78.

[14] Li J, L. Liu, Z. Zeng, et al. Advanced Signal Processing for Vital Sign Extraction With Applications in UWB Radar Detection of Trapped Victims in Complex Environments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3): 783-791.

[15] 路国华,王健琪,杨国胜,等.生物雷达技术的研究现状[J].国外医学.生物医学工程分册, 2004,(06):368-370.

[16] 娄鉴.超宽带生命探测雷达[D].杭州:浙江大学,2013.

[17] Soumya Nag, Barnes Mark-A, Payment Tim, et al. An ultra-wideband through-wall radar for detecting the motion of people in real time[A]//Bellingham WA: SPIE, 2002: 48-57.

[18] 李鑫.UWB脉冲雷达呼吸信号检测算法研究[D].深圳:中国科学院深圳先进技术研究院, 2013.

[19] 张华,祁富贵,王帅杰,等.不同身体姿势对雷达式生命体征监测系统的影响[J]. 中国医疗设备, 2017, 32(06): 28-31.

[20] Hao Lv,Jiao Teng, Zhang Yang, et al. A Novel Method for Breath Detection via Stepped-Frequency Continuous Wave Ultra-Wideband (SFCW UWB) Radars Based on Operational Bandwidth Segmentation[J]. Sensors, 2018, 18(11): 3873.

[21] 梁福来,李浩楠,祁富贵,等.UWB MIMO生物雷达多静止人体目标成像方法研究[J].雷达学报,2016,5(05):470-476.

[22] Xue H, Liu M, Lv H, et al. A dynamic clutter interference suppression method for multiple static human targets detection using ultra‐wideband radar[J]. Microwave and Optical Technology Letters,2019,61(12):2854-2865.

[23] Huijun Xue, Liu Miao, Zhang Yang, et al. An Algorithm Based Wavelet Entropy for Shadowing Effect of Human Detection Using Ultra-Wideband Bio-Radar[J]. Sensors, 2017, 17(10): 2255.

[24] 朱江.超宽带穿墙雷达未知墙体参数估计研究[D].南京:南京信息工程大学, 2018.

[25] 张锋,梁步阁,容睿智,等.UWB雷达生命探测仪系统设计与试验[J].消防科学与技术,2016,35(07):967-969.

[26] 杨聪聪.超宽带脉冲信号发射机技术研究[D].成都:电子科技大学,2017.

[27] 于子良.超宽带穿墙雷达系统设计[D]. 成都:电子科技大学,2017.

[28] 陈超,孟升卫,陈洁,等.超宽带生命探测雷达研制及应用[J].电子测量技术,2014, 37(03):15-19.

[29] 李宏伟,汪洋.基于帧间数据处理的杂波点迹滤除技术研究[J].无线电工程,2019, 49(2):145-149.

[30] 姜晖.基于子空间投影的机载前视阵雷达杂波谱补偿[J].网络空间安全,2018,9(9):103-105.

[31] 张金元,张晶,付庆霞.超宽带雷达树丛穿透干扰抑制算法[J].电子技术与软件工程,2017(6):89.

[32] 赵志欣,周新华,洪升,等.基于载波域自适应迭代滤波器的无源雷达多径杂波抑制方法[J].电子与信息学报,2018,40(12):2841-2847.

[33] 彭聪,王杰贵,朱克凡.基于动态网格密度的SNN聚类的ET-GM-PHD滤波算法[J].弹箭与制导学报,2019,45(8):1-8.

[34] 潘水洋,吴晶,李烨.冲激超宽带雷达生命信号提取的新方法[J].微波学报,2010,26(6): 36-41.

[35] 王宝元.矿井生命信息探测超宽带雷达波衰减规律研究[D].西安:西安科技大学,2020.

[36] 魏崇毓,李玲娟,朱卫娟.一种弱信号检测新方法分析[J].现代电子技术,2012,35(5):60-64,67.

[37] 刘震宇,陈惠明,陆蔚,等.基于改进经验模态分解的雷达生命信号检测[J].仪器仪表学报,2018,39(12):171-178.

[38] Shengying Yang, Qin Huibin, Liang Xiaolin, et al. Clutter Elimination and Harmonic Suppression of Non-Stationary Life Signs for Long-Range and Through-Wall Human Subject Detection Using Spectral Kurtosis Analysis (SKA)-Based Windowed Fourier Transform (WFT) Method[J]. Applied Sciences,2019,9(2):355-382.

[39] Farnaz Mahmoudi Shikhsarmast, Lyu Tingting, Liang Xiaolin, et al. Random-Noise Denoising and Clutter Elimination of Human Respiration Movements Based on an Improved Time Window Selection Algorithm Using Wavelet Transform[J]. Sensors,2019,19(1):95-119.

[40] Xi Chen, Chen Weidong. Multipath ghost elimination for through‐wall radar imaging[J]. IET Radar, Sonar & Navigation,2016,10(2):299-310.

[41] Xiaolin Liang, Zhang Hao, Ye Shengbo, et al. Improved denoising method for through-wall vital sign detection using UWB impulse radar[J]. Digital Signal Processing,2018, 7472-93.

[42] 李家强,徐小敏,卢宝宝,等.倾斜阵列下奇异值分解穿墙雷达杂波抑制[J].雷达科学与技术,2019,17(05):531-537.

[43] Hui-Sup Cho, Park Young-Jin. Detection of Heart Rate through a Wall Using UWB Impulse Radar[J]. Journal of Healthcare Engineering,2018,20181-7.

[44] Yuliang Li, Wang Wei, Jiang Yu. Through Wall Human Detection Under Small Samples Based on Deep Learning Algorithm[J].IEEE Access, 2018, 665837-65844.

[45] 张铎.超宽带雷达波在煤中传播规律与定位基础研究[D].西安:西安科技大学,2018.

[46] 张军伟,刘秉峰,李雪,等.基于GPRMax2D的地下管线精细化探测方法[J].物探与化探,2019,43(02):435-440.

[47] 尹光辉,冯雨宁,张怀凯,等.基于GprMax软件的道路路基空洞探地雷达正演模拟[J]. 物探化探计算技术,2016,38(04):480-486.

[48] 王富明.基于FDTD高速公路基础设施建模与仿真[J].电脑知识与技术,2010,6(36): 10418-10420.

[49] 肖都,李文杰,郭鹏.基于GprMax的隧道衬砌检测数值模拟及应用[J].物探与化探,2015, 39(04):855-859.

[50] 李敏瑞,马锦辉.GprMax-2D在巷道质量检测中的应用[J].煤矿安全,2013,44(09):166-168.

[51] 孙忠辉,刘金坤,张新平,等.基于GprMax的隧道衬砌地质雷达检测正演模拟与实测数据分析[J].工程地球物理学报,2013,10(05):730-735.

[52] 郭立,崔喜红,陈晋.基于GprMax正演模拟的探地雷达根系探测敏感因素分析[J].地球物理学进展,2012,27(04):1754-1763.

[53] 陈圣波,查逢丽,连懿,等.基于FDTD的月壤分层雷达探测正演模拟[J].地学前缘,2014, 21(06):88-91.

[54] 朱云峰,王齐仁,邓国文.基于GPRMAX的隧道超前地质预报正演模拟与实测数据分析[J].物探化探计算技术,2016,38(02):185-190.

[55] 刘华,陈贤祥,任仁,等.基于GprMax粮库异物微波探测传感系统的仿真[J].河南工业大学学报(自然科学版),2008,29(06):60-64.

[56] X. Núñez-Nieto, M. Solla, A. Novob, H. Lorenzo. Three-dimensionalground-penetrating radar methodologies for thecharacterization and volumetricreconstruction of underground tunneling[J].Construction and Building Materials,2014,71:551-560.

[57] Adam D. Booth, Jamie K. Pringle. Semblance analysis to assess GPR data from afive-year forensic study of simulated clandestine graves[J].Journal of AppliedGeophysics,2016, 125:17-44.

[58] Alexandre Novo , Henrique Lorenzo, Fernando I. Rial, et al. 3D GPR in forensics:Finding a clandestine grave in a mountainous environment[J]. Forensic Science Inter-national,2011, 204:134-138.

[59] Olga Lopera, Nada Milisavljevic. Prediction of the effects of soil and targetproperties on the antipersonnel landmine detection performance of ground-penetrating radar: A Colombian case study[J].Journal of Applied Geophysics,2007,63:13-23.

[60] M. Solla, H. Lorenzo, B. Riveiro, et al. Non-destructive methodologies in theassessment of the masonry arch bridge of Traba, Spain[J]. Engineering Failure Anal-ysis,2011,18:828-835.

[61] Magdalena Rucka, Jacek Lachowicz, Monika Zielinska. GPR investigation of thestrengthening system of a historic masonry tower[J].Journal of Applied Geophysics, 2016,131:94-102.

[62] M. Solla, R. Asorey-Cacheda, X. Núñez-Nieto, et al. Evaluation of historical bridgesthrough recreation of GPR models with the FDTD algorithm[J].NDT& EInternational,2016,Volume 77:19-27.

[63] Porcino D Hirt W. Ultra-Wideband Radio Technology:Potential and Challenges Ahead [J].IEEE Communications Magazine 2003(7):66-74.

[64] 刘培国.超宽带信号辐射与散射研究[D].长沙:国防科学技术大学,2004.

[65] 林圣国,周国安,向正义.超宽带雷达抗干扰性能研究[J].弹箭与制导学报,2005(SB):615-616+621.

[66] 梁步阁. UWB雷达目标探测理论与实验研究[D].长沙:国防科学技术大学,2007.

[67] 闫鑫.基于超宽带雷达的机器人室内高精度定位系统研究[D].北京:北京建筑大学, 2021.

[68] 吴耿俊.基于UWB雷达的老人室内跟踪与识别系统[D].杭州:浙江大学,2022.

[69] 高晖,孙即涛.超宽带技术及其在无线个域网中的应用[J].中国新通信,2008(03):27-29.

[70] 曾昭珏.正弦电磁波的相位不变性[J].大学物理,1987(02):20-21.

[71] He X, Nie B, Chen W, et al. Research progress on electromagnetic radiation in gas-containing coal and rock fracture and its applications[J]. Safety Science, 2012, 50(4): 728-735.

[72] 王家礼,朱满座,路宏敏.电磁场与电磁波[M].西安:西安电子科技大学出版社,2021.

[73] Erica Carrick Utsi.Ground Penetrating Radar Theory and Practice,EMC Radar Consulting, Ely, United Kingdom,2017.

[74] 贾雨龙,李凤霞,陶晋宜,王鹏.矿层无线透地系统中甚低频电磁波的传播特性[J].工矿自动化,2015,41(09):31-33.

[75] 张海波,滕鑫淼,毛为民,等.基于高频电磁波的随钻探层测距雷达技术研究[J].石油机械,2016,44(12):7-11.

[76] 程园新. 基于介电特性的井下煤岩界面识别方法研究[D].徐州:中国矿业大学,2018.

[77] 龚壁卫,周丹蕊,魏小胜.膨胀土的电导率与膨胀性的关系研究[J].岩土力学,2016, 37(S2):323-328.

[78] 付全红,庞述先,樊元成,张富利.波导法测量材料的电容率和磁导率[J].物理实验,2019, 39(08):22-25+30.

[79] Jun Hu, G.Z.T.J, Adaptive Through-Wall Indication of Human Target with Different Motions[J]. IEEE Geoscience and Remote Sensing Letters, 2014. 11(5): 911-915.

[80] 孙祥栋.人体组织非均匀介电特性断层成像新方法研究[D].成都:电子科技大学,2021.

[81] 高本庆,陈金元.色散媒质中电磁场的时域有限差分算法[J].中国科学(A辑 数学 物理学 天文学 技术科学),1994(05):538-545.

[82] 祝忠明.超宽带搜救探测的时域有限差分数值模拟[D].成都:成都理工大学,2017.

[83] Yee K S.Numerical solution of initial boundary value problems involving Maxwell equation in isotropic media. IEEE Trans. Antennas Propagat.May 1966,14(3):302-307.

[84] 葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2011.

[85] 赵贵章,闫永帅,闫亚景,等.介质含水率与探地雷达电磁波特征参数关系[J].灌溉排水学报,2020,39(03):85-90.

[86] 孙鹏博.基于FDTD的探地雷达管线探测正演模拟研究[D].北京:中国地质大学,2020.

[87] 费翔宇,王君超,王春和.穿墙定位雷达静止人体目标的信号处理[J].信号处理,2011, 27(05):786-790.

中图分类号:

 TD77    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式